The Coupling Orbit–Attitude–Structure Evolution of Rubble-Pile Asteroid with Earth Flyby in the Restricted Three-Body Problem
Abstract
:1. Introduction
2. Methodology
2.1. Equations of Motion
2.2. Contact Force
2.3. Gravity Computation of Self-Gravitational Aggregate
3. Numerical Simulations
3.1. Tidal Encounter Simulation Setting
- (1)
- Each particle of all N elements is in contact with its neighboring particles without ejected ones. At this time, dynamical behaviors of all particles are integrated normally using the theories of Section 2.2.
- (2)
- If there exist ejected particles that are completely free from contact with others, these particles will not be considered in the integration of the gravitational gradient torque exerted on the main asteroid body.
- (3)
- Another possible case is that particles that make contact with each other do not make contact with other particles. In such a case, the rubble-pile asteroid can disrupt into two or more parts. The problem concerns the parent body being disrupted into a few child bodies, which is not considered in the current work.
3.2. Evolution of Rubble-Pile Asteroid’s Structure
3.3. Effect of Flyby on the Asteroid Orbit Evolution
3.4. Effect of Flyby on the Asteroid Attitude Variation
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
Appendix A
Model Parameters | Symbol | Value |
Asteroid size | 540 m × 270 m × 210 m | |
Young’s modulus | E | 30 Mpa |
Poission’s ratio | 0.15 | |
Coefficient of friction | 0.6 | |
Bulk density | 2.0 | |
Number of particles | N | 5942 |
Particle radius | 25 m | |
Bulk porosity | p | 0.3 |
0.4 | ||
0.5 | ||
State parameters | Symbol | Value |
Initial distance | m | |
Initial velocity | 4.0 km/s | |
5.2 km/s | ||
6.3 km/s | ||
Flyby distance | q | 1.4 |
2.0 | ||
2.5 |
References
- Morais, M.H.M.; Morbidelli, A. The Population of Near-Earth Asteroids in Coorbital Motion with the Earth. Icarus 2002, 160, 1–9. [Google Scholar] [CrossRef]
- Delbò, M.; Cellino, A.; Tedesco, E.F. Albedo and Size Determination of Potentially Hazardous Asteroids: (99942) Apophis. Icarus 2007, 188, 266–269. [Google Scholar] [CrossRef]
- Rabeendran, A.C.; Denneau, L. A Two-Stage Deep Learning Detection Classifier for the Atlas Asteroid Survey. Publ. Astron. Soc. Pac. 2021, 133, 34–46. [Google Scholar] [CrossRef]
- Zeng, X.; Li, Z.; Gan, Q.; Circi, C. Numerical Study on Low-Velocity Impact Between Asteroid Lander and Deformable Regolith. J. Guid. Control Dyn. 2022, 1–17. [Google Scholar] [CrossRef]
- Takao, Y.; Mimasu, Y.; Tsuda, Y. Simultaneous Estimation of Spacecraft Position and Asteroid Diameter during Final Approach of Hayabusa2 to Ryugu. Astrodynamics 2020, 4, 163–175. [Google Scholar] [CrossRef]
- Ogawa, N.; Terui, F.; Mimasu, Y.; Yoshikawa, K.; Ono, G.; Yasuda, S.; Matsushima, K.; Masuda, T.; Hihara, H.; Sano, J.; et al. Image-Based Autonomous Navigation of Hayabusa2 Using Artificial Landmarks: The Design and Brief in-Flight Results of the First Landing on Asteroid Ryugu. Astrodynamics 2020, 4, 89–103. [Google Scholar] [CrossRef]
- Takei, Y.; Saiki, T.; Yamamoto, Y.; Mimasu, Y.; Takeuchi, H.; Ikeda, H.; Ogawa, N.; Terui, F.; Ono, G.; Yoshikawa, K.; et al. Hayabusa2’s Station-Keeping Operation in the Proximity of the Asteroid Ryugu. Astrodynamics 2020, 4, 349–375. [Google Scholar] [CrossRef]
