The Role of Sodium-Glucose Cotransporter-2 Inhibition in Heart Failure with Preserved Ejection Fraction
Abstract
:1. Background
2. Transition into Cardiovascular Space
3. SGLT2 Inhibitors in Heart Failure with Preserved Ejection Fraction
4. Landmark Trials in HFpEF
4.1. EMPEROR-Preserved
4.2. DELIVER
5. Impact of SGLT2 Inhibitors on Clinical Symptoms in HFpEF
5.1. PRESERVED-HF
5.2. CHIEF-HF
6. Globally Approved SGLT2 Inhibitors
7. Study Comparison
8. Real World Evidence
9. SGLT2 Inhibitor Place in Therapy: HFpEF
10. Safety Considerations
11. Euglycemic Diabetic Ketoacidosis
12. Fournier’s Gangrene
13. Lower Limb Amputation
14. Patient Access Considerations
Prescribing Trends
15. Insurance Coverage and Affordability
16. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Hsia, D.S.; Grove, O.; Cefalu, W.T. An update on sodium-glucose co-transporter-2 inhibitors for the treatment of diabetes mellitus. Curr. Opin. Endocrinol. Diabetes Obes. 2017, 24, 73–79. [Google Scholar] [CrossRef] [PubMed]
- National Institute of Diabetes and Digestive and Kidney Diseases. Story of Discovery: SGLT2 Inhibitors: Harnessing the Kidneys to Help Treat Diabetes. Available online: https://www.niddk.nih.gov/news/archive/2016/story-discovery-sglt2-inhibitors-harnessing-kidneys-help-treat-diabetes#:~:text=The%20first%20SGLT2%20inhibitor%20to,Jardiance%C2%AE)%20in%20August%202014 (accessed on 26 May 2022).
- Zinman, B.; Wanner, C.; Lachin, J.M.; Fitchett, D.; Bluhmki, E.; Hantel, S.; Mattheus, M.; Devins, T.; Johansen, O.E.; Woerle, H.J.; et al. Empagliflozin, Cardiovascular Outcomes, and Mortality in Type 2 Diabetes. N. Engl. J. Med. 2015, 373, 2117–2128. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wiviott, S.D.; Raz, I.; Bonaca, M.P.; Mosenzon, O.; Kato, E.T.; Cahn, A.; Silverman, M.G.; Zelniker, T.A.; Kuder, J.F.; Murphy, S.A.; et al. Dapagliflozin and Cardiovascular Outcomes in Type 2 Diabetes. N. Engl. J. Med. 2019, 380, 347–357. [Google Scholar] [CrossRef] [PubMed]
- Neal, B.; Perkovic, V.; Mahaffey, K.W.; de Zeeuw, D.; Fulcher, G.; Erondu, N.; Shaw, W.; Law, G.; Desai, M.; Matthews, D.R.; et al. Canagliflozin and Cardiovascular and Renal Events in Type 2 Diabetes. N. Engl. J. Med. 2017, 377, 644–657. [Google Scholar] [CrossRef] [PubMed]
- Cannon, C.P.; Pratley, R.; Dagogo-Jack, S.; Mancuso, J.; Huyck, S.; Masiukiewicz, U.; Charbonnel, B.; Frederich, R.; Gallo, S.; Cosentino, F.; et al. Cardiovascular Outcomes with Ertugliflozin in Type 2 Diabetes. N. Engl. J. Med. 2020, 383, 1425–1435. [Google Scholar] [CrossRef]
- McMurray, J.J.V.; Solomon, S.D.; Inzucchi, S.E.; Kober, L.; Kosiborod, M.N.; Martinez, F.A.; Ponikowski, P.; Sabatine, M.S.; Anand, I.S.; Belohlavek, J.; et al. Dapagliflozin in Patients with Heart Failure and Reduced Ejection Fraction. N. Engl. J. Med. 2019, 381, 1995–2008. [Google Scholar] [CrossRef] [Green Version]
- U.S. Food & Drug Administration. FDA News Release: FDA Approves New Treatment for a Type of Heart Failure. Available online: https://www.fda.gov/news-events/press-announcements/fda-approves-new-treatment-type-heart-failure (accessed on 1 June 2022).
