In-Situ Optical Measurements of Solid and Hybrid-Propellant Combustion Plumes
Abstract
:1. Introduction
2. Tests Systems
2.1. Optical Systems Design
2.2. Thrust Chamber Assembly
2.3. Motor Instrumentation and Test Assembly
3. Analytical Methods
3.1. FTIR Analysis of the ABS Fuel Material
3.2. Thermochemical Analysis of the Exhaust Plume
3.3. Motor Performance Analysis
4. Summary of Test Results
4.1. Motor Performance Data
4.2. Plume Spectra Measurments
4.3. Estimating the Internal Flame-Temperature
4.4. Student-t Significance Test
5. Proposed Future Work
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Nomenclature
Symbols | |
Average absorbance of total polymer | |
{a,b,c} | FTIR least-squares curve fit coefficients |
A | amplitude scaling factor |
Ac | fuel port cross-sectional area, cm2 |
Aexit | nozzle exit area, cm2 |
A* | sectional area at which local flow chokes, cm2 |
residual vector for estimated amplitude | |
B | black body spectral radiance, W/rad2-m3 |
c | speed of light in a vacuum, 2.998 × 108 m/s |
c* | characteristic velocity of propellants, m/s |
F | curve fit function, W/rad2-m3 |
Fthrust | thrust level, N |
g0 | normal acceleration of gravity at sea level, 9.8067 m/s2 |
h | Planck’s constant, 6.62607015 × 10−34 J/Hz |
i | wavelength index |
j | iteration index |
kB | Boltzmann constant, 1.380649 × 10−23 J/K |
fuel mass flow, g/s | |
oxidizer mass flow, g/s | |
total mass flow through the nozzle, g/s | |
N | degrees of freedom |
n | number of wavelength points in a given spectrum |
O/F | oxidizer-to-fuel ratio |
pexit | nozzle exit pressure, kpa |
p∞ | operating ambient pressure, kpa |
P0 | combustion chamber pressure, kpa |
S | spectrum radiance at a single data point, W/rad2-m3 |
residual vector for estimated radiance, W/rad2-m3 | |
spectrum radiance adjusted for spectrometer response transfer function, W/rad2-m3 | |
S/Nλ | measured spectrum signal to noise ratio at a given wavelength |
T | radiant temperature, K |
T0 | stagnation temperature, K |
tstudent | student t-statistic value |
tburn | burn time, s |
residual vector for estimated temperature, K | |
X | estimation coefficient vector |
Γ | Jacobian Matrix |
ΔHf | Molar enthalpy of formation, kJ/g-mol |
ΔQp | Molar enthalpy of polymerization, kJ/g-mol |
Φ | equivalence ratio |
λ | wavelength, nm |
λmax | wavelength of maximum radiance, nm |
spectrometer response transfer function | |
μ | mean value |
σ | standard deviation |
η* | combustion efficiency |
γ | ratio of specific heats |
Acronyms | |
ABS | Acrylonitrile Butadiene Styrene |
ATR | Attenuated Total Reflection |
BLAST | Battery and Survivability Limits Testing |
CEA | Chemical Equilibrium with Applications |
CMOS | Complementary Metal Oxide Semiconductor |
FDM | Fused Deposition Manufacturing |
FTIR | Fourier Transform InfraRed Spectroscopy |
GOX | Gaseous Oxygen |
HVPS | High Voltage Power Supply |
IR | InfraRed |
P&ID | Piping and Instrumentation |
USU | Utah State University |
Appendix A. Non-Linear Regression Algorithm for Fitting Planck’s Law to the Optical Sensor Data
Appendix A.1. Derivation of the Non-Linear Regression Algorithm
Appendix A.2. Derivatives of Planck’s Function
References
- Gardon, R. An instrument for the direct measurement of intense thermal radiation. Rev. Sci. Instrum. 1954, 24, 366–370. [Google Scholar] [CrossRef]
- Kidd, C.T.; Nelson, C.G. How the Schmidt-Boelter gage really works. In Proceedings of the 41st 41st International Instrumentation Symposium, Research Triangle Park, NC, USA, 7–11 May 1995; pp. 347–368. [Google Scholar]
- HAMAMATSU MS Series Mini-Spectrometers. Available online: https://www.hamamatsu.com/resources/pdf/ssd/c10988ma-01_etc_kacc1169e.pdf (accessed on 24 December 2021).