- Oki, Y.; Yoshikawa, K.; Takeuchi, H.; Kikuchi, S.; Ikeda, H.; Scheeres, D.J.; McMahon, J.W.; Kawaguchi, J.; Takei, Y.; Mimasu, Y.; et al. Orbit Insertion Strategy of Hayabusa2’s Rover with Large Release Uncertainty around the Asteroid Ryugu. Astrodynamics 2020, 4, 309–329. [Google Scholar] [CrossRef]
- Yoshikawa, K.; Sawada, H.; Kikuchi, S.; Ogawa, N.; Mimasu, Y.; Ono, G.; Takei, Y.; Terui, F.; Saiki, T.; Yasuda, S.; et al. Modeling and Analysis of Hayabusa2 Touchdown. Astrodynamics 2020, 4, 119–135. [Google Scholar] [CrossRef]
- Tsuda, Y.; Takeuchi, H.; Ogawa, N.; Ono, G.; Kikuchi, S.; Oki, Y.; Ishiguro, M.; Kuroda, D.; Urakawa, S.; Okumura, S. ichiro Rendezvous to Asteroid with Highly Uncertain Ephemeris: Hayabusa2’s Ryugu-Approach Operation Result. Astrodynamics 2020, 4, 137–147. [Google Scholar] [CrossRef]
- Terui, F.; Ogawa, N.; Ono, G.; Yasuda, S.; Masuda, T.; Matsushima, K.; Saiki, T.; Tsuda, Y. Guidance, Navigation, and Control of Hayabusa2 Touchdown Operations. Astrodynamics 2020, 4, 393–409. [Google Scholar] [CrossRef]
- Walsh, K.J. Rubble Pile Asteroids. Annu. Rev. Astron. Astrophys. 2018, 56, 14.1–14.31. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Michel, P. Shapes, Structures, and Evolution of Small Bodies. Astrodynamics 2021, 5, 293–329. [Google Scholar] [CrossRef]
- Richardson, D.C.; Leinhardt, Z.M.; Melosh, H.J.; Bottke, W.F.; Asphaug, E. Gravitational Aggregates: Evidence and Evolution. Asteroids III 2002, 1, 501–515. [Google Scholar]
- Walsh, K.J.; Richardson, D.C. Binary Near-Earth Asteroid Formation: Rubble Pile Model of Tidal Disruptions. Icarus 2006, 180, 201–216. [Google Scholar] [CrossRef]
- Richardson, D.C.; Bottke, W.F.; Love, S.G. Tidal Distortion and Disruption of Earth-Crossing Asteroids. Icarus 1998, 134, 47–76. [Google Scholar] [CrossRef] [Green Version]
- Cheng, B.; Yu, Y.; Asphaug, E.; Michel, P.; Richardson, D.C.; Hirabayashi, M.; Yoshikawa, M.; Baoyin, H.; Love, S.G. Reconstructing the Formation History of Top-Shaped Asteroids from the Surface Boulder Distribution. Nat. Astron. 2021, 5, 134–138. [Google Scholar] [CrossRef]
- Roche, E.A. Académie des sciences de Montpellier: Mémoires de la section des sciences. Mém. Sect. Sci. 1847, 1, 243–262. [Google Scholar] [CrossRef]
- Holsapple, K.A.; Michel, P. Tidal Disruptions: A Continuum Theory for Solid Bodies. Icarus 2006, 183, 331–348. [Google Scholar] [CrossRef]
- Holsapple, K.A.; Michel, P. Tidal Disruptions. II. A Continuum Theory for Solid Bodies with Strength, with Applications to the Solar System. Icarus 2008, 193, 283–301. [Google Scholar] [CrossRef]
- Tóth, J.; Vereš, P.; Kornoš, L. Tidal Disruption of NEAs—A Case of Příbram Meteorite. Mon. Not. R. Astron. Soc. 2011, 415, 1527–1533. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Lin, D.N.C. Tidal Fragmentation as the Origin of 1I/2017 U1 (‘Oumuamua). Nat. Astron. 2020, 4, 852–860. [Google Scholar] [CrossRef] [Green Version]
- Hu, S.; Ji, J.; Richardson, D.C.; Zhao, Y.; Zhang, Y. The Formation Mechanism of 4179 Toutatis’ Elongated Bi-Lobed Structure in a Close Earth Encounter Scenario. Mon. Not. R. Astron. Soc. 2018, 478, 501–515. [Google Scholar] [CrossRef] [Green Version]