- Packer, M.; Anker, S.D.; Butler, J.; Filippatos, G.; Pocock, S.J.; Carson, P.; Januzzi, J.; Verma, S.; Tsutsui, H.; Brueckmann, M.; et al. Cardiovascular and Renal Outcomes with Empagliflozin in Heart Failure. N. Engl. J. Med. 2020, 383, 1413–1424. [Google Scholar] [CrossRef]
- Zelniker, T.A.; Wiviott, S.D.; Raz, I.; Im, K.; Goodrich, E.L.; Bonaca, M.P.; Mosenzon, O.; Kato, E.T.; Cahn, A.; Furtado, R.H.M.; et al. SGLT2 inhibitors for primary and secondary prevention of cardiovascular and renal outcomes in type 2 diabetes: A systematic review and meta-analysis of cardiovascular outcome trials. Lancet 2019, 393, 31–39. [Google Scholar] [CrossRef]
- Heidenreich, P.A.; Bozkurt, B.; Aguilar, D.; Allen, L.A.; Byun, J.J.; Colvin, M.M.; Deswal, A.; Drazner, M.H.; Dunlay, S.M.; Evers, L.R.; et al. 2022 AHA/ACC/HFSA Guideline for the Management of Heart Failure: A Report of the American College of Cardiology/American Heart Association Joint Committee on Clinical Practice Guidelines. Circulation 2022, 145, e895–e1032. [Google Scholar] [CrossRef]
- Anker, S.D.; Butler, J.; Filippatos, G.; Ferreira, J.P.; Bocchi, E.; Bohm, M.; Brunner-La Rocca, H.P.; Choi, D.J.; Chopra, V.; Chuquiure-Valenzuela, E.; et al. Empagliflozin in Heart Failure with a Preserved Ejection Fraction. N. Engl. J. Med. 2021, 385, 1451–1461. [Google Scholar] [CrossRef]
- Nassif, M.E.; Windsor, S.L.; Borlaug, B.A.; Kitzman, D.W.; Shah, S.J.; Tang, F.; Khariton, Y.; Malik, A.O.; Khumri, T.; Umpierrez, G.; et al. The SGLT2 inhibitor dapagliflozin in heart failure with preserved ejection fraction: A multicenter randomized trial. Nat. Med. 2021, 27, 1954–1960. [Google Scholar] [CrossRef]
- Bhatt, D.L.; Szarek, M.; Steg, P.G.; Cannon, C.P.; Leiter, L.A.; McGuire, D.K.; Lewis, J.B.; Riddle, M.C.; Voors, A.A.; Metra, M.; et al. Sotagliflozin in Patients with Diabetes and Recent Worsening Heart Failure. N. Engl. J. Med. 2021, 384, 117–128. [Google Scholar] [CrossRef]
- Echouffo-Tcheugui, J.B.; Lewsey, S.C.; Weiss, R.G. SGLT2 inhibitors: Further evidence for heart failure with preserved ejection fraction as a metabolic disease? J. Clin. Investig. 2021, 131, e156309. [Google Scholar] [CrossRef]
- Packer, M. Differential Pathophysiological Mechanisms in Heart Failure with a Reduced or Preserved Ejection Fraction in Diabetes. JACC Heart Fail. 2021, 9, 535–549. [Google Scholar] [CrossRef]
- Verma, S.; McMurray, J.J.V. SGLT2 inhibitors and mechanisms of cardiovascular benefit: A state-of-the-art review. Diabetologia 2018, 61, 2108–2117. [Google Scholar] [CrossRef] [Green Version]
- Cao, Y.; Li, P.; Li, Y.; Han, Y. Sodium-glucose cotransporter-2 inhibitors in heart failure: An updated meta-analysis. ESC Heart Fail. 2022, 9, 1942–1953. [Google Scholar] [CrossRef]
- Solomon, S.D.; de Boer, R.A.; DeMets, D.; Hernandez, A.F.; Inzucchi, S.E.; Kosiborod, M.N.; Lam, C.S.P.; Martinez, F.; Shah, S.J.; Lindholm, D.; et al. Dapagliflozin in heart failure with preserved and mildly reduced ejection fraction: Rationale and design of the DELIVER trial. Eur. J. Heart Fail. 2021, 23, 1217–1225. [Google Scholar] [CrossRef]
- Ferreira, J.P.; Butler, J.; Zannad, F.; Filippatos, G.; Schueler, E.; Steubl, D.; Zeller, C.; Januzzi, J.L.; Pocock, S.; Packer, M.; et al. Mineralocorticoid Receptor Antagonists and Empagliflozin in Patients with Heart Failure and Preserved Ejection Fraction. J. Am. Coll. Cardiol. 2022, 79, 1129–1137. [Google Scholar] [CrossRef]
