Numerical Study of the Ratio of Depth-to-Print Diameter on the Performance and Flow Characteristics for a Dimpled, Highly Loaded Compressor Cascade
Abstract
:1. Introduction
2. Geometric Details of Cascade and Dimple
3. Computational Methodology
3.1. Definition of Aerodynamic Parameters
3.2. Computational Domain and Mesh
3.3. Boundary Conditions and Experimental Verification
4. Results and Discussion
4.1. Performance Parameters of Cascade
4.2. Flow Structure in Cascade Passage
4.3. Vortex Structures in Dimples
5. Conclusions
- The ratio of dimple depth-to-print diameter determines three forms of intruded blade: inferior arc (), semicircular arc () and superior arc (). Flow losses of the cascade increased significantly at and decreased at . can reduce the total pressure loss coefficient by 13% while maintaining the pressurization ability of the cascade.
- The disturbance from the dimple depression reduces the loss caused by corner separation (below 30% blade height) by 13.83%, but increases the loss of the wake by 0.37%. The laminar separation bubbles on the suction surface are weakened (eliminated in the inferior arc and delayed in the semicircle and superior arc), and the excessive disturbance leads to the barbaric growth of the boundary layer and eventually increases the wake loss. The lateral flow near the hub wall of the dimpled cascades is suppressed and flows vertically, which degrades the characteristics of the closed corner separation. Therefore, the starting point of the corner separation is delayed and the range shrinks.
- The vortices are formed in the flow passing the dimpled surface, and their shedding increases the turbulent kinetic energy of the downstream surface. Three kinds of flow regimes are observed within the dimple at the range of Re from , including diffuser–confuser flow (), tornado-like vortex () and horseshoe vortex (). The scale of the dimple with is large enough to make the vortex structure obvious, resulting in a significant increase in the loss of the wake. Turbulent energy density of the tornado is the highest. The three flow regimes have the same topological structure, and the influence of on them mainly lies in the locations of a pair of spiral points and a saddle point on the downstream rims, as well as the curvature of the rotation axis of the vortex.
- For possible applications in the future, there may be some difficulties in the processing of the superior arc dimples, and 3D printing technology may have a significant contribution in solving this problem. The effect of dimples with in those working conditions that deviate from the Mach number of 0.7 or incidence angle of also needs to be discussed in detail. In order to minimize the flow loss of the cascade, the height of the dimples array in the spanwise distribution needs to be further optimized.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wennerstrom, A.J. Highly Loaded Axial Flow Compressors: History and Current Developments. J. Turbomach. 1990, 112, 567–578. [Google Scholar] [CrossRef]
- Taylor, J.V. Separated Flow Topology in Compressors. J. Turbomach. 2019, 141, 091014. [Google Scholar] [CrossRef] [Green Version]
- Liesner, K.; Meyer, R. Evaluation of Passive and Active Secondary Flow Control in a High Speed Compressor Cascade with Different Measurement Techniques. In New Results in Numerical and Experimental Fluid Mechanics VIII; Dillmann, A., Heller, G., Kreplin, H.-P., Nitsche, W., Peltzer, I., Eds.; Notes on Numerical Fluid Mechanics and Multidisciplinary Design; Springer: Berlin/Heidelberg, Germany, 2013; Volume 121, pp. 125–133. ISBN 978-3-642-35679-7. [Google Scholar]