- Whitmore, S.A.; Armstrong, I.W.; Heiner, M.C.; Martinez, C.J. High-performing hydrogen peroxide hybrid rocket with 3-D printed and extruded ABS fuel. Aeronaut. Aerosp. Open Access J. 2018, 2, 356–388. [Google Scholar] [CrossRef] [Green Version]
- Whitmore, S.A.; Martinez, C.J.; Merkley, D.P. Catalyst development for an arc-ignited hydrogen peroxide/ABS hybrid rocket system. Aeronaut. Aerosp. Open Access J. 2018, 2, 356–388. [Google Scholar] [CrossRef] [Green Version]
- Whitmore, S.A.; Babb, R.S.; Gardner, T.J.; LLoyd, K.P.; Stephens, J.C. Pyrolytic graphite and boron nitride as low-erosion nozzle materials for long-duration hybrid rocket testing, AIAA 2020–3740. In Proceedings of the AIAA Propulsion and Energy 2020 Forum, Virtual Event, 24–28 August 2020. [Google Scholar]
- Whitmore, S.A.; Inkley, N.R.; Merkley, D.P.; Judson, M.I. Development of a power-efficient, restart-capable arc ignitor for hybrid rockets. J. Propuls. Power 2015, 31, 1739–1749. [Google Scholar] [CrossRef]
- Anon. National Institute for Standards in Technology (NIST) Standard Reference Database Number 69. Available online: http://webbook.nist.gov/chemistry (accessed on 1 June 2019).
- Othmer, K. Butadiene. In Encyclopedia of Chemical Technology; John Wiley & Sons, Inc.: New York, NY, USA, 2006. [Google Scholar]
- Anon. Styrene. National Library of Medicine. PubChem. Available online: https://pubchem.ncbi.nlm.nih.gov/compound/Styrene (accessed on 12 August 2021).
- Cha, J. Acrylonitrile-Butadiene-Styrene (ABS) Resin. In Engineering Plastics Handbook; Margolis, J.M., Ed.; McGraw-Hill: New York, NY, USA, 2006; pp. 101–130. [Google Scholar]
- Bradley, M. FTIR Sample Techniques: Attenuated Total Reflection (ATR). Thermo Fisher Scientific Technical Note. Available online: https://www.thermofisher.com/us/en/home/industrial/spectroscopy-elemental-isotope-analysis/spectroscopy-elemental-isotope-analysis-learning-center/molecular-spectroscopy-information/ftir-information/ftir-sample-handling-techniques.html (accessed on 1 June 2019).
- Junga, M.R.; Horgena, F.D.; Orskib, S.V.; Rodriguez, V.C.; Beers, K.L.; Balazs, G.H.; Jones, T.T.; Work, T.M.; Brignace, K.C.; Royer, S.J.; et al. Validation of ATR FT-IR to identify polymers of plastic marine debris, including those ingested by marine organisms. Mar. Pollut. Bull. 2018, 127, 704–716. [Google Scholar] [CrossRef] [PubMed]
- Smith, A.L.; Carver, C.D. (Eds.) Propene Nitrile. In The Coblentz Society Desk Book of Infrared Spectra, 2nd ed.; The Coblentz Society: Kirkwood, MO, USA, 1982; pp. 1–24. Available online: https://webbook.nist.gov/cgi/cbook.cgi?JCAMP=C107131&Index=1&Type=IR (accessed on 1 June 2019).
- Smith, A.L.; Carver, C.D. (Eds.) Butadien. In The Coblentz Society Desk Book of Infrared Spectra, 2nd ed.; The Coblentz Society: Kirkwood, MO, USA, 1982; pp. 1–24. Available online: https://webbook.nist.gov/cgi/cbook.cgi?JCAMP=C107131&Index=1&Type=IR (accessed on 1 June 2019).
- Smith, A.L.; Carver, C.D. (Eds.) Styrene. In The Coblentz Society Desk Book of Infrared Spectra, 2nd ed.; The Coblentz Society: Kirkwood, MO, USA, 1982; pp. 1–24. Available online: https://webbook.nist.gov/cgi/cbook.cgi?JCAMP=C100425&Index=1&Type=IR (accessed on 1 June 2019).
