Design, Analysis, and Testing of a Scaled Propeller for an Innovative Regional Turboprop Aircraft
Abstract
:1. Introduction
- Are the approaches presented in the literature still valid for a small yet high-thrust-coefficient propeller?
- How can we effectively modify the initial propeller geometry to account for possible structural issues, without impacting the performance?
- Is the effect of non-axial flow negligible on such a type of propeller? What is the predicted impact on aircraft longitudinal stability?
2. Materials and Methods
2.1. Propulsive System Scaling
2.2. Propeller Design Algorithm
2.3. Propeller–Motor Matching
3. Results
3.1. Propeller Design
3.2. Propeller Refined Analysis
3.3. Motor Selection and Performance Estimation
3.4. Motor Control and Data Acquisition System
3.5. Wind Tunnel Testing
3.5.1. Propeller Measurements in Axial Flow
3.5.2. Effects of Angle of Attack
3.5.3. Estimation of Aircraft Neutral Point Shift
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
CAD | Computer-aided design |
CFD | Computational fluid dynamics |
DC | Direct current |
ESC | Electronic speed controller |
IRON | Innovative turboprop aircraft configuration |
MIL | Minimum induced loss |
MRF | Moving reference frame |
RANS | Reynolds-Averaged Navier–Stokes |
RPM | Revolutions per minute |
UAV | Unmanned aerial vehicle |
Angle of attack | |
Propeller pitch | |
Angle of upwash | |
Propeller efficiency | |
Free-stream flow density | |
Propeller solidity ratio | |
Propeller angular speed | |
Non-dimensional blade circulation | |
Wing mean aerodynamic chord | |
Blade section lift coefficient | |
Aircraft lift coefficient | |
Lift coefficient gradient with angle of attack | |
Aircraft pitching moment coefficient | |
Propeller normal force coefficient | |
Propeller alternative normal force coefficient | |
Propeller power coefficient | |
Propeller thrust coefficient | |
D | Propeller diameter |
h | Altitude |
I | Electric current |
J | Propeller advance ratio |
Electric motor constant in RPM/Volt | |
Propeller horizontal moment arm | |
M | Mach number |
N | Propeller normal force |
n | Propeller rotational rate in s−1 (revolutions per second) |
P | Propeller (shaft) power |
Propeller alternative power coefficient | |
R | Propeller radius |
r | Propeller blade station |
S | Reference wing planform area |
Propeller disk area | |
T | Propeller thrust |
Propeller alternative thrust coefficient | |
Free-stream flow speed | |
Aircraft neutral point position |
Appendix A. XROTOR Propeller Geometry
Non-Dimensional Station | Non-Dimensional Chord | Geometric Pitch Angle (deg) |
---|---|---|
0.242 | 0.159 | 80.76 |
0.253 | 0.161 | 80.20 |
0.272 | 0.170 | 79.06 |
0.299 | 0.188 | 77.40 |
0.330 | 0.214 | 75.31 |
0.366 | 0.243 | 72.95 |
0.403 | 0.272 | 70.43 |
0.442 | 0.300 | 67.85 |
0.482 | 0.324 | 65.29 |
0.522 | 0.343 | 62.80 |
0.561 | 0.358 | 60.44 |
0.600 | 0.369 | 58.25 |
0.638 | 0.374 | 56.22 |
0.674 | 0.375 | 54.35 |
0.710 | 0.373 | 52.65 |
0.744 | 0.366 | 51.10 |
0.776 | 0.356 | 49.69 |
0.806 | 0.342 | 48.42 |
0.835 | 0.325 | 47.27 |
0.862 | 0.306 | 46.25 |
0.886 | 0.284 | 45.34 |
0.908 | 0.260 | 44.53 |
0.928 | 0.234 | 43.83 |
0.946 | 0.207 | 43.22 |
0.961 | 0.178 | 42.71 |
0.974 | 0.148 | 42.29 |
0.984 | 0.117 | 41.96 |
0.992 | 0.087 | 41.71 |
0.997 | 0.057 | 41.55 |
0.999 | 0.035 | 41.47 |
Appendix B. Propeller Blade Loads
References
- ICAO. Effects of Novel Coronavirus (COVID-19) on Civil Aviation: Economic Impact Analysis. Available online: https://www.icao.int/sustainability/Pages/Economic-Impacts-of-COVID-19.aspx (accessed on 23 March 2022).