- Solomon, S.D.; McMurray, J.J.V.; Claggett, B.; Rudolf, A.; de Boer, M.D.; DeMets, D.; Hernandez, A.F.; Inzucchi, S.; Kosiborod, M.N.; Lam, C.S.P.; et al. Dapagliflozin in Heart Failure with Mildly Reduced or Preserved Ejection Fraction. N. Engl. J. Med. 2022, 387, 1089–1098. [Google Scholar] [CrossRef]
- Solomon, S.D.; Vaduganathan, M.; Claggett, B.L.; de Boer, R.A.; DeMets, D.; Hernandez, A.F.; Inzucchi, S.E.; Kosiborod, M.N.; Lam, C.S.P.; Martinez, F.; et al. Baseline Characteristics of Patients with HF with Mildly Reduced and Preserved Ejection Fraction: DELIVER Trial. JACC Heart Fail. 2022, 10, 184–197. [Google Scholar] [CrossRef]
- Spertus, J.A.; Jones, P.G.; Sandhu, A.T.; Arnold, S.V. Interpreting the Kansas City Cardiomyopathy Questionnaire in Clinical Trials and Clinical Care: JACC State-of-the-Art Review. J. Am. Coll. Cardiol. 2020, 76, 2379–2390. [Google Scholar] [CrossRef] [PubMed]
- Spertus, J.A.; Birmingham, M.C.; Nassif, M.; Damaraju, C.V.; Abbate, A.; Butler, J.; Lanfear, D.E.; Lingvay, I.; Kosiborod, M.N.; Januzzi, J.L. The SGLT2 inhibitor canagliflozin in heart failure: The CHIEF-HF remote, patient-centered randomized trial. Nat. Med. 2022, 28, 809–813. [Google Scholar] [CrossRef] [PubMed]
- Zynquista (Sotagluflozin). Guidehouse Germany GmbH (Berlin, Germany). Available online: https://www.ema.europa.eu/en/documents/product-information/zynquista-epar-product-information_en.pdf (accessed on 20 August 2022).
- Akasaka, H.; Sugimoto, K.; Shintani, A.; Taniuchi, S.; Yamamoto, K.; Iwakura, K.; Okamura, A.; Takiuchi, S.; Fukuda, M.; Kamide, K.; et al. Effects of ipragliflozin on left ventricular diastolic function in patients with type 2 diabetes and heart failure with preserved ejection fraction: The EXCEED randomized controlled multicenter study. Geriatr. Gerontol. Int. 2022, 22, 298–304. [Google Scholar] [CrossRef] [PubMed]
- Ejiri, K.; Miyoshi, T.; Kihara, H.; Hata, Y.; Nagano, T.; Takaishi, A.; Toda, H.; Nanba, S.; Nakamura, Y.; Akagi, S.; et al. Effect of Luseogliflozin on Heart Failure with Preserved Ejection Fraction in Patients with Diabetes Mellitus. J. Am. Heart Assoc. 2020, 9, e015103. [Google Scholar] [CrossRef] [PubMed]
- Anker, S.D.; Butler, J.; Filippatos, G.; Shahzeb Khan, M.; Ferreira, J.P.; Bocchi, E.; Bohm, M.; Brunner-La Rocca, H.P.; Choi, D.J.; Chopra, V.; et al. Baseline characteristics of patients with heart failure with preserved ejection fraction in the EMPEROR-Preserved trial. Eur. J. Heart Fail. 2020, 22, 2383–2392. [Google Scholar] [CrossRef]
- Thorvaldsen, T.; Ferrannini, G.; Mellbin, L.; Benson, L.; Cosentino, F.; McMurray, J.J.V.; Dahlstrom, U.; Lund, L.H.; Savarese, G. Eligibility for Dapagliflozin and Empagliflozin in a Real-world Heart Failure Population. J. Card. Fail. 2022, 28, 1050–1062. [Google Scholar] [CrossRef]
- Voors, A.A.; Angermann, C.E.; Teerlink, J.R.; Collins, S.P.; Kosiborod, M.; Biegus, J.; Ferreira, J.P.; Nassif, M.E.; Psotka, M.A.; Tromp, J.; et al. The SGLT2 inhibitor empagliflozin in patients hospitalized for acute heart failure: A multinational randomized trial. Nat. Med. 2022, 28, 568–574. [Google Scholar] [CrossRef]
- McDonagh, T.A.; Metra, M.; Adamo, M.; Gardner, R.S.; Baumbach, A.; Bohm, M.; Burri, H.; Butler, J.; Celutkiene, J.; Chioncel, O.; et al. 2021 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure. Eur. Heart J. 2021, 42, 3599–3726. [Google Scholar] [CrossRef]
- Boehringer Ingelheim. Jardiance. Available online: https://docs.boehringer-ingelheim.com/Prescribing%20Information/PIs/Jardiance/jardiance.pdf (accessed on 2 September 2022).