- Baxendale, J.L.H.; Madaras, G.W. Kinetics and heats of copolymerization of acrylonitrile and methyl methacrylate. J. Polym. Sci. 1956, 19, 171–179. [Google Scholar] [CrossRef]
- Seymour, R.B.; Carraher, C.E., Jr. Polymer Chemistry, Revised and Expanded, 6th ed.; Marcel Dekker Publishing, Inc.: New York, NY, USA, 2003; Available online: https://www.academia.edu/29185976/Seymour_Carrahers_Polymer_Chemistry_Sixth_Edition (accessed on 5 December 2021).
- Van Krevelen, D.W.; Jijenhuis, K. Properties of Polymers: Their Correlation with Chemical Structure; Their Numerical Estimation and Prediction from Additive Group Contributions, 4th ed.; Elsevier Science Ltd.: Amsterdam, The Netherlands, 2009. [Google Scholar]
- Prosen, E.J.; Maron, F.W.; Rossini, F.D. Heats of combustion, formation, and isomerization of ten C4 hydrocarbons. J. Res. 1951, 46, 106–112. [Google Scholar]
- Prosen, E.J.; Rossini, F.D. Heats of formation and combustion of 1,3-butadiene and styrene. J. Res. 1945, 34, 59–63. [Google Scholar] [CrossRef]
- Gordon, S.; McBride, B.J. Computer Program for Calculation of Complex Chemical Equilibrium Compositions and Applications; NASA RP-1311; NASA: Washington, DC, USA, 1994. [Google Scholar]
- Anderson, J.D. Modern Compressible Flow, 3rd ed.; The McGraw Hill Companies, Inc.: New York, NY, USA, 2003; Chapter 4; pp. 127–187, ISBN-13 978-0072424430; Available online: https://libcat.lib.usu.edu/search/i0070016542 (accessed on 5 December 2021).
- Whitmore, S.A. A variational method for estimating time-resolved hybrid fuel regression rates from chamber pressure. In Proceedings of the AIAA 2020-3762, AIAA Propulsion and Energy Forum 2020, Virtual Event, 24–28 August 2020. [Google Scholar] [CrossRef]
- Whitmore, S.A. Nytrox as “drop-in” replacement for gaseous oxygen in SmallSat hybrid propulsion systems. Aerospace 2000, 7, 43. [Google Scholar] [CrossRef] [Green Version]
- Meditch, J.S. Stochastic Optimal Linear Estimation and Control; McGraw-Hill: New York, NY, USA, 1969; pp. 288–322. [Google Scholar]
- Gonzalez, R.; Woods, R.; Eddins, S. Digital Image Processing Using Matlab; Prentice Hall: Saddle River, NJ, USA, 2003; Chapter 4. [Google Scholar]
- Dougal, R.C. The Presentation of the Planck Radiation Formula (Tutorial). Phys. Educ. 1976, 11, 438–443. [Google Scholar] [CrossRef]
- Walker, J. Fundamentals of Physics, 8th ed.; John Wiley and Sons: Hoboken, NJ, USA, 2008; p. 891. ISBN 9780471758013. [Google Scholar]
- Beckwith, T.G.; Marangoni, R.D.; Lienhard, V.J.H. Mechanical Measurements, 6th ed.; Prentice Hall: Hoboken, NJ, USA, 2006; pp. 43–73. [Google Scholar]
- Whitmore, S.A.; Olsen, K.C.; Forster, P.; Oztan, C.; Coverstone, V.L. Test and evaluation of copper-enhanced, 3-D printed ABS hybrid rocket fuels. In Proceedings of the AIAA 2021-3225, AIAA Propulsion and Energy 2021 Forum, Virtual Event, 9–11 August 2021. [Google Scholar]
- Boyd, S. Lecture 5, Least-squares, EE263 Lecture Notes. 2007. Available online: https://see.stanford.edu/materials/lsoeldsee263/05-ls.pdf (accessed on 25 May 2021).