- Liang, T.; Liu, B.; Spence, S. Effect of Boundary Layer Suction on the Corner Separation in a Highly Loaded Axial Compressor Cascade. J. Turbomach. 2021, 143, 061002. [Google Scholar] [CrossRef]
- Cao, Z.; Song, C.; Liu, B.; Gao, L. Influence of Endwall Slotted Injection on Performance and Flow Physics in a Compressor Cascade. Proc. Inst. Mech. Eng. Part A J. Power Energy 2020, 235, 319–334. [Google Scholar] [CrossRef]
- Lu, W.; Huang, G.; Yang, Y. Preliminary Study on Pulsed Jets with Three-Dimensional Effects for Flow Separation Control in a Compressor Blade. Aerosp. Sci. Technol. 2021, 117, 106966. [Google Scholar] [CrossRef]
- Zhang, H.; Chen, S. Pulsed Suction Control in a Highly Loaded Compressor Cascade With Low Suction Flowrates. J. Turbomach. 2021, 143, 061006. [Google Scholar] [CrossRef]
- Barzegar Gerdroodbary, M.; Amini, Y.; Ganji, D.D.; Takam, M.R. The Flow Feature of Transverse Hydrogen Jet in Presence of Micro Air Jets in Supersonic Flow. Adv. Space Res. 2017, 59, 1330–1340. [Google Scholar] [CrossRef]
- Amini, Y.; Mokhtari, M.; Haghshenasfard, M.; Barzegar Gerdroodbary, M. Heat Transfer of Swirling Impinging Jets Ejected from Nozzles with Twisted Tapes Utilizing CFD Technique. Case Stud. Therm. Eng. 2015, 6, 104–115. [Google Scholar] [CrossRef] [Green Version]
- Chung, K.-M.; Su, K.-C.; Chang, K.-C. The Effect of Vortex Generators on Shock-Induced Boundary Layer Separation in a Transonic Convex-Corner Flow. Aerospace 2021, 8, 157. [Google Scholar] [CrossRef]
- Jeong, H.; Song, S.J. Surface Roughness Impact on Boundary Layer Transition and Loss Mechanisms over a Flat-Plate under a Low-Pressure Turbine Pressure Gradient. J. Turbomach. 2021, 144, 011005. [Google Scholar] [CrossRef]
- Bliamis, C.; Vlahostergios, Z.; Misirlis, D.; Yakinthos, K. Numerical Evaluation of Riblet Drag Reduction on a MALE UAV. Aerospace 2022, 9, 218. [Google Scholar] [CrossRef]
- Barzegar Gerdroodbary, M.; Ganji, D.D.; Amini, Y. Numerical Study of Shock Wave Interaction on Transverse Jets through Multiport Injector Arrays in Supersonic Crossflow. Acta Astronaut. 2015, 115, 422–433. [Google Scholar] [CrossRef]
- Li, X.; Dong, J.; Chen, H.; Lu, H. The Control of Corner Separation with Parametric Suction Side Corner Profiling on a High-Load Compressor Cascade. Aerospace 2022, 9, 172. [Google Scholar] [CrossRef]
- Chen, Y.; Yang, L.; Zhong, J. Numerical Study on Endwall Fence with Varying Geometrical Parameters in a Highly-Loaded Compressor Cascade. Aerosp. Sci. Technol. 2019, 94, 105390. [Google Scholar] [CrossRef]
- Achenbach, E. The Effects of Surface Roughness and Tunnel Blockage on the Flow Past Spheres. J. Fluid Mech. 1974, 65, 113–125. [Google Scholar] [CrossRef]
- Ananthan, V.B.; Akkermans, R.A.D.; Hu, T.; Liu, P.Q.; Rathje, N. Trailing-Edge Noise Reduction Potential of a Locally Applied Shallow Dimpled Surface. J. Sound Vib. 2022, 525, 116745. [Google Scholar] [CrossRef]
- Li, M.; Wu, J.H.; Yuan, X.Y. Wall Suction & Slip Effect of Spherical-Grooved Bionic Metasurface for Controlling the Aerodynamic Noise. Appl. Acoust. 2021, 171, 107537. [Google Scholar] [CrossRef]
- Lin, Y.-L.; Shih, T.I.-P.; Chyu, M.K. Computations of Flow and Heat Transfer in a Channel with Rows of Hemispherical Cavities. In Proceedings of the Volume 3: Heat Transfer, Electric Power, Industrial and Cogeneration, Indianapolis, IN, USA, 7 June 1999; American Society of Mechanical Engineers: New York, NY, USA, 1999; p. V003T01A081. [Google Scholar]
