Modular Self-Reconfigurable Satellite Inverse Kinematic Solution Method Based on Improved Differential Evolutionary Algorithm
Abstract
:1. Introduction
2. Inverse Kinematics Optimization Solution Model for MSRS
2.1. The Optimal Function of Pose Accuracy
2.2. Energy Optimal Function
2.3. Pose Inverse Solution Multi-Objective Optimization Function
2.4. Pose Inverse Solution Constrained Optimization Function
3. Improved Differential Evolutionary Algorithm
3.1. Standard Differential Evolutionary Algorithm
- Initializing populations
- 2.
- Mutation operation
- 3.
- Crossover operation
- 4.
- Select operation
3.2. Opposition-Based Learning Based on Refraction Principle
Algorithm 1. Refractive opposition-based learning population initialization |
Randomly generate initialized populations ; for i = 1 to NP do for j = 1 to D do ; if then = rand(a, b); end if end for end for Select the top NP optimal individuals in to form the initial population |
Algorithm 2. Refractive opposition-based learning population generation jump |
New populations after DE base operation ; for i = 1 to NP do for j = 1 to D do ; if then = rand(, ); end if end for end for Select the top NP optimal individuals in to form the initial population |
3.3. Cauchy Mutation Perturbation
Algorithm 3. Cauchy mutation perturbation |
New populations after DE base operation ; for i = 1 to NP do for j = 1 to D do ; if < || > then = rand(, ); end if end for end for Individuals entering the next generation are selected according to the greed principle. |
3.4. The Refractive Opposition-Based Learning and Cauchy Mutation Perturbation Improved Differential Evolutionary Algorithm (RCDE)
3.5. Algorithm Performance Evaluation
3.5.1. Time Complexity Analysis
3.5.2. Convergence Accuracy Analysis
3.5.3. Statistical Significance Testing of Results
4. Experiment Analysis
4.1. Case 1: Minimum Pose Error between Two Different Side Modules
4.2. Case 2: Integrated Optimal Inverse Kinematic Solution for the Pose Error and Energy Consumption between the Three Modules
4.3. Case 3: Constrained Optimal Solution of the Pose Inverse Solution of Two Different Side Modules
4.4. Analysis of Experimental Results
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
Abbreviations
DE | Differential Evolutionary |
ES | Evolutionary Strategy |
DOF | Degree of Freedom |
GODE | Generalized Opposition-based Differential Evolutionary |
GA | Genetic Algorithm |
MSRS | Modular Self-Reconfigurable Satellite |
JADE | Adaptive Differential Evolution with optional external archive |
OBL | Opposition-Based Learning |
RCDE | Refractive opposition-based learning and Cauchy mutation perturbation improved differential evolutionary |
References
- Selva, D.; Golkar, A.; Korobova, O.; Cruz, I.L.I.; Collopy, P.; de Weck, O.L. Distributed earth satellite systems: What is needed to move forward? J. Aerosp. Inf. Syst. 2017, 14, 412–438. [Google Scholar] [CrossRef]
- Barnhart, D.; Hill, L.; Fowler, E.; Hunter, R.; Hoag, L.; Sullivan, B.; Will, P. A market for satellite cellularization: A first look at the implementation and potential impact of satlets. In Proceedings of the AIAA SPACE 2013 Conference and Exposition, San Diego, CA, USA, 10–12 September 2013; pp. 1–11. [Google Scholar]
