Effect of Lifting Gas Diffusion on the Station-Keeping Performance of a Near-Space Aerostat
Abstract
:1. Introduction
2. Theoretical Model
2.1. Lifting Gas Diffusion Model
2.2. Balloon Geometry
2.3. Dynamic Model
2.4. Thermal Model
3. Model Validation
3.1. Verification of the Dynamic Model
3.2. Verification of Lifting Gas Diffusion Model
4. Discussion
4.1. Simulation Conditions
4.2. Effects of
4.3. Effect of Envelope Radiation Properties
5. Conclusions
- (1)
- Based on the verification of results, it was found that the lifting gas diffusion model proposed in this paper, which considers the thermal effect for a near-space aerostat during a long-endurance flight, can be utilized to study lifting gas permeability and flight performance.
- (2)
- The ratio of porosity to tortuosity was found to have a significant influence on the gas diffusion coefficient, directly leading to a sharp decline in flight endurance with increases in the ratio of porosity to tortuosity. In the preliminary design of an aerostat, it is helpful to choose an envelope material with an optimal ratio of porosity to tortuosity in order to improve the aerostat’s flight performance.
- (3)
- During high-altitude flight, the lifting gas diffusion rate and diffusion coefficient are very sensitive to changes in envelope temperature. Compared to the envelope infrared emissivity, the envelope absorptivity was found to have a stronger influence on the lifting gas diffusion and the thermal performance of near-space aerostats. A higher envelope absorptivity would result in higher temperatures of the lifting gas and envelope, which would consequently increase the mass of lifting gas diffused.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bellemare, M.G.; Candido, S.; Castro, P.S.; Gong, J.; Machado, M.C.; Moitra, S.; Ponda, S.S.; Wang, Z. Autonomous navigation of stratospheric balloons using reinforcement learning. Nature 2020, 588, 77–82. [Google Scholar] [CrossRef] [PubMed]
- Gangadhar, A.; Manikandan, M.; Rajaram, D.; Mavris, D. Conceptual design and feasibility study of winged hybrid airship. Aerospace 2022, 9, 8. [Google Scholar] [CrossRef]
- Gemignani, M.; Marcuccio, S. Dynamic characterization of a high-altitude balloon during a flight campaign for the detection of ISM radio background in the stratosphere. Aerospace 2021, 8, 21. [Google Scholar] [CrossRef]
- Du, H.; Lv, M.; Li, J.; Zhu, W.; Zhang, L.; Wu, Y. Station-keeping performance analysis for high altitude balloon with altitude control system. Aerosp. Sci. Technol. 2019, 92, 644–652. [Google Scholar] [CrossRef]
- Ramesh, S.S.; Ma, J.; Lim, K.M.; Lee, H.P.; Khoo, B.C. Numerical evaluation of station-keeping strategies for stratospheric balloons. Aerosp. Sci. Technol. 2018, 80, 288–300. [Google Scholar] [CrossRef]
- van Wynsberghe, E.; Turak, A. Station-keeping of a high-altitude balloon with electric propulsion and wireless power transmission: A concept study. Acta Astronaut. 2016, 128, 616–627. [Google Scholar] [CrossRef]
- Yang, Y.; Wu, J.; Zheng, W. Station-keeping control for a stratospheric airship platform via fuzzy adaptive backstepping approach. Adv. Space Res. 2013, 51, 1157–1167. [Google Scholar] [CrossRef]
- Du, H.; Li, J.; Zhu, W.; Qu, Z.; Zhang, L.; Lv, M. Flight performance simulation and station-keeping endurance analysis for stratospheric super-pressure balloon in real wind field. Aerosp. Sci. Technol. 2019, 86, 1–10. [Google Scholar] [CrossRef]
- Hall, J.L.; Yavrouian, A. Pinhole effects on Venus superpressure balloon lifetime. In Proceedings of the AIAA Balloon Systems (BAL) Conference, Daytona Beach, FL, USA, 25–28 March 2013. [Google Scholar]
- Yin, B.; Xu, S.; Yang, S.; Dong, F. Influence of microelliptical groove gas diffusion layer (GDL) on transport behavior of proton exchange membrane fuel cell (PEMFC). Int. J. Heat Mass Transf. 2021, 180, 121793. [Google Scholar] [CrossRef]
- Shi, T.; Chen, W.; Gao, C.; Hu, J.; Zhao, B.; Wang, M. Biaxial strength determination of woven fabric composite for airship structural envelope based on novel specimens. Compos. Struct. 2018, 184, 1126–1136. [Google Scholar] [CrossRef]
