Case Study for Testing the Validity of NOx-Ozone Algorithmic Climate Change Functions for Optimising Flight Trajectories
Abstract
:1. Introduction
2. Methodology
2.1. EMAC Model and Used Submodels
2.2. The Algorithmic Climate Change Functions Submodel: ACCF
2.3. The Air Traffic Simulator Submodel: AirTraf
2.4. Contribution of Emissions to Concentrations Submodel: TAGGING
2.5. Radiation Infrastructure Submodel: RAD
3. Numerical Experiments
- The selection of days with a large variability of O aCCFs;
- The calculation of two aviation emission inventories for each selected day (step 1), i.e., for the cost-optimised and O aCCFs-optimised aircraft trajectories;
- The calculation of the contribution of NO emissions from step 2 to O mixing ratios and respective RF.
3.1. Procedure for Selection of Simulation Days
3.2. One-Day Air Traffic Simulation
- Lateral re-routing: The flight corridor is fixed at an altitude of FL340 which corresponds to a typical cruise pressure level of 250 hPa by using constant vertical design variables (labelled , …, in Figure 4). This way, the trajectory is optimised in terms of lateral re-routing called the horizontal analysis (HA).
- Vertical re-routing: The dashed boxes controlled by , … (Figure 4) are fixed to the centre points of their respective rectangular domains. This way, the trajectory is laterally constrained and vertically optimised based on the depth of the cruise flight corridor called the vertical analysis (VA).
3.3. Four-Month Chemistry–Climate Simulation
4. Results
4.1. Selection of Simulation Days
4.1.1. Synoptic Situation
4.1.2. O aCCFs Pattern
4.2. Optimised Air Traffic
4.3. Chemistry–Climate Results
4.3.1. Selected Winter Day
4.3.2. Selected Summer Day
4.4. Radiative Forcing
5. Discussions and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Submodel | Purpose | Reference |
---|---|---|
AEROPT | Aerosol optical properties for the radiation scheme | [35] |
ACCF 1.0 | Climate impact of aviation emissions and contrails calculation | [16] |
AIRTRAF 2.0 | Air traffic simulation | [33] |
CH4 1.0 | Simple methane chemistry | [65] |
CLOUD | Standard ECHAM5 cloud microphysics calculation | [30] |
CLOUDOPT | Cloud optical properties calculation for the radiation scheme | [35] |
CVTRANS | Calculates the transport of tracers due to convection | [66] |
CONVECT | Convection process calculation | [67] |
CONTRAIL | Contrail potential coverage calculation | Supplement of [12,68] |
DDEP | Dry deposition of gas phase and aerosol tracers | [69] |
E5VDIFF | ECHAM5 vertical diffusion and land-atmosphere exchange | [17] |
GWAVE | Gravity waves calculation | [17] |
JVAL | Photolysis rates | [70] |
LNOX | Lighting NO production | [71] |
MSBM | Multi-phase stratospheric box model calculates the heterogeneous reaction rates on polar stratospheric cloud particles and stratospheric background aerosols | [17] |
MECCA | Calculates tropospheric and stratospheric chemistry | [31] |
O3ORIG | To trace the origin of ozone | [72] |
OFFEMIS | Prescribed emissions of trace gases and aerosols | [73] |
ONEMIS | Online calculated emissions of trace gases and aerosols | [73] |
ORBIT | Earth orbit calculation for solar zenith angle, etc. | [35] |
RAD | Simulates the radiative flux | [35] |