- Dong, S.; Allen, K.; Bauer, P.; Bethke, B.; Brzezinski, A.; Coffee, T.; Chambers, R.-D.; Flores, M.; Gallagher-Rodgers, A.; Head, J. Self-assembling wireless autonomously reconfigurable module design concept. Acta Astronaut. 2008, 62, 246–256. [Google Scholar] [CrossRef]
- Ekblaw, A.; Shuter, E.; Paradiso, J.A. Self-Assembling Space Architecture: Tessellated shell structures for space habitats. In Proceedings of the AIAA Scitech 2019 Forum, San Diego, CA, USA, 7–11 January 2019; p. 0481. [Google Scholar]
- Nisser, M.; Izzo, D.; Borggraefe, A. An electromagnetically actuated, self-reconfigurable space structure. Trans. Jpn. Soc. Aeronaut. Space Sci. 2017, 14, 1–9. [Google Scholar]
- Sugawara, Y.; Nakasuka, S.; Higashi, K.; Kobayashi, C.; Koyama, K.; Okada, T. Structure and thermal control of panel extension satellite (PETSAT). Acta Astronaut. 2009, 65, 958–966. [Google Scholar] [CrossRef]
- Underwood, C.; Pellegrino, S.; Lappas, V.J.; Bridges, C.P.; Baker, J. Using CubeSat/micro-satellite technology to demonstrate the Autonomous Assembly of a Reconfigurable Space Telescope (AAReST). Acta Astronaut. 2015, 114, 112–122. [Google Scholar] [CrossRef]
- Weise, J.; Brieß, K.; Adomeit, A.; Reimerdes, H.-G.; Göller, M.; Dillmann, R. An intelligent building blocks concept for on-orbit-satellite servicing. In Proceedings of the International Symposium on Artificial Intelligence, Robotics and Automation in Space (iSAIRAS), Turin, Italy, 4–6 September 2012. [Google Scholar]
- Post, M.A.; Yan, X.-T.; Letier, P. Modularity for the future in space robotics: A review. Acta Astronaut. 2021, 189, 530–547. [Google Scholar] [CrossRef]
- Helvajian, H. Doing Much with Little: HIVE A New Space Architecture. In Proceedings of the ASCEND 2020, Virtual, 16–18 November 2020; p. 4172. [Google Scholar]
- Chang, H.; Huang, P.; Lu, Z.; Zhang, Y.; Meng, Z.; Liu, Z. Inertia parameters identification for cellular space robot through interaction. Aerosp. Sci. Technol. 2017, 71, 464–474. [Google Scholar] [CrossRef]
- Shen, W.-M.; Salemi, B.; Moll, M. Modular, multifunctional and reconfigurable superbot for space applications. In Proceedings of the Space 2006, San Jose, CA, USA, 19–21 September 2006; p. 7405. [Google Scholar]
- Yim, M. Modular self-reconfigurable robot systems: Challenges and opportunities for the future. IEEE Robot. Automat. Mag. 2007, 10, 2–11. [Google Scholar] [CrossRef]
- Romanishin, J.W.; Gilpin, K.; Rus, D. M-blocks: Momentum-driven, magnetic modular robots. In Proceedings of the 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems, Tokyo, Japan, 3–7 November 2013; pp. 4288–4295. [Google Scholar]
- Romanishin, J.W.; Mamish, J.; Rus, D. Decentralized Control for 3D M-Blocks for Path Following, Line Formation, and Light Gradient Aggregation. In Proceedings of the 2019 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Macau, China, 4–8 November 2019; pp. 4862–4868. [Google Scholar]
- An, J.; Li, X.; Zhang, Z.; Zhang, G.; Man, W.; Hu, G.; He, J.; Yu, D. A Novel Method for Inverse Kinematics Solutions of Space Modular Self-Reconfigurable Satellites with Self-Collision Avoidance. Aerospace 2022, 9, 123. [Google Scholar] [CrossRef]
- Huang, H.-C.; Chen, C.-P.; Wang, P.-R. Particle swarm optimization for solving the inverse kinematics of 7-DOF robotic manipulators. In Proceedings of the 2012 IEEE International Conference on Systems, Man, and Cybernetics (SMC), Seoul, Korea, 14–17 October 2012; pp. 3105–3110. [Google Scholar]