- Kosinski, A.A. Cramer’s Rule is due to Cramer. Math. Mag. 2001, 74, 310–312. [Google Scholar] [CrossRef]
Monomer | Chemical Formula | Mw g/mol | ΔHf Monomer kJ/g-mol | ΔQp Polymer kJ/g-mol | Net ΔHf kJ/g-mol | Mole Fraction | Mass Fraction | Net Enthalpy Contribution kJ/g-mol |
---|---|---|---|---|---|---|---|---|
Acrylo-nitrile | C3H3N | 53.06 | 172.62 [17] | 74.3 [18] | 98.31 | 0.337 | 0.284 | 33.13 |
Butadiene | C4H6 | 54.09 | 104.10 [19] | 72.10 [20] | 32.00 | 0.479 | 0.411 | 15.33 |
Styrene | C8H8 | 104.15 | 146.91 [21] | 84.60 [20] | 63.31 | 0.184 | 0.305 | 11.65 |
ABS Total | C4.399 H5.357 N0.377 | 62.95 | 1.00 | 1.00 | 60.11 |
Species | Mass Fraction | Emission Wavelengths, nm |
---|---|---|
CO | 59.8% | 1568, 2330, 4610 |
H2 | 23.5% | 410, 434, 486, 656 |
H2O | 8.3% | 605, 660, 750 |
H | 3.0% | 410, 434, 486, 656 |
CO2 | 2.8% | 300, 444, 1459 |
N2 | 2.1% | 590, 670, 740, 820, 870, 900, 970 |
OH | 0.4% | 304, 307 |
O | 0.03% | 558, 630, 635 |
Burn No. | Burn Time, s | Load Cell Thrust, N | Thrust from P0, N | Chamber Pressure P0, kPa (Psia) | Isp from Load | Mean Total Mass Flow, g/s | O/F | η* | c*, m/s | T0, °C |
---|---|---|---|---|---|---|---|---|---|---|
1 | 5 | 112.8 | 111.1 | 880.1 (127.7) | 208.0 | 55.3 | 1.38 | 0.941 | 1621.7 | 2701.6 |
2 | 15 | 117.4 | 116.3 | 893.1 (129.5) | 213.0 | 56.2 | 1.34 | 0.960 | 1642.9 | 2754.0 |
3 | 15 | 117.5 | 116.1 | 891.0 (129.3) | 214.3 | 55.9 | 1.36 | 0.964 | 1655.6 | 2806.4 |
4 | 25 | 118.2 | 117.5 | 897.1 (130.1) | 213.7 | 56.4 | 1.35 | 0.960 | 1645.8 | 2758.9 |
5 | 15 | 117.9 | 116.7 | 896.2 (130.0) | 215.5 | 55.8 | 1.36 | 0.948 | 1628.1 | 2714.4 |
μ | - | 116.8 | 115.5 | 891.5 (129.3) | 212.9 | 55.9 | 1.358 | 0.955 | 1638.2 | 2747.1 |
σ | - | 2. 24 | 2.54 | 6.82 (0.97) | 2.89 | 0.43 | 0.015 | 0.010 | 13.74 | 41.36 |
95% t-conf. | - | 2.78 | 3.15 | 8.47 (1.20) | 3.58 | 0.52 | 0.018 | 0.012 | 17.04 | 51.32 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Whitmore, S.A.; Frischkorn, C.I.; Petersen, S.J. In-Situ Optical Measurements of Solid and Hybrid-Propellant Combustion Plumes. Aerospace 2022, 9, 57. https://doi.org/10.3390/aerospace9020057
Whitmore SA, Frischkorn CI, Petersen SJ. In-Situ Optical Measurements of Solid and Hybrid-Propellant Combustion Plumes. Aerospace. 2022; 9(2):57. https://doi.org/10.3390/aerospace9020057
Chicago/Turabian StyleWhitmore, Stephen A., Cara I. Frischkorn, and Spencer J. Petersen. 2022. "In-Situ Optical Measurements of Solid and Hybrid-Propellant Combustion Plumes" Aerospace 9, no. 2: 57. https://doi.org/10.3390/aerospace9020057
APA StyleWhitmore, S. A., Frischkorn, C. I., & Petersen, S. J. (2022). In-Situ Optical Measurements of Solid and Hybrid-Propellant Combustion Plumes. Aerospace, 9(2), 57. https://doi.org/10.3390/aerospace9020057