Integrated Power and Propulsion System Optimization for a Planetary-Hopping Robot
Abstract
:1. Introduction
- We propose an integrated power supply and propulsion system for SphereX consisting of Proton-exchange membrane (PEM) fuel cells for power and a H2/O2 propulsion system.
- We develop a system-level optimization problem to find optimal design solutions of SphereX in terms of mass, volume, and power.
- A comparative analysis of the optimal design solution of SphereX is provided against other relevant systems.
2. Background
3. System Design
3.1. PEM Fuel Cells
3.2. Propulsion System
Optimization
3.3. Hydrogen Generator
3.4. Oxygen Generator
3.5. Storage Tanks
3.6. Other Subsystems
3.6.1. Power Management
3.6.2. Shell
3.7. System Optimization
4. Results
4.1. Test Scenario 1: Subsurface Exploration of Mare Tranquilitatis Pit
4.2. Test Scenario 2: Exploration of Victoria Crater
5. Comparative Analysis
Mass Comparison
6. Conclusions
7. Patents
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Constant | PEM Fuel Cell at 70 °C |
---|---|
(V) | 1.031 |
(kΩ cm2) | 2.45 × 10−4 |
(V) | 0.03 |
(V) | 2.11 × 10−5 |
(cm2 mA−1) | 8 × 10−3 |
Appendix B
Appendix C
Appendix C.1. Attitude Control
Appendix C.2. Command and Data Handling
Appendix C.3. Communication
Appendix C.4. Instruments
Component | Available Interfaces |
---|---|
AstroSDR | GPIO, USB, UART, LVDS, Ethernet |
MAI400 | UART, RS232, I2C, SPI |
RWP050 | I2C |
S-band patch antenna | UART |
mvBlueFOX3 | USB |
Puck LITE | Ethernet |
NanoPower P31u board | I2C |
Appendix D
Appendix E
Appendix E.1. Alternative Power Systems
Appendix E.1.1. Direct Methanol Fuel Cells (DMFC)
Appendix E.1.2. Direct Borohydride Fuel Cells (DBFC)
Appendix E.1.3. Lithium-Ion and Lithium-Polymer Batteries
Appendix E.2. Alternative Hopping Systems
Appendix E.2.1. Steam Propulsion
Appendix E.2.2. Mechanical Hopping
References
- National Research Council. Vision and Voyages for Planetary Science in the Decade 2013–2022; The National Academies Press: Washington, DC, USA, 2011. [Google Scholar]
- National Academies of Sciences, Engineering, and Medicine. NASA Space Technology Roadmaps and Priorities Revisited; The National Academies Press: Washington, DC, USA, 2016. [Google Scholar]
- Grip, H.; Aung, M. Mars Helicopter on the 2020 Rover Mission. In Proceedings of the 51st Lunar and Planetary Science Conference, Woodlands, TX, USA, 16–20 March 2020. [Google Scholar]
- Kalita, H.; Ravindran, A.; Morad, S.; Thangavelautham, J. Path Planning and Navigation Inside Off-World Lava Tubes and Caves. In Proceedings of the IEEE/ION Position, Location and Navigation Symposium (PLANS), Monterey, CA, USA, 23–26 April 2018. [Google Scholar]
- Kalita, H.; Gholap, A.S.; Thangavelautham, J. Dynamics and Control of a Hopping Robot for Extreme Environment Exploration on the Moon and Mars. In Proceedings of the IEEE Aerospace Conference, Big Sky, MT, USA, 7–14 March 2020. [Google Scholar]
- Kong, V.C.Y.; Kirk, D.W.; Foulker, F.R.; Hinatsu, J.T. Development of hydrogen storage for fuel cell generators II: Utilization of calcium hydride and lithium hydride. Int. J. Hydrog. Energy 2003, 28, 205–214. [Google Scholar] [CrossRef]
- Markowitz, M.M.; Boryta, D.A. The Decomposition Kinetics of Lithium Perchlorate. J. Phys. Chem. 1961, 65, 1419–1424. [Google Scholar] [CrossRef]
- Thangavelautham, J.; Dubowsky, S. On the Catalytic Degradation in Fuel Cell Power Supplies for Long-life Mobile Field Sensors. J. Fuel Cells: Fundam. Syst. 2013, 13, 181–195. [Google Scholar] [CrossRef]