- Shi, J.; Mao, Y.; Li, P.; Liu, G.; Liu, P.; Yang, X.; Wang, D. Hybrid mutation fruit fly optimization algorithm for solving the inverse kinematics of a redundant robot manipulator. Math. Probl. Eng. 2020, 1, 1–13. [Google Scholar] [CrossRef]
- Storn, R.; Price, K. Differential evolution–a simple and efficient heuristic for global optimization over continuous spaces. J. Glob. Optim. 1997, 11, 341–359. [Google Scholar] [CrossRef]
- Guo, Z.; Liu, G.; Li, D.; Wang, S. Self-adaptive differential evolution with global neighborhood search. Soft Comput. 2017, 21, 3759–3768. [Google Scholar] [CrossRef]
- Zhang, J.; Zhan, Z.-H.; Lin, Y.; Chen, N.; Gong, Y.-J.; Zhong, J.-H.; Chung, H.S.; Li, Y.; Shi, Y.-H. Evolutionary computation meets machine learning: A survey. IEEE Comput. Intell. Mag. 2011, 6, 68–75. [Google Scholar] [CrossRef]
- Tizhoosh, H.R. Opposition-based learning: A new scheme for machine intelligence. In Proceedings of the International Conference on Computational Intelligence for Modelling, Control and Automation and International Conference on Intelligent Agents, Web Technologies and Internet Commerce (CIMCA-IAWTIC’06), Vienna, Austria, 28–30 November 2005; pp. 695–701. [Google Scholar]
- Zhao, X.; Feng, S.; Hao, J.; Zuo, X.; Zhang, Y. Neighborhood opposition-based differential evolution with Gaussian perturbation. Soft Comput. 2021, 25, 27–46. [Google Scholar] [CrossRef]
- Shao, P.; Wu, Z.; Zhou, X.; Deng, C. Improved partical swarm optimization algorithm based on opposite learning of refraction. Acta Electron. Sin. 2015, 43, 2137–2144. [Google Scholar]
- Shao, P.; Wu, Z.; Zhou, X. FIR digital filter design using improved particle swarm optimization based on refraction principle. Soft Comput. 2017, 21, 2631–2642. [Google Scholar] [CrossRef]
A Side | B Side | ||||||||
---|---|---|---|---|---|---|---|---|---|
Link | Link | ||||||||
1 | 0 | 90 | 0 | 0.613 | 1 | 0 | 90 | 0 | −0.613 |
2 | 0 | −90 | 0 | 0 | 2 | 0 | −90 | 0 | 0 |
3 | 0 | 0 | 0 | 0.613 | 3 | 0 | 0 | 0 | −0.613 |
4 | 0 | 90 | 0 | 0.613 | 4 | 0 | 90 | 0 | −0.613 |
5 | 0 | −90 | 0 | 0 | 5 | 0 | −90 | 0 | 0 |
6 | 0 | 0 | 0 | 0.613 | 6 | 0 | 0 | 0 | −0.613 |
7 | 0 | 90 | 0 | 0.613 | 7 | 0 | 90 | 0 | −0.613 |
8 | 0 | −90 | 0 | 0 | 8 | 0 | −90 | 0 | 0 |
9 | 0 | 0 | 0 | 0.613 | 9 | 0 | 0 | 0 | −0.613 |
10 | 0 | 90 | 0 | 0.613 | 10 | 0 | 90 | 0 | −0.613 |
11 | 0 | −90 | 0 | 0 | 11 | 0 | −90 | 0 | 0 |
12 | 0 | 0 | 0 | 0.613 | 12 | 0 | 0 | 0 | −0.613 |
Functions | Benchmark Functions Expression | Dimension | Variable Range | Optimum Value |
---|---|---|---|---|
f1 | 30 | [−100, 100] | 0 | |
f2 | 30 | [−10, 10] | 0 | |
f3 | 30 | [−100, 100] | 0 | |
f4 | 30 | [−1.28, 1.28] | 0 | |
f5 | 30 | [−5.12, 5.12] | 0 | |
f6 | 30 | [−5.12, 5.12] | 0 | |
f7 | 30 | [−32, 32] | 0 | |
f8 | 30 | [−600, 600] | 0 |
Algorithm | Parameters Setting |
---|---|
DE | CR = 0.9, F = 0.5 |
GODE | CR = 0.9, F = 0.5, Jr = 0.3 |
JADE | uCR = 0.5, uF = 0.5, p = 0.05 |
RCDE | CR = 0.9, F = 0.5, k_max = 2, k_min = 0.7 |
Function | Index | Result | |||
---|---|---|---|---|---|
DE | GODE | JADE | RCDE | ||
f1 | Best | 2.36 × 10−2 | 3.91 × 10−10 | 3.75 × 10−18 | 8.74 × 10−107 |
Worst | 2.47 × 102 | 3.00 × 10−7 | 4.45 × 10−16 | 4.65 × 10−100 | |
Mean | 1.73 × 101 | 2.60 × 10−8 | 1.15 × 10−16 | 3.84 × 10−101 | |
Std | 4.57 × 1011 | 5.30 × 10−8 | 1.34 × 10−16 | 1.01 × 10−100 | |
