Effect of Stagger on Low-Speed Performance of Busemann Biplane Airfoil
Abstract
:1. Introduction
2. Experimental Setup
2.1. Low-Speed Wind Tunnel
2.2. Balance Measurement System
2.3. Test Model
2.4. Experimental Conditions
2.5. Numerical Simulation
3. Results and Discussions
3.1. NACA0012 Airfoil Tests
3.2. Baseline Model Test
3.3. Stagger Effects
3.3.1. Drag and Lift Coefficient
3.3.2. Contribution of the Lower Element to Total Performances of the Biplane
3.3.3. Interference Ratio
3.3.4. Pressure and Velocity Distribution around the Models
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Nomenclature
c | airfoil chord length, mm |
Cl | lift coefficient |
Cd | drag coefficient |
IL | lift interference ratio |
ID | drag interference ratio |
h | height of test section, mm |
t | wing thickness, mm |
U∞ | freestream velocity |
G | spacing between wing elements, mm |
Subscripts | |
Upper | The upper element (wing) |
Lower | The lower element (wing) |
Single | The single configuration (individual wing) |
Biplane | The biplane configuration |
Appendix A. Grid Independence for Numerical Simulations
Mesh 1 | Mesh 2 | Mesh 3 | Mesh 4 | |
---|---|---|---|---|
Grid point on the element surface | 400 | 400 | 400 | 400 |
Grid point between the wing elements | 120 | 200 | 300 | 500 |
Total cells | 190,995 | 233,795 | 287,295 | 394,295 |
Appendix B
Parameters | S-A (1) | S-A (2) | k-ω SST |
---|---|---|---|
Solver | Density-based | Pressure-based | Pressure-based |
Turbulence model | Spalart–Allmaras | Spalart–Allmaras | k-ω SST |
Algorithm | AUSM | Couple | Couple |
Spatial discretization | Flow: 1-order | Pressure: 2-order | Pressure: 2-order |
Momentum: 2-order upwind | Momentum: 2-order upwind | ||
Modified Turbulent viscosity: 2-oder upwind | Modified turbulent viscosity: 1-order upwind | Turbulent kinetic energy: 2-oder upwind Specific dissipation rate: 2-order upwind |
Appendix C
Appendix D
References
- Low-Boom Flight Demonstration, NASA. Available online: https://www.nasa.gov/X59 (accessed on 15 September 2021).
- Silent Supersonic Transport Technologies, JAXA. Available online: https://www.aero.jaxa.jp/eng/research/frontier/sst/ (accessed on 15 September 2021).
- RUMBLE Projects, European Union’s Horizon. 2020. Available online: https://rumble-project.eu/i/ (accessed on 15 September 2021).
- Kusunose, K.; Matsushima, K.; Obayashi, S.; Furukawa, T.; Kuratani, N.; Goto, Y.; Maruyama, D.; Yamashita, H.; Yonezawa, M. Aerodynamic Design of Supersonic Biplane, Cutting Edge and Related Topics; The 21st century COE Program; International COE of Flow Dynamic Lecture Series; Tohoku University Press: Sendai, Janpan, 2007; Volume 5, pp. 1–239. [Google Scholar]
- Kusunose, K.; Matsushima, K.; Maruyama, D. Supersonic biplane–A review. In Progress in Aerospace Sciences; Elsevier: Amsterdam, The Netherlands, 2011; Volume 47, pp. 53–87. [Google Scholar]
- Kuratani, N.; Ogawa, T.; Yamashita, H.; Yonezawa, M.; Obayashi, S. Experimental and Computational Fluid Dynamic Around Supersonic Biplane for Sonic Boom Reduction. AIAA Paper 2007-3674. In Proceedings of the 28th AIAA Aeroacoustics Conference, Rome, Italy, 21–23 May 2007. [Google Scholar]
- Nagai, H.; Oyama, S.; Ogawa, T.; Kuratani, N.; Asai, K. Experimental Study on Interference Flow of a Supersonic Busemann Biplane using Pressure-Sensitive Paint Technique. ICAS-2008-3.7.5. In Proceedings of the 26th International Congress of the Aeronautical Sciences, Anchorage, AK, USA, 14–19 September 2008. [Google Scholar]