- Kalita, H.; Thangavelautham, J. Multidisciplinary Design and Control Optimization of a Spherical Robot for Planetary Exploration. In Proceedings of the AIAA SciTech Forum, Orlando, FL, USA, 8 January 2020. [Google Scholar]
- Kesner, S.B.; Plante, J.S.; Boston, P.; Fabian, T.; Dubowsky, S. Mobility and Power Feasibility of a Microbot Team System for Extraterrestrial Cave Exploration. In Proceedings of the IEEE International Conference on Robotics and Automation (ICRA), Rome, Italy, 10–14 April 2007. [Google Scholar]
- Lee, S.; Min, I.; Kim, H.; Nam, S.; Lee, J.; Kim, S.; Jang, J.; Cho, E.; Song, K.; Hong, S.; et al. Development of a 600 W Proton Exchange Membrane Fuel Cell Power System for the Hazardous Mission Robot. J. Fuel Cell Sci. Technol. 2010, 7, 310061–310067. [Google Scholar] [CrossRef]
- Joh, H.; Ha, T.; Hwang, S.; Kim, J.; Chae, S.; Cho, J.; Prabhuram, J.; Kim, S.; Lim, T.; Cho, B.; et al. A Direct Methanol Fuel Cell System to Power a Humanoid Robot. J. Power Sources 2003, 195, 293–298. [Google Scholar] [CrossRef]
- Aoki, T.; Tsukioka, S.; Yoshida, H.; Hyakudome, T.; Ishibashi, S.; Sawa, T.; Ishikawa, A.; Tahara, J.; Yamamoto, I.; Ohkusu, M. Advanced Technologies For Cruising AUV URASHIMA. Int. J. Offshore Polar Eng. 2008, 18, 2. [Google Scholar]
- Chen, H.; Jonchay, T.S.; Hou, L.; Ho, K. Integrated In-situ Resource Utilization System Design and Logistics for Mars Exploration. Acta Astronaut. 2020, 170, 80–92. [Google Scholar] [CrossRef]
- Kalita, H.; Thangavelautham, J. Exploration of Extreme Environments with Current and Emerging Robot Systems. Curr. Robot. Rep. 2020, 1, 97–104. [Google Scholar] [CrossRef]
- Wang, Y.; Moura, S.J.; Advani, S.G.; Prasad, A.K. Power Management System for a Fuel Cell/battery Hybrid Vehicle Incorporating Fuel Cell and Battery Degradation. Int. J. Hydrogen Energy 2019, 44, 8479–8492. [Google Scholar] [CrossRef]
- Chandra, D. Intermetallics for Hydrogen Storage. In Solid State Hydrogen Storage: Materials and Chemistry, 1st ed.; Walker, G., Ed.; Woodhead Publishing Limited: Cambridge, UK, 2008; pp. 317–324. [Google Scholar]
- Liu, J.; Jin, L.; Gao, N.; Ou, S.; Wang, S.; Wang, W. A Review on Chemical Oxygen Supply Technology within Confined Spaces: Challenges, Strategies, and Opportunities Toward Chemical Oxygen Generators (COGs). Int. J. Miner. Metal. Mater. 2019, 26, 925–937. [Google Scholar] [CrossRef]
- Sarda, K.; Eagleson, S.; Caillibot, E.; Grant, C.; Kekez, D.; Pranajaya, F.; Zee, R.E. Canadian Advanced Nanospace Experiment 2: Scientific and Technological Innovation on a Three-kilogram Satellite. Acta Astronaut. 2006, 59, 236–245. [Google Scholar] [CrossRef]
- Lemmer, K. Propulsion for CubeSats. Acta Astronaut. 2017, 134, 231–243. [Google Scholar] [CrossRef]
- Small Spacecraft Systems Virtual Institute, Ames Research Center. State of the Art, Small Spacecraft Technology; NASA/TP-2018-220027; Small Spacecraft Systems Virtual Institute, Ames Research Center: Mountain View, CA, USA, 2018. [Google Scholar]
- Carter, P.H.; Dittman, M.D.; Kare, J.T.; Militksy, F.; Weisberg, A.H. Water Rocket—Electrolysis Propulsion and Fuel Cell Power; UCRL-JC—135315; Lawrence Livemore National Lab: Livermore, CA, USA, 1999. [Google Scholar]
- Olds, J. Results of a Rocket-Based Combined-Cycle SSTO Design Using Parametric MDO Methods. SAE Trans. J. Aerosp. 1994, 103, 154–173. [Google Scholar]
- Matossian, M.G. Improved Candidate Generation and Coverage Analysis Methods for Design Optimization of Symmetric Multisatellite Constellations. Acta Astronaut. 1997, 40, 561–571. [Google Scholar] [CrossRef]