- BOEING. Commercial Market Outlook 2021–2040. Available online: https://www.boeing.com/commercial/market/commercial-market-outlook/ (accessed on 23 March 2022).
- AIRBUS. Airbus Global Market Forecast 2021–2040. Available online: https://www.airbus.com/en/products-services/commercial-aircraft/market/global-market-forecast (accessed on 23 March 2022).
- FAA. FAA Aerospace Forecast 2021–2041. Available online: https://www.faa.gov/data_research/aviation/aerospace_forecasts/ (accessed on 23 March 2022).
- ATR. Turboprop Market Forecast 2018–2037. Available online: https://perma.cc/X4VZ-JKW8 (accessed on 30 April 2021).
- Embraer, S.A. Embraer Market Outlook 2021. Available online: https://www.embraermarketoutlook2021.com/ (accessed on 23 March 2022).
- Babikian, R.; Lukachko, S.P.; Waitz, I.A. The Historical Fuel Efficiency Characteristics of Regional Aircraft From Technological, Operational, and Cost Perspectives. J. Air Transp. Manag. 2002, 8, 389–400. [Google Scholar] [CrossRef] [Green Version]
- Corcione, S.; Nicolosi, F.; Della Vecchia, P.; Ciliberti, D.; Cusati, V. High Lift Aerodynamic characteristics of a Three Lifting Surfaces Turboprop Aircraft. In Proceedings of the AIAA Aviation 2019 Forum, Dallas, TX, USA, 17–21 June 2019. [Google Scholar] [CrossRef]
- Nicolosi, F.; Corcione, S.; Trifari, P.; De Marco, A. Design and Optimization of a Large Turboprop Aircraft. Aerospace 2021, 5, 132. [Google Scholar] [CrossRef]
- Cusati, V.; Nicolosi, F.; Corcione, S.; Ciliberti, D.; Della Vecchia, P. Longitudinal Stability Issues Including Propulsive Effects on an Innovative Commercial Propeller-Driven Aircraft. In Proceedings of the AIAA Aviation 2019 Forum, Dallas, TX, USA, 17–21 June 2019. [Google Scholar] [CrossRef]
- Cusati, V.; Corcione, S.; Ciliberti, D.; Nicolosi, F. Design Evolution and Wind Tunnel Tests of a Three-Lifting Surface Regional Transport Aircraft. Aerospace 2022, 9, 133. [Google Scholar] [CrossRef]
- Larrabee, E.E. Practical Design of Minimum Induced Loss Propellers. SAE Trans. 1979, 88, 2053–2062. [Google Scholar] [CrossRef]
- Adkins, C.N.; Liebeck, R.H. Design of Optimum Propellers. J. Propuls. Power 1994, 10, 5. [Google Scholar] [CrossRef]
- Wald, Q.R. The Aerodynamics of Propellers. Prog. Aerosp. Sci. 2006, 42, 2. [Google Scholar] [CrossRef]
- Youngren, H.; Chang, M. Test, Analysis and Design of Propeller Propulsion Systems for MAVs. In Proceedings of the 49th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition, Orlando, FL, USA, 4–7 January 2011. [Google Scholar] [CrossRef]
- Drela, M. XROTOR. Available online: https://web.mit.edu/drela/Public/web/xrotor/ (accessed on 23 March 2022).
- Drela, M. XFOIL. Available online: https://web.mit.edu/drela/Public/web/xfoil/ (accessed on 23 March 2022).