SCAV | Simulates the process of wet deposition and liquid phase chemistry | [32] |
SCALC | Simple calculations with channel objects to separate the AirTraf ozone from other ozone sources | [17] |
SEDI | Sedimentation of aerosol particles | [69] |
SURFACE | Calculates the surface temperature | [17] |
TAGGING 1.1 | Tag the emissions contributions to concentrations | [34] |
TNUDGE | Tracer nudging | [73] |
TROPOP | Tropopause and other diagnosis | [74] |
References
- IPCC. Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK, 2021. [Google Scholar]
- Lee, D.; Fahey, D.; Skowron, A.; Allen, M.; Burkhardt, U.; Chen, Q.; Doherty, S.; Freeman, S.; Forster, P.; Fuglestvedt, J.; et al. The contribution of global aviation to anthropogenic climate forcing for 2000 to 2018. Atmos. Environ. 2021, 244, 117834. [Google Scholar] [CrossRef] [PubMed]
- Grewe, V.; Rao, A.G.; Grönstedt, T.; Xisto, C.; Linke, F.; Melkert, J.; Middel, J.; Ohlenforst, B.; Blakey, S.; Christie, S.; et al. Evaluating the climate impact of aviation emission scenarios towards the Paris agreement including COVID-19 effects. Nat. Commun. 2021, 12, 3841. [Google Scholar] [CrossRef] [PubMed]
- ICAO. Annual Report. In The World of Air Transport in 2018. 2018. Available online: https://www.icao.int/annual-report-2018/Pages/the-world-of-air-transport-in-2018.aspx (accessed on 20 October 2021).
- Airbus. Global Market Forecast 2018–2037. In Global Networks, Global Citizens. 2018. Available online: https://www.airbus.com/sites/g/files/jlcbta136/files/2021-07/Presentation-Eric-Schulz-GMF-2018.pdf (accessed on 20 October 2021).
- Boeing. Commercial Market Outlook 2019–2038. 2019. Available online: https://s4cd98e6181776fd7.jimcontent.com/download/version/1597359309/module/8027287461/name/cmo-sept-2019-report-final.pdf (accessed on 20 October 2021).
- Grewe, V.; Stenke, A. AirClim: An efficient tool for climate evaluation of aircraft technology. Atmos. Chem. Phys. 2008, 8, 4621–4639. [Google Scholar] [CrossRef] [Green Version]
- Köhler, M.O.; Rädel, G.; Dessens, O.; Shine, K.P.; Rogers, H.L.; Wild, O.; Pyle, J.A. Impact of perturbations to nitrogen oxide emissions from global aviation. J. Geophys. Res. 2008, 113. [Google Scholar] [CrossRef] [Green Version]
- Frömming, C.; Grewe, V.; Brinkop, S.; Jöckel, P.; Haslerud, A.S.; Rosanka, S.; van Manen, J.; Matthes, S. Influence of weather situation on non-CO2 aviation climate effects: The REACT4C climate change functions. Atmos. Chem. Phys. 2021, 21, 9151–9172. [Google Scholar] [CrossRef]
- Matthes, S. REACT4C—Climate Optimised Flight Planning. In Innovation for Sustainable Aviation in a Global Environment; IOS Press: Amsterdam, The Netherlands, 2012; pp. 122–128. [Google Scholar] [CrossRef]
- Grewe, V.; Frömming, C.; Matthes, S.; Brinkop, S.; Ponater, M.; Dietmüller, S.; Jöckel, P.; Garny, H.; Tsati, E.; Dahlmann, K.; et al. Aircraft routing with minimal climate impact: The REACT4C climate cost function modelling approach (V1.0). Geosci. Model Dev. 2014, 7, 175–201. [Google Scholar] [CrossRef] [Green Version]
- Grewe, V.; Champougny, T.; Matthes, S.; Frömming, C.; Brinkop, S.; Søvde, O.; Irvine, E.; Halscheidt, L. Reduction of the air traffic’s contribution to climate change: A REACT4C case study. Atmos. Environ. 2014, 94, 616–625. [Google Scholar] [CrossRef] [Green Version]