- Riddle, E. Use of Optimization Methods in Small Satellite Systems Analysis. In Proceedings of the 12th AIAA/USU Conference on Small Satellites, Logan, UT, USA, 31 August–11 September 1998. [Google Scholar]
- Bearden, D.A. A Methodology for Spacecraft Technology Insertion Analysis Balancing Benefit, Cost, and Risk. Ph.D. Dissertation, University of Southern California, Los Angeles, CA, USA, 1999. [Google Scholar]
- George, J.; Peterson, J.; Southard, S. Multidisciplinary Integrated Design Assistant for Spacecraft (MIDAS). In Proceedings of the 36th Structures, Structural Dynamics and Materials Conference, AIAA, New Orleans, LA, USA, 10–13 April 1995. [Google Scholar]
- Fukunaga, A.S.; Chien, S.; Mutz, D.; Sherwood, R.L.; Stechert, A.D. Automating the Process of Optimization in Spacecraft Design. In Proceedings of the IEEE Conference, Big Sky, MT, USA, 12 June 1997. [Google Scholar]
- Mosher, T. Conceptual Spacecraft Design Using a Genetic Algorithm Trade Selection Process. J. Aircr. 1999, 36, 200–208. [Google Scholar] [CrossRef]
- Stump, G.M.; Yukish, M.; Simpson, T.W.; O’Hara, J.J. Trade Space Exploration of Satellite Datasets Using a Design by Shopping Paradigm. In Proceedings of the IEEE Aerospace Conference, Big Sky, MT, USA, 6–13 March 2004. [Google Scholar]
- Barnhart, D.; Kichkaylo, T.; Hoag, L. SPIDR: Integrated Systems Engineering Design-to-Simulation Software for Satellite Build. In Proceedings of the Conference on Systems Engineering Research, Loughborough, UK, 20–22 April 2009. [Google Scholar]
- Ravanbakhsh, A.; Franchini, S. Multiobjective Optimization Applied to Structural Sizing of Low-cost University-class Microsatellite Projects. Acta Astronaut. 2012, 79, 212–220. [Google Scholar] [CrossRef]
- Taylor, E.R. Evaluation of multidisciplinary design optimization techniques as applied to spacecraft design. In Proceedings of the IEEE Aerospace Conference Proceedings, Big Sky, MT, USA, 25 March 2000. [Google Scholar]
- Jilla, C.D.; Miller, D.W. Multi-objective, Multidisciplinary Design Optimization Methodology for Distributed Satellite Systems. J. Spacecr. Rocket. 2004, 41, 1. [Google Scholar] [CrossRef]
- Jafarsalehi, A.; Zadeh, P.M.; Mirshams, M. Collaborative Optimization of Remote Sensing Small Satellite Mission Using Genetic Algorithms. Iran. J. Sci. Technol. Trans. Mech. Eng. 2012, 36, 117–128. [Google Scholar]
- Gordon, S.; McBride, B.J. Computer Program for Calculation of Complex Chemical Equilibrium Compositions and Applications. In NASA Reference Publication 1311; NASA: Washington, DC, USA, 1994. [Google Scholar]
- Cornelisse, J.; Schoyer, H.F.R.; Wakker, K.F. Rocket Propulsion & Spaceflight Dynamics; Pitman: San Francisco, CA, USA, 1979. [Google Scholar]
- Strawser, D.; Thangavelautham, J.; Dubowsky, S. A Passive Lithium Hydride-based Hydrogen Generator for Low Power Fuel Cells for Long-duration Sensor Networks. Int. J. Hydrog. Energy 2014, 39, 10216–10229. [Google Scholar] [CrossRef]
- Thangavelautham, J.; Strawser, D.; Dubowsky, S. The Design of Long-Life, High-Efficiency PEM fuel cell power supplies for low power sensor networks. Int. J. Hydrog. Energy 2017, 42, 20277–20296. [Google Scholar] [CrossRef]
- Nikitina, Z.K.; Rosolovskij, V.Y. Decomposition of Lithium Perchlorate Catalyzed by Oxygen Compounds of Lithium. Russ. J. Inorg. Chem. 1997, 42, 1252–1257. [Google Scholar]
- Micropumps. Available online: https://www.servoflo.com/images/PDF/APP-004-Fuel-Cells.pdf (accessed on 4 November 2021).