- Yamashita, H.; Kuratani, N.; Yonezawa, M.; Ogawa, T.; Nagai, H.; Asai, K.; Obayashi, S. Wind Tunnel Testing on Start/Unstart Characteristics of Finite Supersonic Biplane Wing. Int. J. Aerosp. Eng. 2013, 231434. [Google Scholar] [CrossRef]
- Maruyama, D.; Matsushima, K.; Kusunose, K.; Nakahashi, N. Three-Dimensional Aerodynamic Design of Low-Wave-Drag Supersonic Biplane Using Inverse Problem Method. J. Aircr. 2009, 46, 1906–1918. [Google Scholar] [CrossRef] [Green Version]
- Nguyen, T.D.; Kashitani, M.; Kusunose, K.; Taguchi, M.; Takita, Y. Analysis of a Wing–Fuselage Biplane with Trailing-Edge Flaps in Low-Speed Flow. J. Aircr. 2021, 59, 350–363. [Google Scholar]
- Kashitani, K.; Nguyen, T.D.; Taguchi, M.; Takita, Y.; Kusunose, K. Aerodynamic characteristics on Busemann Biplane by Wake Measurements in Low-speed Wind Tunnel. Trans. Jpn. Soc. Aeronaut. Space Sci. 2021, 64, 258–266. [Google Scholar] [CrossRef]
- Yamazaki, W.; Kusunose, K. Biplane-Wing /Twin-Body-Fuselage Configuration for Innovative Supersonic Transport. J. Aircr. 2014, 51, 1942–1952. [Google Scholar] [CrossRef]
- Yamashita, H.; Obayashi, S.; Kusunose, K. Reduction of Drag Penalty by means of Plain Flaps in the Boomless Busemann Biplane. Int. J. Emerg. Multidiscip. Fluid Sci. 2009, 1, 141–164. [Google Scholar]
- Patidar, V.K.; Yadav, R.; Joshi, S. Numerical investigation of the effect of stagger on the aerodynamic characteristics of a Busemann biplane. Aerosp. Sci. Technol. 2016, 55, 252–263. [Google Scholar] [CrossRef]
- Ma, B.; Wang, G.; Wu, J.; Ye, Z. Avoiding Choked Flow and Flow Hysteresis of Busemann Biplane by Stagger Approach. J. Aircr. 2020, 57, 440–455. [Google Scholar] [CrossRef]
- Kuratani, N.; Ozaki, S.; Obayashi, S.; Ogawa, T.; Matsuno, T.; Kawazoe, H. Experimental and Computational Studies of Low-Speed Aerodynamic Performance and Flow Characteristics around a Supersonic Biplane. Trans. Jpn. Soc. Aeronaut. Space Sci. 2009, 52, 89–97. [Google Scholar]
- Kashitani, M.; Yamaguchi, Y.; Kai, Y.; Hirata, K.; Kusunose, K. Study on Busemann Biplane Airfoil in Low-speed Smoke Wind Tunnel. Trans. Jpn. Soc. Aeronaut. Space Sci. 2010, 52, 213–219. [Google Scholar] [CrossRef] [Green Version]
- Jones, R.; Cleaver, D.J.; Gursul, I. Aerodynamics of biplane and tandem wings at low Reynolds numbers. Exp. Fluids 2015, 56, 124. [Google Scholar] [CrossRef]
- Mueller, T.J.; Burns, T.F. Experimental Studies of the Eppler 61 Airfoil at Low Reynold Numbers. AIAA Paper 82-0345. In Proceedings of the 20th Aerospace Sciences Meeting, Orlando, FL, USA, 11–14 January 1982. [Google Scholar]
- Nguyen, H.A.; Mizoguchi, M.; Itoh, H. Unsteady Aerodynamic Characteristics of NACA0012 Airfoil Undergoing Constant Pitch-Rate Motions at Low Reynolds Numbers. Jpn. Soc. Aeronaut. Space Sci. Aerosp. Technol. 2020, 19, 111–119. (In Japanese) [Google Scholar] [CrossRef]
- Rasuo, B. Scaling between Wind Tunnels–Results Accuracy in Two-Dimensional Testing. Trans. Jpn. Soc. Aeronaut. Space Sci. 2012, 55, 109–115. [Google Scholar] [CrossRef] [Green Version]
- Ocokoljic, G.; Damljanovic, D.; Vukovic, D.; Rasuo, B. Contemporary Frame of Measurement and Assessment of Wind-Tunnel Flow Quality in a Low-Speed Facility. FME Trans. 2018, 46, 429–442. [Google Scholar] [CrossRef]
- Barlow, J.B.; Rae, W.H.; Pope, A. Low-Speed Wind Tunnel Testing, 3rd ed.; A Wiley-Interscience Publication: New York, NY, USA, 1999; pp. 353–361. [Google Scholar]
- Traub, L.W. Theoretical and Experimental Investigation of Biplane Delta Wings. J. Aircr. 2001, 38, 536–546. [Google Scholar] [CrossRef]
- Moschetta, J.M.; Thipyopas, C. Aerodynamic Performance of a Biplane Micro Air Vehicle. J. Aircr. 2007, 44, 291–299. [Google Scholar] [CrossRef]