- Boehringer Ingelheim. Jardiance. European Medicines Association Prescribing Information. Available online: https://www.ema.europa.eu/en/documents/product-information/jardiance-epar-product-information_en.pdf (accessed on 2 September 2022).
- McGovern, A.P.; Hogg, M.; Shields, B.M.; Sattar, N.A.; Holman, R.R.; Pearson, E.R.; Hattersley, A.T.; Jones, A.G.; Dennis, J.M.; Consortium, M. Risk factors for genital infections in people initiating SGLT2 inhibitors and their impact on discontinuation. BMJ Open Diabetes Res. Care 2020, 8, e001238. [Google Scholar] [CrossRef]
- U.S. Food and Drug Administration. Drug Safety Communication: FDA Warns that SGLT2 Inhibitors for Diabetes May Result in a Serious Condition of Too Much Acid in the Blood. 15 May 2015. Available online: http://www.fda.gov/downloads/Drugs/DrugSafety/UCM446954.pdf. (accessed on 7 June 2022).
- Rosenstock, J.; Ferrannini, E. Euglycemic Diabetic Ketoacidosis: A Predictable, Detectable, and Preventable Safety Concern with SGLT2 Inhibitors. Diabetes Care 2015, 38, 1638–1642. [Google Scholar] [CrossRef]
- Blau, J.E.; Tella, S.H.; Taylor, S.I.; Rother, K.I. Ketoacidosis associated with SGLT2 inhibitor treatment: Analysis of FAERS data. Diabetes Metab Res. Rev. 2017, 33, e2924. [Google Scholar] [CrossRef]
- Dutta, S.; Kumar, T.; Singh, S.; Ambwani, S.; Charan, J.; Varthya, S.B. Euglycemic diabetic ketoacidosis associated with SGLT2 inhibitors: A systematic review and quantitative analysis. J. Fam. Med. Prim. Care 2022, 11, 927–940. [Google Scholar] [CrossRef]
- U.S. Food and Drug Administration. Drug Safety Communication: FDA Warns about Rare Occurrences of a Serious Infection of the Genital Area with SGLT2 Inhibitors for Diabetes. 29 August 2018. Available online: https://www.fda.gov/drugs/drug-safety-and-availability/fda-warns-about-rare-occurrences-serious-infection-genital-area-sglt2-inhibitors-diabetes (accessed on 26 July 2022).