- Zener, C. The intrinsic inelasticity of large plates. Phys. Rev. 1941, 59, 669–673. [Google Scholar] [CrossRef]
- Boettcher, R.; Russell, A.; Mueller, P. Energy dissipation during impacts of spheres on plates: Investigation of developing elastic flexural waves. Int. J. Solids Struct. 2017, 106, 229–239. [Google Scholar] [CrossRef]
- Conn, A.R.; Gould, N.; Toint, P.L. A Globally Convergent Lagrangian Barrier Algorithm for Optimization with General Inequality Constraints and Simple Bounds. Math. Comput. 1996, 6, 261–288. [Google Scholar] [CrossRef]
- Goldberg, D.E.; Deb, K. A Comparison of Selection Schemes Used in Genetic Algorithms. Found. Genet. Algorithms 1991, 1, 69–93. [Google Scholar]
- Eshelman, L.J.; Schaffer, J.D. Real-Coded Genetic Algorithms and Interval-Schemata. Found. Genet. Algorithms 1993, 2, 187–202. [Google Scholar]
- Michalewicz, Z. Genetic Algorithms + Data Structures = Evolution Programs, 3rd ed.; Springer: Berlin, Germany, 1996. [Google Scholar]
- Kalita, H.; Thangavelautham, J. Automated Design of CubeSats using Evolutionary Algorithm for Trade Space Selection. Aerospace 2020, 7, 142. [Google Scholar] [CrossRef]
- Larminie, J.; Dicks, A. Fuel Cell Systems Explained, 2nd ed.; John Wiley & Sons Ltd: West Sussex, UK, 2003. [Google Scholar]
- Spiegel, C. PEM Fuel Cell Modeling and Simulation Using MATLAB; Elsevier: San Diego, CA, USA, 2008. [Google Scholar]
- Kalita, H.; Thangavelautham, J. Mobility, Power and Thermal control of SphereX for planetary exploration. In Proceedings of the AAS GN&C Conference, Breckenridge, CO, USA, 1–5 February 2020. [Google Scholar]
- Wong, J. Theory of Ground Vehicles, 3rd ed.; Wiley Interscience: New York, NY, USA, 2001. [Google Scholar]
- Kalita, H.; Jameson, T.M.; Stancu, G.; Thangavelautham, J. Design and Analysis of a Mechanical Hopping Mechanism Suited for Exploring Low-gravity Environments. In Proceedings of the IEEE Aerospace Conference, Big Sky, MT, USA, 7–14 March 2020. [Google Scholar]
Hydride | Hydrogen Weight Content |
---|---|
LiBH4 | 18.4% |
NaBH4 | 10.6% |
Be(BH2)4 | 20.8% |
NaAlH4 | 7.4% |
NaH | 4.1% |
CaH2 | 4.7% |
LiH | 12.5% |
Oxide | Oxygen Weight Content |
---|---|
NaClO3 | 45.1% |
BaO2 | 18.9% |
KClO4 | 46.2% |
KO2 | 45.0% |
LiClO4 | 60.1% |
BeCl2O8 | 61.5% |
Component | Material | (MPa) | (kg/m3) |
---|---|---|---|
Nozzle + Combustion chamber | Stainless Steel | 215 | 7700 |
Storage Tanks | Aluminum | 324 | 2780 |
Shell | Carbon fiber | 3500 | 2000 |
Subsystem | Variable | Scenario 1 | Scenario 2 |
---|---|---|---|
Fuel Cell | No. of cells, 𝓃 | 3 | 3 |
Current density, i | 194.38 (mA/cm2) | 194.38 (mA/cm2) | |
Voltage of each cell, V | 0.9146 (V) | 0.9146 (V) | |
Propulsion | Combustion pressure, pc | 3 (MPa) | 3 (MPa) |
103.57 (Pa) | 309.88 (Pa) | ||
4.2 | 4.06 | ||
50.06 | 50.03 | ||
0.826 (mm) | 1.2 (mm) | ||
30.2 (mm) | 26.5 (mm) | ||
109.8 (mm) | 94.5 (mm) | ||
4.6 (mm) | 5.0 (mm) | ||
5.8 (mm) | 6.4 (mm) | ||
24 (mm) | 24 (mm) | ||
Chemicals | 398.2 (g) | 251.1 (g) | |
745.8 (g) | 452.1 (g) | ||
872.9 (g) | 560.7 (g) | ||
34.5 (g) | 21.0 (g) | ||
Storage Tanks | 62.4 (g) | 45.1 (g) | |
37.8 (g) | 26.5 (g) | ||
57.3 (g) | 41.7 (g) | ||
53.0 (g) | 32.2 (g) | ||
46.1 (g) | 28.3 (g) | ||
12.8 (g) | 7.5 (g) | ||
Battery | Capacity, Q | 280 (mAh) | 198 (mAh) |
1 | 1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kalita, H.; Diaz-Flores, A.; Thangavelautham, J. Integrated Power and Propulsion System Optimization for a Planetary-Hopping Robot. Aerospace 2022, 9, 457. https://doi.org/10.3390/aerospace9080457
Kalita H, Diaz-Flores A, Thangavelautham J. Integrated Power and Propulsion System Optimization for a Planetary-Hopping Robot. Aerospace. 2022; 9(8):457. https://doi.org/10.3390/aerospace9080457
Chicago/Turabian StyleKalita, Himangshu, Alvaro Diaz-Flores, and Jekan Thangavelautham. 2022. "Integrated Power and Propulsion System Optimization for a Planetary-Hopping Robot" Aerospace 9, no. 8: 457. https://doi.org/10.3390/aerospace9080457
APA StyleKalita, H., Diaz-Flores, A., & Thangavelautham, J. (2022). Integrated Power and Propulsion System Optimization for a Planetary-Hopping Robot. Aerospace, 9(8), 457. https://doi.org/10.3390/aerospace9080457