- Matthes, S.; Grewe, V.; Lee, D.; Linke, F.; Shine, K.; Stromatas, S. ATM4E—A concept for environmentally-optimized aircraft trajectories. In Proceedings of the 2nd Greener Aviation 2016 Conference, Brussels, Belgium, 11–13 October 2016. [Google Scholar]
- van Manen, J.; Grewe, V. Algorithmic climate change functions for the use in eco-efficient flight planning. Transp. Res. Part D Transp. Environ. 2019, 67, 388–405. [Google Scholar] [CrossRef]
- Irvine, E. ATM4E Internal Report: Contrail Algorithmic Climate Change Function Derivation; Supplement; ATM4E: Oberpfaffenhofen, Germany, 2017. [Google Scholar]
- Yin, F.; Grewe, V.; Castino, F.; Rao, P.; Matthes, S.; Yamashita, H.; Dahlmann, K.; Frömming, C.; Dietmüller, S.; Peter, P.; et al. Predicting the climate impact of aviation for en-route emissions: The algorithmic climate change function sub model ACCF 1.0 of EMAC 2.53. Geosci. Model Dev. 2021. in preparation. [Google Scholar]
- Jöckel, P.; Kerkweg, A.; Pozzer, A.; Sander, R.; Tost, H.; Riede, H.; Baumgaertner, A.; Gromov, S.; Kern, B. Development cycle 2 of the Modular Earth Submodel System (MESSy2). Geosci. Model Dev. 2010, 3, 717–752. [Google Scholar] [CrossRef] [Green Version]
- Penner, J.E.; Lister, D.H.; Griggs, D.J.; Dokken, D.J.; McFarland, M. Aviation and the Global Atmosphere: A Special Report of IPCC Working Groups I and III on Collaboration with the Scientific Assessment Panel to the Montreal Protocol on Substances that Deplete the Ozone Layer; Cambridge University Press: Cambridge, UK, 1999. [Google Scholar]
- Coefficient of Determination. In The Concise Encyclopedia of Statistics; Springer: New York, NY, USA, 2008; pp. 88–91. [CrossRef]
- Wild, O.; Prather, M.J.; Akimoto, H. Indirect long-term global radiative cooling from NOxEmissions. Geophys. Res. Lett. 2001, 2001. 28, 1719–1722. [Google Scholar] [CrossRef] [Green Version]
- Myhre, G.; Nilsen, J.S.; Gulstad, L.; Shine, K.P.; Rognerud, B.; Isaksen, I.S.A. Radiative forcing due to stratospheric water vapour from CH4 oxidation. Geophys. Res. Lett. 2007, 34. [Google Scholar] [CrossRef] [Green Version]
- Lee, D.S.; Fahey, D.W.; Forster, P.M.; Newton, P.J.; Wit, R.C.; Lim, L.L.; Owen, B.; Sausen, R. Aviation and global climate change in the 21st century. Atmos. Environ. 2009, 43, 3520–3537. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Holmes, C.D.; Tang, Q.; Prather, M.J. Uncertainties in climate assessment for the case of aviation NO. Proc. Natl. Acad. Sci. USA 2011, 108, 10997–11002. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Grewe, V.; Matthes, S.; Dahlmann, K. The contribution of aviation NOx emissions to climate change: Are we ignoring methodological flaws? Environ. Res. Lett. 2019, 14, 121003. [Google Scholar] [CrossRef]
- Rosanka, S.; Frömming, C.; Grewe, V. The impact of weather patterns and related transport processes on aviation’s contribution to ozone and methane concentrations from NOx emissions. Atmos. Chem. Phys. 2020, 20, 12347–12361. [Google Scholar] [CrossRef]
- Stevenson, D.S. Radiative forcing from aircraft NOx emissions: Mechanisms and seasonal dependence. J. Geophys. Res. Atmos. 2004, 109. [Google Scholar] [CrossRef] [Green Version]