- Sharma, I.; Jenkins, J.T.; Burns, J.A. Tidal Encounters of Ellipsoidal Granular Asteroids with Planets. Icarus 2006, 183, 312–330. [Google Scholar] [CrossRef] [Green Version]
- Yu, Y.; Richardson, D.C.; Michel, P.; Schwartz, S.R.; Ballouz, R.L. Numerical Predictions of Surface Effects during the 2029 Close Approach of Asteroid 99942 Apophis. Icarus 2014, 242, 82–96. [Google Scholar] [CrossRef] [Green Version]
- Kim, Y.; Hirabayashi, M.; Binzel, R.P.; Brozović, M.; Scheeres, D.J.; Richardson, D.C. The Surface Sensitivity of Rubble-Pile Asteroids during a Distant Planetary Encounter: Influence of Asteroid Shape Elongation. Icarus 2021, 358, 114205. [Google Scholar] [CrossRef]
- Zhang, Y.; Michel, P. Tidal Distortion and Disruption of Rubble-Pile Bodies Revisited: Soft-Sphere Discrete Element Analyses. Astron. Astrophys. 2020, 640, A102. [Google Scholar] [CrossRef]
- Liu, C.; Pollard, D.D.; Shi, B. Analytical Solutions and Numerical Tests of Elastic and Failure Behaviors of Close-Packed Lattice for Brittle Rocks and Crystals. J. Geophys. Res. Solid Earth 2013, 118, 71–82. [Google Scholar] [CrossRef]
- Wen, T.; Zeng, X.; Circi, C.; Gao, Y. Hop Reachable Domain on Irregularly Shaped Asteroids. J. Guid. Control Dyn. 2020, 43, 1269–1283. [Google Scholar] [CrossRef]
- Zeng, X.; Wen, T.; Li, Z.; Alfriend, K.T. Natural Landing Simulations on Generated Local Rocky Terrains for Asteroid Cubic Lander. In IEEE Transactions on Aerospace and Electronic Systems; IEEE: Piscataway, NJ, USA, 2022. [Google Scholar] [CrossRef]
- Wen, T.; Zeng, X. Natural Landing Dynamics near the Secondary in Single-Tidal-Locked Binary Asteroids. Adv. Space Res. 2022, 69, 2223–2239. [Google Scholar] [CrossRef]
- Yu, Y.; Cheng, B.; Hayabayashi, M.; Michel, P.; Baoyin, H. A Finite Element Method for Computational Full Two-Body Problem: I. The Mutual Potential and Derivatives over Bilinear Tetrahedron Elements. Celest. Mech. Dyn. Astron. 2019, 131, 51. [Google Scholar] [CrossRef]
- Cundall, P.A.; Strack, O.D.L. Discrete numerical-model for granular assemblies. Geotechnique 1979, 29, 47–65. [Google Scholar] [CrossRef]
- Stadel, J.G. Cosmological N-body Simulations and their Analysis. Ph.D. Thesis, University of Washington, Washington, DC, USA, 2001. [Google Scholar]
- Schwartz, S.R.; Michel, P.; Richardson, D.C. Numerically Simulating Impact Disruptions of Cohesive Glass Bead Agglomerates Using the Soft-Sphere Discrete Element Method. Icarus 2013, 226, 67–76. [Google Scholar] [CrossRef]
- Liu, C. Matrix Discrete Element Analysis of Geological and Geotechnical Engineering, 2nd ed.; Springer: Berlin/Heidelberg, Germany, 2021; pp. 27–29. [Google Scholar] [CrossRef]
- Fujiwara, A.; Kawaguchi, J.; Yeomans, D.K.; Abe, M.; Mukai, T.; Okada, T.; Saito, J.; Yano, H.; Yoshikawa, M.; Scheeres, D.J.; et al. The Rubble-Pile Asteroid Itokawa as Observed by Hayabusa. Science 2006, 312, 1330–1334. [Google Scholar] [CrossRef]
- Pohl, L.; Britt, D.T. Strengths of Meteorites—An Overview and Analysis of Available Data. Meteorit. Planet. Sci. 2020, 55, 962–987. [Google Scholar] [CrossRef]
- Yang, J.Z.; Shahidi, S.; Harko, T.; Liang, S.D. Geodesic Deviation, Raychaudhuri Equation, Newtonian Limit, and Tidal Forces in Weyl-Type f(Q,T) Gravity. Eur. Phys. J. C 2021, 81. [Google Scholar] [CrossRef]