- Kang, W.; Suh, Y.; Lee, I. Mechanical property characterization of film-fabric laminate for stratospheric airship envelope. Compos. Struct. 2006, 75, 151–155. [Google Scholar] [CrossRef]
- García-Salaberri, P.A.; Hwang, G.; Vera, M.; Weber, A.Z.; Gostickd, J.T. Effective diffusivity in partially-saturated carbon-fiber gas diffusion layers: Effect of through-plane saturation distribution. Int. J. Heat Mass Transf. 2015, 86, 319–333. [Google Scholar] [CrossRef] [Green Version]
- Kumazawa, H.; Aoki, T.; Susuki, I. Influence of stacking sequence on leakage characteristics through CFRP composite laminates. Compos. Sci. Technol. 2006, 66, 2107–2115. [Google Scholar] [CrossRef]
- Yokozeki, T.; Ogasawara, T.; Ishikawa, T. Evaluation of gas leakage through composite laminates with multilayer matrix cracks: Cracking angle effects. Compos. Sci. Technol. 2006, 66, 2815–2824. [Google Scholar] [CrossRef]
- Thornton, A.W.; Hilder, T.; Hill, A.J.; Hill, J.M. Predicting gas diffusion regime within pores of different size, shape and composition. J. Membr. Sci. 2009, 336, 101–108. [Google Scholar] [CrossRef]
- Yao, X.F.; Lei, Y.M.; Xiong, C.; Wang, X.Q.; Wang, Y.Q. Experimental study of helium leakage parameters in flexible composite. J. Appl. Polym. Sci. 2010, 116, 3562–3568. [Google Scholar] [CrossRef]
- Yin, Y.; Qu, Z.G.; Zhang, J.F. Multiple diffusion mechanisms of shale gas in nanoporous organic matter predicted by the local diffusivity lattice Boltzmann model. Int. J. Heat Mass Transf. 2019, 143, 118571. [Google Scholar] [CrossRef]
- Kayhan, Ö.; Hastaoglu, M.A. Modeling of stratospheric balloon using transport phenomena and gas compress–release system. J. Thermophys. Heat Transf. 2014, 28, 534–541. [Google Scholar] [CrossRef]
- Zhu, W.; Xu, Y.; Du, H.; Li, J. Thermal performance of high-altitude solar powered scientific balloon. Renew. Energy 2019, 135, 1078–1096. [Google Scholar] [CrossRef]
- Wu, J.; Fang, X.; Wang, Z.; Hou, Z.; Ma, Z.; Zhang, H.; Dai, Q.; Xu, Y. Thermal modeling of stratospheric airships. Prog. Aerosp. Sci. 2015, 75, 26–37. [Google Scholar] [CrossRef]
- Xiong, J.; Bai, J.B.; Chen, L. Simplified analytical model for predicting the temperature of balloon on high-altitude. Int. J. Therm. Sci. 2014, 76, 82–89. [Google Scholar] [CrossRef]
- Kayhan, Ö.; Hastaoglu, M.A. Control of high altitude telecommunication balloons via transport phenomena, material and fuell cell. In Proceedings of the 6th International Conference on Recent Advances in Space Technologies IEEE, Istanbul, Turkey, 12–14 June 2013. [Google Scholar]
- Li, Y.; Kalantari-Dahaghi, A.; Zolfaghari, A.; Dong, P.; Negahban, S.; Zhou, D. A new model for the transport of gaseous hydrocarbon in shale nanopores coupling real gas effect, adsorption, and multiphase pore fluid occupancies. Int. J. Heat Mass Transf. 2020, 148, 119026. [Google Scholar] [CrossRef]
- Yuan, J.; Sundén, B. On mechanisms and models of multi-component gas diffusion in porous structures of fuel cell electrodes. Int. J. Heat Mass Transf. 2014, 69, 358–374. [Google Scholar] [CrossRef]
- Cussler, E.L. Diffusion: Mass Transfer in Fluid Systems; Cambridge University Press: Cambridge, UK, 2009; pp. 191–206. [Google Scholar]
- Pan, L.; Xu, K. Two-stage fourth-order gas-kinetic scheme for three-dimensional Euler and Navier-Stokes solutions. Int. J. Comput. Fluid Dyn. 2018, 10, 395–411. [Google Scholar] [CrossRef] [Green Version]
- Hastaoglu, M.A. Transient modelling of a packed tower: Mass and heat transfer with reaction. Fuel 1995, 74, 1624–1631. [Google Scholar] [CrossRef]
- Sadagopan, A.; Camci, C. Viscous flow and performance issues in a 6:1 supersonic mixed-flow compressor with a tandem diffuser. Aerosp. Sci. Technol. 2019, 88, 9–21. [Google Scholar] [CrossRef]
- Cuenya, B.R. Synthesis and catalytic properties of metal nanoparticles: Size, shape, support, composition, and oxidation state effects. Thin Solid Films 2010, 518, 3127–3150. [Google Scholar] [CrossRef]
- Müller, D.; Warneke, T.; Rixen, T.; Müller, M.; Mujahid, A.; Bange, H.W.; Notholt, J. Fate of peat-derived carbon and associated CO2 and CO emissions from two Southeast Asian estuaries. Biogeosci. Discuss. 2016, 12, 8299–8340. [Google Scholar]