- Yin, F.; Grewe, V.; van Manen, J.; Matthes, S.; Yamashita, H.; Linke, F.; Lührs, B. Verification of the ozone algorithmic climate change functions for predicting the short-termNOx effects from aviation en-route. In Proceedings of the International Conference on Research in Air Transportation (ICRAT 2018), Barcelona, Spain, 26–29 June 2018. [Google Scholar]
- Hartjes, S.; Hendriks, T.; Visser, D. Contrail Mitigation Through 3D Aircraft Trajectory Optimization. In Proceedings of the 16th AIAA Aviation Technology, Integration, and Operations Conference, Washington, DC, USA, 13–17 June 2016. [Google Scholar] [CrossRef]
- Roeckner, E.; Bäuml, G.; Bonaventura, L.; Brokopf, R.; Esch, M.; Giorgetta, M.; Hagemann, S.; Kirchner, I.; Kornblueh, L.; Manzini, E.; et al. The Atmospheric General Circulation Model ECHAM 5. PART I: Model Description; Max Planck Institute for Meteorology Report; Max Planck Institute: Hamburg, Germany, 2003. [Google Scholar]
- Roeckner, E.; Brokopf, R.; Esch, M.; Giorgetta, M.; Hagemann, S.; Kornblueh, L.; Manzini, E.; Schlese, U.; Schulzweida, U. Sensitivity of Simulated Climate to Horizontal and Vertical Resolution in the ECHAM5 Atmosphere Model. J. Clim. 2006, 19, 3771–3791. [Google Scholar] [CrossRef]
- Sander, R.; Baumgaertner, A.; Gromov, S.; Harder, H.; Jöckel, P.; Kerkweg, A.; Kubistin, D.; Regelin, E.; Riede, H.; Sandu, A.; et al. The atmospheric chemistry box model CAABA/MECCA-3.0. Geosci. Model Dev. 2011, 4, 373–380. [Google Scholar] [CrossRef]
- Tost, H.; Jöckel, P.; Kerkweg, A.; Sander, R.; Lelieveld, J. Technical note: A new comprehensive SCAVenging submodel for global atmospheric chemistry modelling. Atmos. Chem. Phys. 2006, 6, 565–574. [Google Scholar] [CrossRef] [Green Version]
- Yamashita, H.; Yin, F.; Grewe, V.; Jöckel, P.; Matthes, S.; Kern, B.; Dahlmann, K.; Frömming, C. Newly developed aircraft routing options for air traffic simulation in the chemistry–climate model EMAC 2.53: AirTraf 2.0. Geosci. Model Dev. 2020, 13, 4869–4890. [Google Scholar] [CrossRef]
- Rieger, V.S.; Mertens, M.; Grewe, V. An advanced method of contributing emissions to short-lived chemical species (OH and HO2): The TAGGING 1.1 submodel based on the Modular Earth Submodel System (MESSy 2.53). Geosci. Model Dev. 2018, 11, 2049–2066. [Google Scholar] [CrossRef] [Green Version]
- Dietmüller, S.; Jöckel, P.; Tost, H.; Kunze, M.; Gellhorn, C.; Brinkop, S.; Frömming, C.; Ponater, M.; Steil, B.; Lauer, A.; et al. A new radiation infrastructure for the Modular Earth Submodel System (MESSy, based on version 2.51). Geosci. Model Dev. 2016, 9, 2209–2222. [Google Scholar] [CrossRef] [Green Version]
- Eurocontrol. User Manual for the Base of Aircraft Data (BADA) Revision 3.9; EEC Technical/Scientific Report. 2011. Available online: https://manualzz.com/doc/6498082/user-manual-for-the-base-of-aircraft-data–bada- (accessed on 20 October 2021).
- ICAO. ICAO Engine Exhaust Emissions Data; Technical Report, Doc 9646-AN/943; EASA: Cologne, Germany, 2005.
- Schaefer, M. Development of Forecast Model for Global Air Traffic Emissions. 2012. Available online: https://www.researchgate.net/publication/259895835_Development_of_a_Forecast_Model_for_Global_Air_Traffic_Emissions (accessed on 20 October 2021).
