Special Issue “Hybrid Rocket (Volume II)”
Funding
Acknowledgments
Conflicts of Interest
References
- Takahashi, A.; Shimada, T. Essentially Non-explosive Propulsion Paving a Way for Fail-Safe Space Transportation. Trans. Jpn. Soc. Aeronaut. Space Sci. Aerosp. Technol. Jpn. 2018, 16, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Kuo, K.K.; Chiaverini, M. Challenges of Hybrid Rocket Propulsion in the 21st Century. In Fundamentals of Hybrid Rocket Combustion and Propulsion; Progress in Astronautics and Aeronautics; Kuo, K., Chiaverini, M., Eds.; AIAA: Reston, VA, USA, 2007; pp. 593–638. [Google Scholar]
- SpaceX. Falcon User’s Guide. Available online: https://www.spacex.com/vehicles/falcon-9/ (accessed on 1 September 2021).
- Okninski, A.; Kopacz, W.; Kaniewski, D.; Sobczak, K. Hybrid rocket propulsion technology for space transportation revisited-propellant solutions and challenges. FirePhysChem 2021, 1, 260–271. [Google Scholar] [CrossRef]
- Wikipedia Contributors. Virgin Galactic Unity 22, from Wikipedia, the Free Encyclopedia. Available online: https://en.wikipedia.org/wiki/Virgin_Galactic_Unity_22 (accessed on 27 February 2022).
- Barato, F. Challenges of Ablatively Cooled Hybrid Rockets for Satellites or Upper Stages. Aerospace 2021, 8, 190. [Google Scholar] [CrossRef]
- Kamps, L.; Hirai, S.; Nagata, H. Hybrid Rockets as Post-Boost Stages and Kick Motors. Aerospace 2021, 8, 253. [Google Scholar] [CrossRef]
- Casalino, L.; Masseni, F.; Pastrone, D. Optimal Design of Electrically Fed Hybrid Mars Ascent Vehicle. Aerospace 2021, 8, 181. [Google Scholar] [CrossRef]
- Casalino, L.; Masseni, F.; Pastrone, D. Hybrid Rocket Engine Design Optimization at Politecnico di Torino: A Review. Aerospace 2021, 8, 226. [Google Scholar] [CrossRef]
- Hyun, W.; Kim, J.; Chae, H.; Lee, C. Passive Control of Low-Frequency Instability in Hybrid Rocket Combustion. Aerospace 2021, 8, 204. [Google Scholar] [CrossRef]
- Okninski, A.; Surmacz, P.; Bartkowiak, B.; Mayer, T.; Sobczak, K.; Pakosz, M.; Kaniewski, D.; Matyszewski, J.; Rarata, G.; Wolanski, P. Development of Green Storable Hybrid Rocket Propulsion Technology Using 98% Hydrogen Peroxide as Oxidizer. Aerospace 2021, 8, 234. [Google Scholar] [CrossRef]
- Grefen, B.; Becker, J.; Linke, S.; Stoll, E. Design, Production and Evaluation of 3D-Printed Mold Geometries for a Hybrid Rocket Engine. Aerospace 2021, 8, 220. [Google Scholar] [CrossRef]
- Netzer, D.W. Hybrid Rocket Internal Ballistics; Chemical Propulsion Information Agency Laurel: Columbia, MD, USA, 1972. [Google Scholar]
- Marxman, G.A. Combustion in the Turbulent Boundary Layer on a Vaporizing Surface. In Symposium (International) on Combustion; The Combustion Institute: Pittsburgh, PA, USA, 1965; pp. 1337–1349. [Google Scholar]
- Strand, L.; Jones, M.; Ray, R.; Cohen, N. Characterization of Hybrid Rocket Internal Heat Flux and HTPB Fuel Pyrolysis. In Proceedings of the 30th Joint Propulsion Conference and Exhibit, Indianapolis, IN, USA, 27–29 June 1994; AIAA: Reston, VA, USA, 1994. [Google Scholar] [CrossRef]
- Naka, G.; Messineo, J.; Kitagawa, K.; Carmicino, C.; Shimada, T. Prediction of Space and Time Distribution of Wax-based Fuel Regression Rate in a Hybrid Rocket. In Proceedings of the AIAA Propulsion and Energy 2020 Forum, Virtual Event, 24–28 August 2020. [Google Scholar] [CrossRef]
- Migliorino, M.T.; Bianchi, D.; Nasuti, F. Numerical Simulations of the Internal Ballistics of Paraffin–Oxygen Hybrid Rockets at Different Scales. Aerospace 2021, 8, 213. [Google Scholar] [CrossRef]
- Palacz, T.; Cieślik, J. Experimental Study on the Mass Flow Rate of the Self-Pressurizing Propellants in the Rocket Injector. Aerospace 2021, 8, 317. [Google Scholar] [CrossRef]
- Viscor, T.; Isochi, H.; Adachi, N.; Nagata, H. Burn Time Correction of Start-Up Transients for CAMUI Type Hybrid Rocket Engine. Aerospace 2021, 8, 385. [Google Scholar] [CrossRef]
- Viscor, T.; Kamps, L.; Yonekura, K.; Isochi, H.; Nagata, H. Large-Scale CAMUI Type Hybrid Rocket Motor Scaling, Modeling, and Test Results. Aerospace 2022, 9, 1. [Google Scholar] [CrossRef]
- Carmicino, C. Advances in Hybrid Rocket Technology and Related Analysis Methodologies. Aerospace 2019, 6, 128. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shimada, T.; Carmicino, C.; Karabeyoglu, A. Special Issue “Hybrid Rocket (Volume II)”. Aerospace 2022, 9, 233. https://doi.org/10.3390/aerospace9050233
Shimada T, Carmicino C, Karabeyoglu A. Special Issue “Hybrid Rocket (Volume II)”. Aerospace. 2022; 9(5):233. https://doi.org/10.3390/aerospace9050233
Chicago/Turabian StyleShimada, Toru, Carmine Carmicino, and Arif Karabeyoglu. 2022. "Special Issue “Hybrid Rocket (Volume II)”" Aerospace 9, no. 5: 233. https://doi.org/10.3390/aerospace9050233
APA StyleShimada, T., Carmicino, C., & Karabeyoglu, A. (2022). Special Issue “Hybrid Rocket (Volume II)”. Aerospace, 9(5), 233. https://doi.org/10.3390/aerospace9050233