- Ligrani, P.M.; Harrison, J.L.; Mahmmod, G.I.; Hill, M.L. Flow Structure Due to Dimple Depressions on a Channel Surface. Phys. Fluids 2001, 13, 3442–3451. [Google Scholar] [CrossRef]
- Leontiev, A.I.; Kiselev, N.A.; Burtsev, S.A.; Strongin, M.M.; Vinogradov, Y.A. Experimental Investigation of Heat Transfer and Drag on Surfaces with Spherical Dimples. Exp. Therm. Fluid Sci. 2016, 79, 74–84. [Google Scholar] [CrossRef]
- Amsha, K.A.; Craft, T.J.; Iacovides, H. Computational Modelling of the Flow and Heat Transfer in Dimpled Channels. Aeronaut. J. 2017, 121, 1066–1086. [Google Scholar] [CrossRef] [Green Version]
- Isaev, S.A.; Schelchkov, A.V.; Leontiev, A.I.; Baranov, P.A.; Gulcova, M.E. Numerical Simulation of the Turbulent Air Flow in the Narrow Channel with a Heated Wall and a Spherical Dimple Placed on It for Vortex Heat Transfer Enhancement Depending on the Dimple Depth. Int. J. Heat Mass Transf. 2016, 94, 426–448. [Google Scholar] [CrossRef]
- Isaev, S.A.; Leont’ev, A.I.; Baranov, P.A.; Metov, K.T.; Usachov, A.E. Numerical Analysis of the Effect of Viscosity on the Vortex Dynamics in Laminar Separated Flow Past a Dimple on a Plane with Allowance for Its Asymmetry. J. Eng. Phys. Thermophys. 2001, 74, 339–346. [Google Scholar] [CrossRef]
- Chyu, M.K.; Yu, Y.; Ding, H.; Downs, J.P.; Soechting, F.O. Concavity Enhanced Heat Transfer in an Internal Cooling Passage; American Society of Mechanical Engineers Digital Collection: Orlando, FL, USA, 24 December 2014. [Google Scholar]
- Lake, J.; King, P.; Rivir, R. Low Reynolds Number Loss Reduction on Turbine Blades with Dimples and V-Grooves. In Proceedings of the 38th Aerospace Sciences Meeting and Exhibit, Reno, NV, USA, 10 January 2000; American Institute of Aeronautics and Astronautics: Reston, NV, USA, 2000. [Google Scholar]
- Zhang, X.F.; Vera, M.; Hodson, H.; Harvey, N. Separation and Transition Control on an Aft-Loaded Ultra-High-Lift LP Turbine Blade at Low Reynolds Numbers: Low-Speed Investigation. J. Turbomach. 2006, 128, 517–527. [Google Scholar] [CrossRef]
- Sobhani, E.; Ghaffari, M.; Maghrebi, M.J. Numerical Investigation of Dimple Effects on Darrieus Vertical Axis Wind Turbine. Energy 2017, 133, 231–241. [Google Scholar] [CrossRef]
- Yoo, S.; Oh, S. Flow Analysis and Optimization of a Vertical Axis Wind Turbine Blade with a Dimple. Eng. Appl Comp. Fluid 2021, 15, 1666–1681. [Google Scholar] [CrossRef]
- Sedighi, H.; Akbarzadeh, P.; Salavatipour, A. Aerodynamic Performance Enhancement of Horizontal Axis Wind Turbines by Dimples on Blades: Numerical Investigation. Energy 2020, 195, 117056. [Google Scholar] [CrossRef]
- D’Alessandro, V.; Clementi, G.; Giammichele, L.; Ricci, R. Assessment of the Dimples as Passive Boundary Layer Control Technique for Laminar Airfoils Operating at Wind Turbine Blades Root Region Typical Reynolds Numbers. Energy 2019, 170, 102–111. [Google Scholar] [CrossRef]
- Lu, H.; Yang, Y.; Guo, S.; Pang, W.; Yang, F.; Zhong, J. Control of Corner Separation via Dimpled Surface for a Highly Loaded Compressor Cascade under Different Inlet Mach Number. Aerosp. Sci. Technol. 2019, 85, 48–60. [Google Scholar] [CrossRef]
- Kim, K.-Y.; Shin, D.-Y. Optimization of a Staggered Dimpled Surface in a Cooling Channel Using Kriging Model. Int. J. Sci 2008, 47, 1464–1472. [Google Scholar] [CrossRef]
- Lu, H.; Yang, Y.; Guo, S.; Huang, Y.; Wang, H.; Zhong, J. The Effect of Dimpled Surface on Loss Reduction and Vortices in a Highly Loaded Compressor Cascade. Proc. Inst. Mech. Eng. Part G J. Aerosp. Eng. 2018, 232, 374–387. [Google Scholar] [CrossRef]
- Menter, F.R. Two-Equation Eddy-Viscosity Turbulence Models for Engineering Applications. AIAA J. 1994, 32, 1598–1605. [Google Scholar] [CrossRef] [Green Version]