- Deidewig, S.; Döpelheuer, A.; Lecht, M. Methods to assess aircraft engine emissions in flight. In Proceedings of the ICAS, Sorrento, Napoli, Italy, 8–13 September 1996; pp. 131–141. [Google Scholar]
- Sasaki, D.; Obayashi, S.; Nakahashi, K. Navier-Stokes Optimization of Supersonic Wings with Four Objectives Using Evolutionary Algorithm. J. Aircr. 2002, 39, 621–629. [Google Scholar] [CrossRef]
- Sasaki, D.; Obayashi, S. Development of Efficient Multiobjective Evolutionary Algorithms: ARMOGAs (Adaptive Range Multi-Objective Genetic Algorithms); Institute of Fluid Science, Tohoku University: Sendai, Japan, 2004; Volume 16, pp. 11–18. [Google Scholar]
- Sasaki, D.; Obayashi, S. Efficient Search for Trade-Offs by Adaptive Range Multi-Objective Genetic Algorithms. J. Aerosp. Comput. Inf. Commun. 2005, 2, 44–64. [Google Scholar] [CrossRef] [Green Version]
- Yamashita, H.; Grewe, V.; Jöckel, P.; Linke, F.; Schaefer, M.; Sasaki, D. Towards Climate Optimized Flight Trajectories in a Climate Model: AirTraf. In Proceedings of the 11th USA/Europe Air Traffic Management Research and Development Seminar, Lisbon, Portugal, 23–26 June 2015. [Google Scholar]
- Yamashita, H.; Grewe, V.; Jöckel, P.; Linke, F.; Schaefer, M.; Sasaki, D. Air traffic simulation in chemistry-climate model EMAC 2.41: AirTraf 1.0. Geosci. Model Dev. 2016, 9, 3363–3392. [Google Scholar] [CrossRef] [Green Version]
- Grewe, V. A generalized tagging method. Geosci. Model Dev. 2013, 6, 247–253. [Google Scholar] [CrossRef] [Green Version]
- Grewe, V.; Tsati, E.; Mertens, M.; Frömming, C.; Jöckel, P. Contribution of emissions to concentrations: The TAGGING 1.0 submodel based on the Modular Earth Submodel System (MESSy 2.52). Geosci. Model Dev. 2017, 10, 2615–2633. [Google Scholar] [CrossRef] [Green Version]
- IPCC. Clouds and Aerosols. In Climate Change 2013—The Physical Science Basis; Cambridge University Press: Cambridge, UK, 2014; pp. 571–658. [Google Scholar] [CrossRef]
- Dahlmann, K.; Grewe, V.; Ponater, M.; Matthes, S. Quantifying the contributions of individual NOx sources to the trend in ozone radiative forcing. Atmos. Environ. 2011, 45, 2860–2868. [Google Scholar] [CrossRef] [Green Version]
- Mertens, M.; Grewe, V.; Rieger, V.S.; Jöckel, P. Revisiting the contribution of land transport and shipping emissions to tropospheric ozone. Atmos. Chem. Phys. 2018, 18, 5567–5588. [Google Scholar] [CrossRef] [Green Version]
- Deckert, R.; Jöckel, P.; Grewe, V.; Gottschaldt, K.D.; Hoor, P. A quasi chemistry-transport model mode for EMAC. Geosci. Model Dev. 2011, 4, 195–206. [Google Scholar] [CrossRef] [Green Version]
- Dee, D.P.; Uppala, S.M.; Simmons, A.J.; Berrisford, P.; Poli, P.; Kobayashi, S.; Andrae, U.; Balmaseda, M.A.; Balsamo, G.; Bauer, P.; et al. The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Q. J. R. Meteorol. Soc. 2011, 137, 553–597. [Google Scholar] [CrossRef]
- Grewe, V.; Brunner, D.; Dameris, M.; Grenfell, J.; Hein, R.; Shindell, D.; Staehelin, J. Origin and variability of upper tropospheric nitrogen oxides and ozone at northern mid-latitudes. Atmos. Environ. 2001, 35, 3421–3433. [Google Scholar] [CrossRef] [Green Version]
- Irvine, E.A.; Hoskins, B.J.; Shine, K.P.; Lunnon, R.W.; Frömming, C. Characterizing North Atlantic weather patterns for climate-optimal aircraft routing. Meteorol. Appl. 2012, 20, 80–93. [Google Scholar] [CrossRef] [Green Version]
- ECMWF. ECMWF|Parameter Details. Available online: https://apps.ecmwf.int/codes/grib/param-db/?id=171156 (accessed on 20 October 2021).