f2 | Best | 1.84 × 10−3 | 2.46 × 10−5 | 1.27 × 10−8 | 2.92 × 10−53 |
Worst | 1.05 | 2.27 × 10−4 | 7.10 × 10−5 | 1.10 × 10−48 | |
Mean | 9.19 × 10−2 | 8.06 × 10−5 | 2.47 × 10−6 | 5.61 × 10−50 | |
Std | 1.99 × 10−1 | 5.29 × 10−5 | 1.27 × 10−5 | 2.01 × 10−49 | |
f3 | Best | 8.10 × 101 | 1.62 × 10−1 | 9.2 × 10−6 | 1.08 × 10−90 |
Worst | 1.05 × 103 | 3.84 | 0.1176844 | 5.88 × 10−86 | |
Mean | 5.24 × 102 | 1.09 | 4.75 × 10−2 | 4.52 × 10−87 | |
Std | 2.44 × 102 | 9.57 × 10−1 | 2.11 × 10−2 | 1.21 × 10−86 | |
f4 | Best | 8.21 × 10−2 | 6.45 × 10−2 | 1.20 × 10−1 | 1.08 × 10−1 |
Worst | 4.26 × 10−1 | 5.64 × 10−1 | 3.66 × 10−1 | 3.49 × 10−1 | |
Mean | 2.22 × 10−1 | 2.20 × 10−1 | 2.53 × 10−1 | 2.05 × 10−1 | |
Std | 7.06 × 10−2 | 1.08 × 10−1 | 6.16 × 10−2 | 5.19 × 10−2 | |
f5 | Best | 7.07 × 101 | 7.69 × 101 | 1.79 × 101 | 0.00 |
Worst | 2.00 × 102 | 1.90 × 102 | 3.01 × 101 | 0.00 | |
Mean | 1.55 × 102 | 1.50 × 102 | 2.50 × 101 | 0.00 | |
Std | 3.59 × 101 | 3.39 × 101 | 2.93 × 10 | 0.00 | |
f6 | Best | 7.70 × 101 | 2.63 × 101 | 3.00 | 0.00 |
Worst | 1.75 × 102 | 1.82 × 102 | 1.00 × 101 | 0.00 | |
Mean | 1.28 × 102 | 1.32 × 102 | 6.01 | 0.00 | |
Std | 2.73 × 101 | 3.55 × 101 | 1.54 | 0.00 | |
f7 | Best | 2.54 × 10−1 | 5.74 × 10−6 | 4.14 × 10−10 | 8.88 × 10−16 |
Worst | 4.59 | 7.58 × 10−5 | 7.86 × 10−8 | 8.88 × 10−16 | |
Mean | 2.22 | 3.25 × 10−5 | 5.83 × 10−9 | 8.88 × 10−16 | |
Std | 9.41 × 10−1 | 1.84 × 10−5 | 1.37 × 10−8 | 9.86 × 10−32 | |
f 8 | Best | 9.61 × 10−3 | 5.64 × 10−8 | 8.77 × 10−5 | 0.00 |
Worst | 8.68 × 10−1 | 1.81 × 10−1 | 4.17 × 10−3 | 0.00 | |
Mean | 1.29 × 10−1 | 2.24 × 10−2 | 1.23 × 10−3 | 0.00 | |
Std | 1.58 × 10−1 | 0.042799 | 1.01 × 10−3 | 0.00 |
Function | DE | GODE | JADE | |||
---|---|---|---|---|---|---|
p | R | p | R | p | R | |
f1 | + + | + + | + + | |||
f2 | + + | + + | + + | |||
f3 | + + | + + | + + | |||
f4 | − | − | + + | |||
f5 | + + | + + | + + | |||
f6 | + + | + + | + + | |||
f7 | + + | + + | + + | |||
f8 | + + | + + | + + |
RCDE | DE | GODE | JADE | |
---|---|---|---|---|
Mean | ||||
Best | ||||
Worst | ||||
Std |
RCDE | DE | GODE | JADE | |
---|---|---|---|---|
Mean | ||||
Best | ||||
Worst | ||||
Std |
RCDE | DE | GODE | JADE | |
---|---|---|---|---|
Mean | ||||
Best | ||||
Worst | ||||
Std |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hu, G.; Zhang, G.; Li, Y.; Wang, X.; An, J.; Zhang, Z.; Li, X. Modular Self-Reconfigurable Satellite Inverse Kinematic Solution Method Based on Improved Differential Evolutionary Algorithm. Aerospace 2022, 9, 434. https://doi.org/10.3390/aerospace9080434
Hu G, Zhang G, Li Y, Wang X, An J, Zhang Z, Li X. Modular Self-Reconfigurable Satellite Inverse Kinematic Solution Method Based on Improved Differential Evolutionary Algorithm. Aerospace. 2022; 9(8):434. https://doi.org/10.3390/aerospace9080434
Chicago/Turabian StyleHu, Gangxuan, Guohui Zhang, Yanyan Li, Xun Wang, Jiping An, Zhibin Zhang, and Xinhong Li. 2022. "Modular Self-Reconfigurable Satellite Inverse Kinematic Solution Method Based on Improved Differential Evolutionary Algorithm" Aerospace 9, no. 8: 434. https://doi.org/10.3390/aerospace9080434
APA StyleHu, G., Zhang, G., Li, Y., Wang, X., An, J., Zhang, Z., & Li, X. (2022). Modular Self-Reconfigurable Satellite Inverse Kinematic Solution Method Based on Improved Differential Evolutionary Algorithm. Aerospace, 9(8), 434. https://doi.org/10.3390/aerospace9080434