- Menter, F.R.; Langtry, R.B.; Likki, S.R.; Suzen, Y.B.; Huang, P.G.; Völker, S. A Correlation-Based Transition Model Using Local Variables—Part I: Model Formulation. J. Turbomach. 2006, 128, 413–422. [Google Scholar] [CrossRef]
- Mahmood, G.I.; Hill, M.L.; Nelson, D.L.; Ligrani, P.M.; Moon, H.-K.; Glezer, B. Local Heat Transfer and Flow Structure on and Above a Dimpled Surface in a Channel. J. Turbomach. 2000, 123, 115–123. [Google Scholar] [CrossRef]
- Kovalenko, G.V.; Terekhov, V.I.; Khalatov, A.A. Flow Regimes in a Single Dimple on the Channel Surface. J. Appl. Mech. Tech. Phys. 2010, 51, 839–848. [Google Scholar] [CrossRef]
- Zhou, W.; Rao, Y.; Hu, H. An Experimental Investigation on the Characteristics of Turbulent Boundary Layer Flows Over a Dimpled Surface. J. Fluids Eng. 2016, 138, 021204. [Google Scholar] [CrossRef]
- Tay, C.M.; Chew, Y.T.; Khoo, B.C.; Zhao, J.B. Development of Flow Structures over Dimples. Exp. Therm. Fluid Sci 2014, 52, 278–287. [Google Scholar] [CrossRef]
Parameters | Value |
---|---|
(mm) | 60 |
(mm) | 55 |
(mm) | 33 |
(mm) | 100 |
(°) | 42 |
(°) | 90 |
(°) | - |
0.7 |
Style | (mm) | (mm) | (mm) | (mm) | |
---|---|---|---|---|---|
INF | 0.125 | 0.2 | 1.600 | 1.500 | 1.700 |
0.375 | 0.2 | 0.532 | 0.077 | 0.277 | |
SEM | 0.500 | 0.2 | 0.400 | 0.000 | 0.200 |
SUP | 0.625 | 0.2 | 0.320 | 0.036 | 0.164 |
0.875 | 0.2 | 0.227 | 0.067 | 0.133 |
Type | Nodes | Number | ||||||
---|---|---|---|---|---|---|---|---|
Result | Error (%) | Result | Error (%) | Result | Error (%) | |||
ORI | 80 | 72 | 0.0629 | 0.64 | 1.1912 | 0.13 | 0.6312 | - |
100 | 128 | 0.0619 | 0.96 | 1.1882 | 0.12 | 0.4681 | - | |
150 | 174 | 0.0623 | 0.32 | 1.1885 | 0.09 | 0.3471 | 0.80 | |
200 | 224 | 0.0627 | 0.32 | 1.1903 | 0.06 | 0.3527 | 0.80 | |
DIM | 4 | 444.8 | 0.0683 | - | 1.1545 | - | 2.8497 | - |
6 | 721.9 | 0.0401 | 0.00 | 1.2090 | 0.02 | 2.0792 | 0.01 | |
8 | 817.4 | 0.0401 | 0.00 | 1.2092 | 0.00 | 2.0813 | 0.11 | |
10 | 930.5 | 0.0402 | 0.25 | 1.2095 | 0.02 | 2.0766 | 0.12 |
h/2R | Re2R | Flow Regime | |
---|---|---|---|
0.125 | 0.06 | 52,800,000 | diffuser-confuser |
0.375 | 0.36 | 8,600,000 | tornado-like vortex |
0.500 | 0.50 | 6,210,000 | tornado-like vortex |
0.625 | 0.61 | 5,100,000 | horseshoe vortex |
0.875 | 0.75 | 4,130,000 | horseshoe vortex |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, L.; Lu, H.; Tian, Z.; Yang, Y.; Guo, S.; Wang, H.; Kong, X. Numerical Study of the Ratio of Depth-to-Print Diameter on the Performance and Flow Characteristics for a Dimpled, Highly Loaded Compressor Cascade. Aerospace 2022, 9, 422. https://doi.org/10.3390/aerospace9080422
Wang L, Lu H, Tian Z, Yang Y, Guo S, Wang H, Kong X. Numerical Study of the Ratio of Depth-to-Print Diameter on the Performance and Flow Characteristics for a Dimpled, Highly Loaded Compressor Cascade. Aerospace. 2022; 9(8):422. https://doi.org/10.3390/aerospace9080422
Chicago/Turabian StyleWang, Long, Huawei Lu, Zhitao Tian, Yi Yang, Shuang Guo, Hong Wang, and Xiaozhi Kong. 2022. "Numerical Study of the Ratio of Depth-to-Print Diameter on the Performance and Flow Characteristics for a Dimpled, Highly Loaded Compressor Cascade" Aerospace 9, no. 8: 422. https://doi.org/10.3390/aerospace9080422
APA StyleWang, L., Lu, H., Tian, Z., Yang, Y., Guo, S., Wang, H., & Kong, X. (2022). Numerical Study of the Ratio of Depth-to-Print Diameter on the Performance and Flow Characteristics for a Dimpled, Highly Loaded Compressor Cascade. Aerospace, 9(8), 422. https://doi.org/10.3390/aerospace9080422