- Silverii, G.A.; Dicembrini, I.; Monami, M.; Mannucci, E. Fournier’s gangrene and sodium-glucose co-transporter-2 inhibitors: A meta-analysis of randomized controlled trials. Diabetes Obes. Metab. 2020, 22, 272–275. [Google Scholar] [CrossRef]
- Yang, J.Y.; Wang, T.; Pate, V.; Buse, J.B.; Sturmer, T. Real-world evidence on sodium-glucose cotransporter-2 inhibitor use and risk of Fournier’s gangrene. BMJ Open Diabetes Res. Care 2020, 8, e000985. [Google Scholar] [CrossRef] [Green Version]
- Heyward, J.; Mansour, O.; Olson, L.; Singh, S.; Alexander, G.C. Association between sodium-glucose cotransporter 2 (SGLT2) inhibitors and lower extremity amputation: A systematic review and meta-analysis. PLoS ONE 2020, 15, e0234065. [Google Scholar] [CrossRef]
- Ryan, P.B.; Buse, J.B.; Schuemie, M.J.; DeFalco, F.; Yuan, Z.; Stang, P.E.; Berlin, J.A.; Rosenthal, N. Comparative effectiveness of canagliflozin, SGLT2 inhibitors and non-SGLT2 inhibitors on the risk of hospitalization for heart failure and amputation in patients with type 2 diabetes mellitus: A real-world meta-analysis of 4 observational databases (OBSERVE-4D). Diabetes Obes. Metab. 2018, 20, 2585–2597. [Google Scholar] [CrossRef]
- Paul, S.K.; Bhatt, D.L.; Montvida, O. The association of amputations and peripheral artery disease in patients with type 2 diabetes mellitus receiving sodium-glucose cotransporter type-2 inhibitors: Real-world study. Eur. Heart J. 2021, 42, 1728–1738. [Google Scholar] [CrossRef]
- Adhikari, S.; Kumar, R.; Driver, E.M.; Perleberg, T.D.; Yanez, A.; Johnston, B.; Halden, R.U. Mass trends of parabens, triclocarban and triclosan in Arizona wastewater collected after the 2017 FDA ban on antimicrobials and during the COVID-19 pandemic. Water Res. 2022, 222, 118894. [Google Scholar] [CrossRef]
- Sangha, V.; Lipska, K.; Lin, Z.; Inzucchi, S.E.; McGuire, D.K.; Krumholz, H.M.; Khera, R. Patterns of Prescribing Sodium-Glucose Cotransporter-2 Inhibitors for Medicare Beneficiaries in the United States. Circ. Cardiovasc. Qual. Outcomes 2021, 14, e008381. [Google Scholar] [CrossRef]
- Hamid, A.; Vaduganathan, M.; Oshunbade, A.A.; Ayyalasomayajula, K.K.; Kalogeropoulos, A.P.; Lien, L.F.; Shafi, T.; Hall, M.E.; Butler, J. Antihyperglycemic Therapies with Expansions of US Food and Drug Administration Indications to Reduce Cardiovascular Events: Prescribing Patterns within an Academic Medical Center. J. Cardiovasc. Pharmacol. 2020, 76, 313–320. [Google Scholar] [CrossRef]
- Dave, C.V.; Schneeweiss, S.; Wexler, D.J.; Brill, G.; Patorno, E. Trends in Clinical Characteristics and Prescribing Preferences for SGLT2 Inhibitors and GLP-1 Receptor Agonists, 2013–2018. Diabetes Care 2020, 43, 921–924. [Google Scholar] [CrossRef] [PubMed]
- Hinton, W.; Feher, M.D.; Munro, N.; Joy, M.; de Lusignan, S. Prescribing sodium-glucose co-transporter-2 inhibitors for type 2 diabetes in primary care: Influence of renal function and heart failure diagnosis. Cardiovasc. Diabetol. 2021, 20, 130. [Google Scholar] [CrossRef] [PubMed]
- Zhuo, M.; Li, J.; Buckley, L.F.; Tummalapalli, S.L.; Mount, D.B.; Steele, D.J.R.; Lucier, D.J.; Mendu, M.L. Prescribing Patterns of Sodium-Glucose Cotransporter-2 Inhibitors in Patients with CKD: A Cross-Sectional Registry Analysis. Kidney360 2022, 3, 455–464. [Google Scholar] [CrossRef] [PubMed]
- Cohen, R.A.; Kirzinger, W.K.; Gindi, R.M. Strategies Used by Adults to Reduce Their Prescription Drug Costs. NCHS Data Brief. No. 119; April 2013. Available online: https://www.cdc.gov/nchs/data/databriefs/db119.pdf (accessed on 10 October 2022).