- Lian, Y.; Huo, Z.; Cheng, Y. On the Dynamics and Control of the Sun—Earth L 2 Tetrahedral Formation. Astrodynamics 2021, 5, 331–346. [Google Scholar] [CrossRef]
- Hou, X.Y.; Xin, X.S.; Feng, J.L. Forced Motions around Triangular Libration Points by Solar Radiation Pressure in a Binary Asteroid System. Astrodynamics 2020, 4, 17–30. [Google Scholar] [CrossRef]
- Yan, H. Port-Hamiltonian Based Control of the Sun-Earth 3D Circular Restricted Three-Body Problem: Stabilization of the L1 Lagrange Point. Mod. Mech. Eng. 2020, 10, 39–49. [Google Scholar] [CrossRef]
- Zhang, Z.; Hou, X. Transfer Orbits to the Earth-Moon Triangular Libration Points. Adv. Space Res. 2015, 55, 2899–2913. [Google Scholar] [CrossRef]
- Bruck Syal, M.; Michael Owen, J.; Miller, P.L. Deflection by Kinetic Impact: Sensitivity to Asteroid Properties. Icarus 2016, 269, 50–61. [Google Scholar] [CrossRef] [Green Version]
- Stickle, A.M.; Rainey, E.S.G.; Syal, M.B.; Owen, J.M.; Miller, P.; Barnouin, O.S.; Ernst, C.M. Modeling Impact Outcomes for the Double Asteroid Redirection Test (DART) Mission. Procedia Eng. 2017, 204, 116–123. [Google Scholar] [CrossRef]
- Raducan, S.D.; Davison, T.M.; Luther, R.; Collins, G.S. The Role of Asteroid Strength, Porosity and Internal Friction in Impact Momentum Transfer. Icarus 2019, 329, 282–295. [Google Scholar] [CrossRef]
- Yeomans, D.K.; Barriot, J.-P.; Dunham, D.W.; Farquhar, R.W.; Giorgini, J.D.; Helfrich, C.E.; Konopliv, A.S.; McAdams, J.V.; Miller, J.K.; Owen, W.M., Jr.; et al. Estimating the Mass of Asteroid 253 Mathilde from Tracking Data during the NEAR Flyby. Science 1997, 278, 2106–2109. [Google Scholar] [CrossRef]
- Dellagiustina, D.; Nolan, M.; Polit, A.; Golish, D.; Lauretta, D. An OSIRIS-REx Extended Mission to Apophis. Bull. Am. Astron. Soc. 2021, 53, 412.02. [Google Scholar]
Parameters | Symbol | Value |
---|---|---|
Asteroid size | 540 m × 270 m × 210 m | |
Young’s modulus | E | 30 Mpa |
Poisson’s ratio | 0.15 | |
Coefficient of friction | 0.6 | |
Bulk density | ||
Initial bulk porosity | p | 0.4 |
Number of particles | N | 5942 |
Particle radius | 25 m | |
Initial distance | m |
Particles Number | N = 10,902 | ||
---|---|---|---|
Simulating Time/h | 8.25 | 14.5 | 22.5 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zeng, X.; Feng, C.; Wen, T.; Gan, Q. The Coupling Orbit–Attitude–Structure Evolution of Rubble-Pile Asteroid with Earth Flyby in the Restricted Three-Body Problem. Aerospace 2022, 9, 351. https://doi.org/10.3390/aerospace9070351
Zeng X, Feng C, Wen T, Gan Q. The Coupling Orbit–Attitude–Structure Evolution of Rubble-Pile Asteroid with Earth Flyby in the Restricted Three-Body Problem. Aerospace. 2022; 9(7):351. https://doi.org/10.3390/aerospace9070351
Chicago/Turabian StyleZeng, Xiangyuan, Chengfan Feng, Tongge Wen, and Qingbo Gan. 2022. "The Coupling Orbit–Attitude–Structure Evolution of Rubble-Pile Asteroid with Earth Flyby in the Restricted Three-Body Problem" Aerospace 9, no. 7: 351. https://doi.org/10.3390/aerospace9070351
APA StyleZeng, X., Feng, C., Wen, T., & Gan, Q. (2022). The Coupling Orbit–Attitude–Structure Evolution of Rubble-Pile Asteroid with Earth Flyby in the Restricted Three-Body Problem. Aerospace, 9(7), 351. https://doi.org/10.3390/aerospace9070351