- Smedresman, A.; Yeo, D.; Shyy, W. Design, Fabrication, Analysis, and Testing of a Micro Air Vehicle Propeller. In Proceedings of the 29th AIAA Applied Aerodynamics Conference, Honululu, HI, USA, 27–30 June 2011. [Google Scholar] [CrossRef] [Green Version]
- Klein, P. Parametric Modeling and Optimization of Advanced Propellers for Next-Generation Aircraft. Master’s Thesis, Delft University of Technology, Delft, The Netherlands, 31 August 2017. [Google Scholar]
- Bergmann, O.; Goetten, F.; Braun, C.; Janser, F. Comparison and Evaluation of Blade Element Methods Against RANS Simulations and Test Data. In Proceedings of the Deutscher Luft- und Raumfahrtkongress—DLRK 2020, Virtual. 1–3 September 2020. [Google Scholar]
- Bass, R.M. Techniques of Model Propeller Testing. In Proceedings of the Business Aircraft Meeting and Exposition, Wichita, KS, USA, 12–15 April 1983. [Google Scholar] [CrossRef]
- Bass, R.M. Small Scale Wind Tunnel Testing of Model Propellers. In Proceedings of the 24th AIAA Aerospace Science Meeting, Reno, NV, USA, 6–9 January 1986. [Google Scholar] [CrossRef] [Green Version]
- Brandt, J.B.; Selig, M.S. Propeller Performance Data at Low Reynolds Numbers. In Proceedings of the 49th AIAA Aerospace Sciences Meeting, Orlando, FL, USA, 4–7 January 2011. [Google Scholar] [CrossRef] [Green Version]
- Deters, R.W.; Ananda, G.K.; Selig, M.S. Reynolds Number Effects on the Performance of Small-Scale Propellers. In Proceedings of the 32nd AIAA Applied Aerodynamics Conference, Atlanta, GA, USA, 16–20 June 2014. [Google Scholar] [CrossRef] [Green Version]
- Barlow, J.B.; Rae, W.H.; Pope, A. Low-Speed Wind Tunnel Testing, 3rd ed.; Wiley: New York, NY, USA, 1999; pp. 537–540. [Google Scholar]
- Lehner Motoren Technik. Motor Calculator and Performance Diagram. Available online: https://www.lehner-motoren.com/rechn_en.php (accessed on 23 March 2022).
- Ciliberti, D. Lehner Motor Map. Available online: https://github.com/dciliberti/lehner-motoren-map (accessed on 5 April 2022).
- Perkins, C.D.; Hage, R.E. Airplane Performance Stability and Control, 1st ed.; John Wiley & Sons: New York, NY, USA, 1949; pp. 231–242. [Google Scholar]
- De Young, J. Propeller at high incidence. J. Aircr. 1965, 2, 3. [Google Scholar] [CrossRef]
- Ribner, H.S. Propellers in yaw. NACA Wartime Rep. 1943, ARR 3L09. [Google Scholar]
J | |||
---|---|---|---|
1.46 | 0.590 | 1.126 | 0.77 |
1.95 | 0.476 | 1.152 | 0.81 |
J | RPM | T (N) | P (W) |
---|---|---|---|
1.46 | 9801 | 8.8 | 403 |
1.95 | 7351 | 4.0 | 174 |
N Blades | (m/s) | D (m) | RPM | T (N) |
---|---|---|---|---|
8 | 35 | 0.146 | 9800 | 10 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ciliberti, D.; Nicolosi, F. Design, Analysis, and Testing of a Scaled Propeller for an Innovative Regional Turboprop Aircraft. Aerospace 2022, 9, 264. https://doi.org/10.3390/aerospace9050264
Ciliberti D, Nicolosi F. Design, Analysis, and Testing of a Scaled Propeller for an Innovative Regional Turboprop Aircraft. Aerospace. 2022; 9(5):264. https://doi.org/10.3390/aerospace9050264
Chicago/Turabian StyleCiliberti, Danilo, and Fabrizio Nicolosi. 2022. "Design, Analysis, and Testing of a Scaled Propeller for an Innovative Regional Turboprop Aircraft" Aerospace 9, no. 5: 264. https://doi.org/10.3390/aerospace9050264
APA StyleCiliberti, D., & Nicolosi, F. (2022). Design, Analysis, and Testing of a Scaled Propeller for an Innovative Regional Turboprop Aircraft. Aerospace, 9(5), 264. https://doi.org/10.3390/aerospace9050264