- Weisstein, E. Vector Norm. Available online: https://mathworld.wolfram.com/VectorNorm.html (accessed on 20 October 2021).
- Grewe, V.; Dameris, M.; Fichter, C.; Lee, D.S. Impact of aircraft NOx emissions. Part 2: Effects of lowering the flight altitude. Meteorol. Z. 2002, 11, 197–205. [Google Scholar] [CrossRef]
- Søvde, O.A.; Matthes, S.; Skowron, A.; Iachetti, D.; Lim, L.; Owen, B.; Hodnebrog, Ø.; Genova, G.D.; Pitari, G.; Lee, D.S.; et al. Aircraft emission mitigation by changing route altitude: A multi-model estimate of aircraft NOx emission impact on O3. Atmos. Environ. 2014, 95, 468–479. [Google Scholar] [CrossRef]
- Gauss, M.; Isaksen, I.S.A.; Lee, D.S.; Søvde, O.A. Impact of aircraft NOx emissions on the atmosphere—Tradeoffs to reduce the impact. Atmos. Chem. Phys. 2006, 6, 1529–1548. [Google Scholar] [CrossRef] [Green Version]
- Köhler, M.; Rädel, G.; Shine, K.; Rogers, H.; Pyle, J. Latitudinal variation of the effect of aviation NOx emissions on atmospheric ozone and methane and related climate metrics. Atmos. Environ. 2013, 64, 1–9. [Google Scholar] [CrossRef]
- Gilmore, C.K.; Barrett, S.R.H.; Koo, J.; Wang, Q. Temporal and spatial variability in the aviation NOx-related O3 impact. Environ. Res. Lett. 2013, 8, 034027. [Google Scholar] [CrossRef] [Green Version]
- Stuber, N.; Sausen, R.; Ponater, M. Stratosphere adjusted radiative forcing calculationsin a comprehensive climate model. Theor. Appl. Climatol. 2001, 68, 125–135. [Google Scholar] [CrossRef]
- Grewe, V.; Matthes, S.; Frömming, C.; Brinkop, S.; Jöckel, P.; Gierens, K.; Champougny, T.; Fuglestvedt, J.; Haslerud, A.; Irvine, E.; et al. Feasibility of climate-optimized air traffic routing for trans-Atlantic flights. Environ. Res. Lett. 2017, 12, 034003. [Google Scholar] [CrossRef]
- Matthes, S.; Grewe, V.; Dahlmann, K.; Frömming, C.; Irvine, E.; Lim, L.; Linke, F.; Lührs, B.; Owen, B.; Shine, K.; et al. A Concept for Multi-Criteria Environmental Assessment of Aircraft Trajectories. Aerospace 2017, 4, 42. [Google Scholar] [CrossRef] [Green Version]
- Matthes, S.; Lührs, B.; Dahlmann, K.; Grewe, V.; Linke, F.; Yin, F.; Klingaman, E.; Shine, K. Climate-Optimized Trajectories and Robust Mitigation Potential: Flying ATM4E. Aerospace 2020, 7, 156. [Google Scholar] [CrossRef]
- Winterstein, F.; Jöckel, P. Methane chemistry in a nutshell—The new submodels CH4 (v1.0) and TRSYNC (v1.0) in MESSy (v2.54.0). Geosci. Model Dev. 2021, 14, 661–674. [Google Scholar] [CrossRef]
- Tost, H. Global Modelling of Cloud, Convection and Precipitation Influences on Trace Gases and Aerosols. Ph.D. Thesis, University of Bonn, Bonn, Germany, 2006. [Google Scholar]