- Tummalapalli, S.L.; Montealegre, J.L.; Warnock, N.; Green, M.; Ibrahim, S.A.; Estrella, M.M. Coverage, Formulary Restrictions, and Affordability of Sodium-Glucose Cotransporter 2 Inhibitors by US Insurance Plan Types. JAMA Health Forum 2021, 2, e214205. [Google Scholar] [CrossRef] [PubMed]
- Luo, J.; Feldman, R.; Rothenberger, S.D.; Hernandez, I.; Gellad, W.F. Coverage, Formulary Restrictions, and Out-of-Pocket Costs for Sodium-Glucose Cotransporter 2 Inhibitors and Glucagon-Like Peptide 1 Receptor Agonists in the Medicare Part D Program. JAMA Netw. Open 2020, 3, e2020969. [Google Scholar] [CrossRef] [PubMed]
- Warden, B.A.; Purnell, J.Q.; Duell, P.B.; Craigan, C.; Osborn, D.; Cabot, E.; Fazio, S. Real-world utilization of pharmacotherapy with new evidence-based cardiovascular indications in an academic preventive cardiology practice. Am. J. Prev. Cardiol. 2021, 5, 100144. [Google Scholar] [CrossRef]
- Fernandez-Lazaro, C.I.; Adams, D.P.; Fernandez-Lazaro, D.; Garcia-Gonzalez, J.M.; Caballero-Garcia, A.; Miron-Canelo, J.A. Medication adherence and barriers among low-income, uninsured patients with multiple chronic conditions. Res. Social Adm, Pharm. 2019, 15, 744–753. [Google Scholar] [CrossRef]
- Nelson, D.R.; Heaton, P.; Hincapie, A.; Ghodke, S.; Chen, J. Differential Cost-Sharing Undermines Treatment Adherence to Combination Therapy: Evidence from Diabetes Treatment. Diabetes Ther. 2021, 12, 2149–2164. [Google Scholar] [CrossRef]
- Hung, A.; Blalock, D.V.; Miller, J.; McDermott, J.; Wessler, H.; Oakes, M.M.; Reed, S.D.; Bosworth, H.B.; Zullig, L.L. Impact of financial medication assistance on medication adherence: A systematic review. J. Manag. Care Spec. Pharm. 2021, 27, 924–935. [Google Scholar] [CrossRef]
- Ward, L.M.; Pendergrass, D.B.; Chima, C.C.; Thorpe, R.J., Jr.; Bruce, M.A.; Blackburn, H.F.; Palombo, C.F.; Beech, B.M. Access to medications among adults with type 2 diabetes using pharmacy- or clinic-based medication assistance programs: A systematic review. J. Am. Pharm. Assoc. 2020, 60, e411–e421. [Google Scholar] [CrossRef]
Generic Name | Brand Name | Dose (mg) | Frequency | FDA-Approved Indication(s) |
---|---|---|---|---|
Canagliflozin | Invokana® | 100, 300 | Once daily | Type 2 diabetes mellitus |
Dapagliflozin | Farxiga® | 5, 10 | Type 2 diabetes mellitus, Chronic kidney disease, Heart failure with reduced ejection fraction | |
Empagliflozin | Jardiance® | 10, 25 | Type 2 diabetes mellitus, Heart failure with preserved or reduced ejection fraction | |
Ertugliflozin | Steglatro® | 5, 15 | Type 2 diabetes mellitus |
Characteristic | EMPEROR-Preserved [12] | PRESERVED-HF [13] | SOLOIST -WHF [14] | DELIVER [21,22] | CHIEF-HF [24] |
---|---|---|---|---|---|
Empagliflozin (n = 2997) | Dapagliflozin (n = 162) | Sotagliflozin (n = 608) | Dapagliflozin (n = 3131) | Canagliflozin (n = 222) | |
Age—yr | 71.8 ± 9.3 a | 69 (64–77) b | 69 (63–76) b | 71.8 ± 9.6 a | 62.9 ± 13.19 a |
Female sex c | 1338 (44.6) | 92 (56.8) | 198 (32.6) | 1364 (43.6) | 104 (46.8) |
Male sex c | |||||
White race c | 2286 (76.3) | 108 (67.1) | 567 (93.3) | 2214 (70.7) | 182 (82.0) |
Black or African American race c | 133 (4.4) | 50 (31.1) | 25 (4.1) | 81 (2.6) | 35 (15.8) |