- Ohtake, T.; Nakae, Y.; Motohashi, T. Nonlinearity of the Aerodynamic Characteristics of NACA0012 Aerofoil at Low Reynold Numbers. Trans. Jpn. Soc. Aeronaut. Space Sci. 2007, 55, 439–445. (In Japanese) [Google Scholar]
- Sheldahl, R.E.; Klimas, P.C. Aerodynamic Characteristics of Seven Symmetrical Airfoil Sections through 180-Degree Angle of Attack for Use in Aerodynamic Analysis of Vertical Axis Wind Turbines; SAND-80-2114; Sandia National Laboratories: Albuquerque, NM, USA, 1981. [Google Scholar]
- Ladson, C.L. Effects of Independent Variation of Mach and Reynolds Number on the Low-Speed Aerodynamic Characteristics of NACA0012 Airfoil Section; NASA TM-4047; NASA Langley Research Center Hampton: Hampton, VA, USA, 1988. [Google Scholar]
- Spalart, P.R.; Rumsey, C.L. Effective inflow conditions for turbulence Models in Aerodynamics Calculations. AIAA J. 2007, 45, 2544–2553. [Google Scholar] [CrossRef]
- Cai, Y.; Liu, G.; Zhu, W.; Tu, Q.; Hong, G. Aerodynamic Interference Significance Analysis of Two-Dimensional Front Wing and Rear Wing Airfoils with Stagger and Gap Variations. J. Aerosp. Eng. 2019, 32, 04019098. [Google Scholar] [CrossRef]
- Nandi, T.N.; Brasseur, J.G. Prediction and Analysis of the Nonsteady Transition and Separation Processes on the Oscillating Wind Turbine Airfoil using the γ-Reθ Transition Model. AIAA Paper 2016-0520. In Proceedings of the AIAA SciTech, San Diego, CA, USA, 4–6 January 2016. [Google Scholar]
- Wang, R.; Xiao, Z. Transition effects on flow characteristics around a static two-dimensional airfoil. Phys. Fluids 2020, 32, 035113. [Google Scholar]
- Van Dam, C.P. Natural Laminar Flow Airfoil Design Considerations for Winglets on Low-Speed Airplane. NASA Contractor Report 3853; Vigyan Research Associate, Inc.: Colonial Heights, VA, USA, 1984. [Google Scholar]
- Yang, L.; Zhang, G. Analysis of Influence of Different Parameters on Numerical Simulation of NACA0012 Incompressible External Flow Field under High Reynolds Number. Appl. Sci. 2022, 12, 416. [Google Scholar] [CrossRef]
Parameters | |
---|---|
Flow velocity | 15 m/s |
Reynold number | 2.1 × 105 |
The angle of attack | −30~30 deg. |
Balance measurement | 20 s for a pattern |
5 Hz sampling frequency | |
Single configuration | NACA0012 |
The single upper element | |
The single lower element | |
Biplane configuration | The Baseline model (No stagger) |
The 0.25c stagger model | |
The 0.50c stagger model | |
The 0.75c stagger model |
Baseline Model | 0.25c Stagger Model | 0.5c Stagger Model | 0.75c Stagger Model | |
---|---|---|---|---|
Exp. | 0.129 | 0.134 | 0.144 | 0.147 |
CFD | 0.122 | 0.124 | 0.135 | 0.152 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nguyen, T.D.; Kashitani, M.; Taguchi, M.; Kusunose, K. Effect of Stagger on Low-Speed Performance of Busemann Biplane Airfoil. Aerospace 2022, 9, 197. https://doi.org/10.3390/aerospace9040197
Nguyen TD, Kashitani M, Taguchi M, Kusunose K. Effect of Stagger on Low-Speed Performance of Busemann Biplane Airfoil. Aerospace. 2022; 9(4):197. https://doi.org/10.3390/aerospace9040197
Chicago/Turabian StyleNguyen, Thai Duong, Masashi Kashitani, Masato Taguchi, and Kazuhiro Kusunose. 2022. "Effect of Stagger on Low-Speed Performance of Busemann Biplane Airfoil" Aerospace 9, no. 4: 197. https://doi.org/10.3390/aerospace9040197
APA StyleNguyen, T. D., Kashitani, M., Taguchi, M., & Kusunose, K. (2022). Effect of Stagger on Low-Speed Performance of Busemann Biplane Airfoil. Aerospace, 9(4), 197. https://doi.org/10.3390/aerospace9040197