- Tost, H.; Jöckel, P.; Lelieveld, J. Influence of different convection parameterisations in a GCM. Atmos. Chem. Phys. 2006, 6, 5475–5493. [Google Scholar] [CrossRef] [Green Version]
- Yin, F.; Grewe, V.; Frömming, C.; Yamashita, H. Impact on flight trajectory characteristics when avoiding the formation of persistent contrails for transatlantic flights. Transp. Res. Part D Transp. Environ. 2018, 65, 466–484. [Google Scholar] [CrossRef]
- Kerkweg, A.; Buchholz, J.; Ganzeveld, L.; Pozzer, A.; Tost, H.; Jöckel, P. Technical Note: An implementation of the dry removal processes DRY DEPosition and SEDImentation in the Modular Earth Submodel System (MESSy). Atmos. Chem. Phys. 2006, 6, 4617–4632. [Google Scholar] [CrossRef] [Green Version]
- Sander, R.; Jöckel, P.; Kirner, O.; Kunert, A.T.; Landgraf, J.; Pozzer, A. The photolysis module JVAL-14, compatible with the MESSy standard, and the JVal PreProcessor (JVPP). Geosci. Model Dev. 2014, 7, 2653–2662. [Google Scholar] [CrossRef] [Green Version]
- Tost, H.; Jöckel, P.; Lelieveld, J. Lightning and convection parameterisations—Uncertainties in global modelling. Atmos. Chem. Phys. 2007, 7, 4553–4568. [Google Scholar] [CrossRef] [Green Version]
- Grewe, V. The origin of ozone. Atmos. Chem. Phys. 2006, 6, 1495–1511. [Google Scholar] [CrossRef] [Green Version]
- Kerkweg, A.; Sander, R.; Tost, H.; Jöckel, P. Technical note: Implementation of prescribed (OFFLEM), calculated (ONLEM), and pseudo-emissions (TNUDGE) of chemical species in the Modular Earth Submodel System (MESSy). Atmos. Chem. Phys. 2006, 6, 3603–3609. [Google Scholar] [CrossRef] [Green Version]
- Jöckel, P.; Tost, H.; Pozzer, A.; Brühl, C.; Buchholz, J.; Ganzeveld, L.; Hoor, P.; Kerkweg, A.; Lawrence, M.G.; Sander, R.; et al. The atmospheric chemistry general circulation model ECHAM5/MESSy1: Consistent simulation of ozone from the surface to the mesosphere. Atmos. Chem. Phys. 2006, 6, 5067–5104. [Google Scholar] [CrossRef] [Green Version]
Parameters | CCFs | aCCFs |
---|---|---|
Weather | Five specific winter days and three specific summer days | Arbitrary days |
Geographical applicability | North Atlantic region | 30–90° N |
Practical implementation | Limited due to expensive computations | Easily implemented in NWPs |
Verification process | Comparison of general patterns with literature | Climate–chemistry model simulation with flight optimisation tool |
Parameter | Optimisation Objective | |
---|---|---|
Cost-Optimised and Climate-Optimised (O aCCFs) | ||
EMAC resolution | T42L31ECMWF (2.8 × 2.8°) | |
Time step of EMAC | 12 min | |
Waypoints | 101 | |
Design variables | 11 (6 locations and 5 altitudes) | |
Flight plan | 85 European flights | |
Aircraft type | A330-301 | |
Engine type | CF6-80E1A2, 2GE051 (with 1862M39 combustor) | |
Flight Mach number | 0.82 | |