North America Location c | 360 (12.0) | 39 (6.4) | 428 (13.7) | ||
NYHA I c | 3 (0.1) | ||||
NYHA II c | 2432 (81.1) | 96 (59.3) | 2314 (73.9) | ||
NYHA III c | 552 (18.4) | 65 (40.1) | 807 (25.8) | ||
NYHA IV c | 10 (0.3) | 10 (0.3) | |||
LVEF—% | 54.3 ± 8.8 a | 60 (55–65) b | 35 (28–47) b | 54.0 ± 8.6 a | |
LVEF > 40% to <50% c | 995 (33.2) | ||||
LVEF < 50% c | 481 (79.1) | 1067 (34.1) | |||
LVEF ≥ 50% to <60% c | 1028 (34.3) | 1133 (36.2) | |||
LVEF ≥ 60% c | 974 (32.5) | 931 (29.7) | |||
NT-proBNP—pg/mL b | 994 (501–1740) | 641 (373–1210) | 1816.8 (854.7–3658.5) | ||
Hospitalization for heart failure during previous 12 months c | 699 (23.3) | ||||
Previous hospitalization for heart failure c | 98 (60.5) | ||||
Diabetes mellitus history c | 1466 (48.9) | 90 (55.6) | 1401 (44.7) | 66 (29.7) | |
eGFR—mL/min/1.73 m2 | 60.6 ± 19.8 a | 56 (42–69) b | 49.2 (39.5–61.2) b | 61 ± 19 a | |
eGFR < 60 mL/min/1.73 m2,d | 1504/2997 (50.2) | ||||
eGFR ≥ 60 mL/min/1.73 m2,c | 3138 (50.1) |
Drug Class | PRESERVED-HF [13] | SOLOIST-WHF [14] | DELIVER [21,22] | EMPEROR-Preserved [28] |
---|---|---|---|---|
ACEi, % | 61 a | 41 | 33 | 40 |
ARB, % | 42 | 34 | 39 | |
ARNI, % | 2 | 17 | 4 | 2 |
MRA, % | 36 | 65 | 39 | 37 |
Composite of CV Death or HF Hospitalization | Composite of Worsening HF (Hospitalization or Urgent Visit) or CV Death | Composite of CV Death and HF Hospitalizations and Urgent Visits | First HF Hospitalization | CV Death | Any Death | |
---|---|---|---|---|---|---|
EMPEROR-Preserved [12] (N = 5988) | HR 0.79; 95% CI, 0.69–0.90; p < 0.001 | HR 0.71; 95% CI, 0.60–0.83 | HR 0.91; 95% CI, 0.76–1.09 | HR 1.00; 95% CI, 0.87–1.15 | ||
SOLOIST-WHF [14] (N = 1222) | HR 0.67; 95% CI, 0.52–0.85; p < 0.001 | HR 0.84; 95% CI, 0.58–1.22 | HR 0.82; 95% CI, 0.59–1.14 | |||
DELIVER [21] (N = 6263) | HR 0.82; 95% CI, 0.73–0.92; p < 0.001 | HR 0.88; 95% CI, 0.74–1.05 | HR 0.94; 95% CI, 0.83–1.07 |
KCCQ-CS at 12 Weeks | KCCQ TSS at 12 Weeks | |
---|---|---|
PRESERVED-HF [13] (N = 324) | Effect size, 5.8 points; 95% CI, 2.3–9.2; p = 0.001 | |
CHIEF-HF [24] (N = 448) | Mean difference, 4.3 points; 95% CI, 0.8–7.8; p = 0.016 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Brust-Sisti, L.; Rudawsky, N.; Gonzalez, J.; Brunetti, L. The Role of Sodium-Glucose Cotransporter-2 Inhibition in Heart Failure with Preserved Ejection Fraction. Pharmacy 2022, 10, 166. https://doi.org/10.3390/pharmacy10060166
Brust-Sisti L, Rudawsky N, Gonzalez J, Brunetti L. The Role of Sodium-Glucose Cotransporter-2 Inhibition in Heart Failure with Preserved Ejection Fraction. Pharmacy. 2022; 10(6):166. https://doi.org/10.3390/pharmacy10060166
Chicago/Turabian StyleBrust-Sisti, Lindsay, Nicole Rudawsky, Jimmy Gonzalez, and Luigi Brunetti. 2022. "The Role of Sodium-Glucose Cotransporter-2 Inhibition in Heart Failure with Preserved Ejection Fraction" Pharmacy 10, no. 6: 166. https://doi.org/10.3390/pharmacy10060166
APA StyleBrust-Sisti, L., Rudawsky, N., Gonzalez, J., & Brunetti, L. (2022). The Role of Sodium-Glucose Cotransporter-2 Inhibition in Heart Failure with Preserved Ejection Fraction. Pharmacy, 10(6), 166. https://doi.org/10.3390/pharmacy10060166