- Farley, R.E. BalloonAscent-3-D simulation tool for the ascent and float of high-altitude balloons. In Proceedings of the AIAA 5th Aviation, Technology, Integration, and Operations Conference, Arlington, VA, USA, 26–28 September 2005. [Google Scholar]
- Yang, X.; Zhang, W.; Hou, Z. Improved Thermal and Vertical Trajectory Model for Performance Prediction of Stratospheric Balloons. J. Aerosp. Eng. 2015, 28, 04014075. [Google Scholar] [CrossRef]
- Korotkin, A.I. Added Masses of Ship Structures; Springer Science & Business Media: Berlin, Germany, 2008; pp. 1–111. [Google Scholar]
- Said, C.; Naoufel, A. Estimation of the virtual masses of a large unconventional airship based on purely analytical method to aid in the preliminary design. Aircr. Eng. Aerosp. Technol. 2022, 94, 531–540. [Google Scholar]
- Zhang, Y.; Liu, D. Influences of initial launch conditions on flight performance of high altitude balloon ascending process. Adv. Space Res. 2015, 56, 605–618. [Google Scholar] [CrossRef]
- Saleh, S.; He, W. New design simulation for a high-altitude dual-balloon system to extend lifetime and improve floating performance. Chin. J. Aeronaut. 2018, 31, 247–256. [Google Scholar] [CrossRef]
- Liu, Q.; Wu, Z.; Zhu, M.; Xu, W.Q. A comprehensive numerical model investigating the thermal-dynamic performance of scientific balloon. Adv. Space Res. 2014, 53, 325–338. [Google Scholar] [CrossRef]
- Liu, Y.; Xu, Z.; Du, H.; Lv, M. Multidisciplinary optimization of thermal insulation layer for stratospheric airship with a solar array. Aerospace 2022, 9, 83. [Google Scholar] [CrossRef]
- Saleh, S.; He, W. Ascending performance analysis for high altitude zero pressure balloon. Adv. Space Res. 2017, 59, 2158–2172. [Google Scholar] [CrossRef]
- Dai, Q.; Fang, X.; Zhao, Y.; Xing, D. An empirical model for estimating the atmospheric transmittance of upward infrared radiation at different altitudes. Adv. Space Res. 2016, 58, 2453–2459. [Google Scholar] [CrossRef]
- Bergman, T.L.; Incropera, F.P.; Dewitt, D.P.; Lavine, A.S. Fundamentals of Heat and Mass Transfer; John Wiley & Sons: New York, NY, USA, 2011; pp. 378–419. [Google Scholar]
- Qing, W. Theoretical and Experimental Study of Helium Leakage Mechanism of Aerostat Envelope Materials. Master’s Thesis, Tsinghua University, Beijing, China, 2010. [Google Scholar]
Parameters | Value |
---|---|
Design altitude (km) | 20 |
Total mass (kg) | 5700 |
Helium gas mass (kg) | 900 |
Envelope mass (kg) | 1200 |
Maximum volume (m3) | 65,000 |
Absorption coefficient, | 0.3 |
Transmission coefficient, | 0.5 |
Launch time | 1 July at 07:00 |
Launch site | 110° E, 30° N |
Parameters | Value |
---|---|
Envelope thickness (m) | 2.7 × 10−4 |
Pressures of the lifting gas (mPa) | 0.1 |
Porosity of the envelope material | 0.2% |
Tortuosity (kg/(m s2)) | 2 |
Collision diameters of lifting gas | 2.551 |
Collision diameters of ambient air | 3.711 |
Pore radius (m) | 0.2 × 10−6 |
Parameters | Value |
---|---|
Design altitude (km) | 20 |
Failure altitude (km) | 15 |
Total mass (kg) | 145 |
Initial helium gas mass (kg) | 20 |
Payload mass (kg) | 67.2 |
Envelope mass (kg) | 57.7 |
Maximum volume (m3) | 1625 |
Maximum overpressure (Pa) | 600 |
Launch date | 1 January |
Launch site | Changsha, Hunan |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, J.; Ling, L.; Liao, J.; Chen, Z.; Luo, S. Effect of Lifting Gas Diffusion on the Station-Keeping Performance of a Near-Space Aerostat. Aerospace 2022, 9, 328. https://doi.org/10.3390/aerospace9060328
Li J, Ling L, Liao J, Chen Z, Luo S. Effect of Lifting Gas Diffusion on the Station-Keeping Performance of a Near-Space Aerostat. Aerospace. 2022; 9(6):328. https://doi.org/10.3390/aerospace9060328
Chicago/Turabian StyleLi, Jun, Linyu Ling, Jun Liao, Zheng Chen, and Shibin Luo. 2022. "Effect of Lifting Gas Diffusion on the Station-Keeping Performance of a Near-Space Aerostat" Aerospace 9, no. 6: 328. https://doi.org/10.3390/aerospace9060328
APA StyleLi, J., Ling, L., Liao, J., Chen, Z., & Luo, S. (2022). Effect of Lifting Gas Diffusion on the Station-Keeping Performance of a Near-Space Aerostat. Aerospace, 9(6), 328. https://doi.org/10.3390/aerospace9060328