Cruise flight altitude | Lateral re-routing | Vertical re-routing |
FL340 ≈ 10.4 km | [FL290, FL410] ≈ [8.8, 12.5] km |
Simulation Type | Optimisation Objective | Season | Variability of O aCCFs | Analysis | # Runs |
---|---|---|---|---|---|
1 day and 4 month | Cost and Climate | Summer and Winter | Large | HA and VA | 16 |
Month | Day of the Month |
---|---|
January | 8–15, 30, 31 |
February | 1–3 |
March | 1–6, 22, 24 |
April | 24–26, 28, 29 |
May | 1–3, 12–14, 16, 18, 19 |
June | 12–16 |
July | 12, 13, 30, 31 |
August | 1, 4, 5, 26–29 |
September | 1–3, 5, 23, 27–30 |
October | 1–3, 24 |
November | 5, 6, 9 |
December | 6, 7, 10, 11, 24, 26 |
Optimisation Objective | Selected Day | Fuel Consumption [ kg] | NO Emission [ g (NO)] | EINO [g (NO)/kg (Fuel)] | Flight Time (Hour) | ||||
---|---|---|---|---|---|---|---|---|---|
Lateral | Vertical | Lateral | Vertical | Lateral | Vertical | Lateral | Vertical | ||
Cost-optimised | Summer | 815 | 742 | 10.3 | 8.92 | 12.6 | 12 | 150 | 152 |
Winter | 813 | 747 | 9.18 | 7.52 | 11.3 | 10.1 | 153 | 157 | |
Climate-optimised | Summer | 816 | 771 | 10.2 | 9.23 | 12.5 | 12 | 151 | 152 |
Winter | 815 | 777 | 9.15 | 8.15 | 11.2 | 10.5 | 154 | 156 |
Air Traffic Optimised on | Type of Analysis | Mean RF of O [W/m] | % Reduction | |
---|---|---|---|---|
Cost-Optimised | Climate-Optimised | |||
Winter day | Horizontal | 84.1 | 83.7 | 0.5 |
Vertical | 96.9 | 94.6 | 2.4 | |
Summer day | Horizontal | 96.4 | 95.6 | 0.8 |
Vertical | 148 | 119 | 20 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rao, P.; Yin, F.; Grewe, V.; Yamashita, H.; Jöckel, P.; Matthes, S.; Mertens, M.; Frömming, C. Case Study for Testing the Validity of NOx-Ozone Algorithmic Climate Change Functions for Optimising Flight Trajectories. Aerospace 2022, 9, 231. https://doi.org/10.3390/aerospace9050231
Rao P, Yin F, Grewe V, Yamashita H, Jöckel P, Matthes S, Mertens M, Frömming C. Case Study for Testing the Validity of NOx-Ozone Algorithmic Climate Change Functions for Optimising Flight Trajectories. Aerospace. 2022; 9(5):231. https://doi.org/10.3390/aerospace9050231
Chicago/Turabian StyleRao, Pratik, Feijia Yin, Volker Grewe, Hiroshi Yamashita, Patrick Jöckel, Sigrun Matthes, Mariano Mertens, and Christine Frömming. 2022. "Case Study for Testing the Validity of NOx-Ozone Algorithmic Climate Change Functions for Optimising Flight Trajectories" Aerospace 9, no. 5: 231. https://doi.org/10.3390/aerospace9050231
APA StyleRao, P., Yin, F., Grewe, V., Yamashita, H., Jöckel, P., Matthes, S., Mertens, M., & Frömming, C. (2022). Case Study for Testing the Validity of NOx-Ozone Algorithmic Climate Change Functions for Optimising Flight Trajectories. Aerospace, 9(5), 231. https://doi.org/10.3390/aerospace9050231