Risk Factors for Bloodstream Infections Due to ESBL-Producing Escherichia coli, Klebsiella spp., and Proteus mirabilis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Study Objectives
2.3. Definitions
2.4. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Tamma, P.D.; Aitken, S.L.; Bonomo, R.A.; Mathers, A.J.; van Duin, D.; Clancy, C.J. Infectious Diseases Society of America 2022 guidance on the treatment of extended-spectrum β-lactamase producing Enterobacterales (ESBL-E), carbapenem-resistant Enterobacterales (CRE), and Pseudomonas aeruginosa with difficult-to-treat resistance (DTR-P. aeruginosa). Clin. Infect. Dis. 2022, 75, 187–212. [Google Scholar] [CrossRef] [PubMed]
- Morrissey, I.; Hackel, M.; Badal, R.; Bouchillon, S.; Hawser, S.; Biedenbach, D. A review of ten years of the study for monitoring antimicrobial resistance trends (SMART) from 2002 to 2011. Pharmaceuticals 2013, 6, 1335–1346. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Castanheira, M.; Farrell, S.E.; Deshpande, L.M.; Mendes, R.E.; Jones, R.N. Prevalence of β-lactamase-encoding genes among Enterobacteriaceae bacteremia isolates collected in 26 U.S. hospitals: Report from the sentry antimicrobial surveillance progrAm. (2010). Antimicrob. Agents Chemother. 2013, 57, 3012–3020. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dhillon, R.H.P.; Clark, J. ESBLs: A clear and present danger? Crit. Care Res. Pract. 2012, 2012, 625170. [Google Scholar] [CrossRef]
- Raphael, E.; Glymour, M.M.; Chambers, H.F. Trends in prevalence of extended-spectrum beta-lactamase-producing Escherichia coli isolated from patients with community- and healthcare-associated bacteriuria: Results from 2014 to 2020 in an urban safety-net healthcare system. Antimicrob. Resist. Infect. Control 2021, 10, 118. [Google Scholar] [CrossRef]
- CDC. COVID-19: U.S. Impact on Antimicrobial Resistance, Special Report 2022; U.S. Department of Health and Human Services; CDC: Atlanta, GA, USA, 2022. Available online: https://www.cdc.gov/drugresistance/covid19.html (accessed on 10 February 2023).
- Freeman, J.T.; McBride, S.J.; Nisbet, M.S.; Gamble, G.D.; Williamson, D.A.; Taylor, S.L.; Holland, D.J. Bloodstream infection with extended-spectrum beta-lactamase-producing Enterobacteriaceae at a tertiary care hospital in New Zealand: Risk factors and outcomes. Int. J. Infect. Dis. 2012, 16, e371–e374. [Google Scholar] [CrossRef] [Green Version]
- Melzer, M.; Petersen, I. Mortality following bacteraemic infection caused by extended spectrum beta-lactamase (ESBL) producing E. coli compared to non-ESBL producing E. coli. J. Infect. 2007, 55, 254–259. [Google Scholar] [CrossRef]
- Paterson, D.L.; Bonomo, R.A. Extended-spectrum β-lactamases: A clinical update. Clin. Microbiol. Rev. 2005, 18, 657–686. [Google Scholar] [CrossRef] [Green Version]
- McLaughlin, M.; Advincula, M.R.; Malczynski, M.; Qi, C.; Bolon, M.; Scheetz, M.H. Correlations of antibiotic use and carbapenem resistance in Enterobacteriaceae. Antimicrob. Agents Chemother. 2013, 57, 5131–5133. [Google Scholar] [CrossRef] [Green Version]
- van Loon, K.; Voor in ‘t holt, A.F.; Vos, M.C. A systematic review and meta-analyses of the clinical epidemiology of carbapenem-resistant Enterobacteriaceae. Antimicrob. Agents Chemother. 2017, 62, e01730-17. [Google Scholar] [CrossRef] [Green Version]
- Chopra, T.; Marchaim, D.; Johnson, P.C.; Chalana, I.K.; Tamam, Z.; Mohammed, M.; Alkatib, S.; Tansek, R.; Chaudhry, K.; Zhao, J.J.; et al. Risk factors for bloodstreAm. infection caused by extended-spectrum β-lactamase–producing Escherichia coli and Klebsiella pneumoniae: A focus on antimicrobials including cefepime. Am. J. Infect. Control 2015, 43, 719–723. [Google Scholar] [CrossRef]
- Kaya, O.; Akcam, F.Z.; Gonen, I.; Unal, O.; Ceylan, T. Risk factors for bacteremia due to extended-spectrum beta-lactamase-producing Escherichia coli in a Turkish hospital. J. Infect. Dev. Ctries 2013, 7, 507–512. [Google Scholar] [CrossRef] [Green Version]
- Kuster, S.P.; Hasse, B.; Huebner, V.; Bansal, V.; Zbinden, R.; Ruef, C.; Ledergerber, B. and Weber, R. Risks factors for infections with extended-spectrum beta-lactamase-producing Escherichia coli and Klebsiella pneumoniae at a tertiary care university hospital in Switzerland. Infection 2010, 38, 33–40. [Google Scholar] [CrossRef] [Green Version]
- Wu, U.I.; Yang, C.S.; Chen, W.C.; Chen, Y.C.; Chang, S.C. Risk factors for bloodstreAm. infections due to extended-spectrum β-lactamase-producing Escherichia coli. J. Microbiol. Immunol. Infect. 2010, 43, 310–316. [Google Scholar] [CrossRef] [Green Version]
- Silva, N.; Oliveira, M.; Bandeira, A.C.; Brites, C. Risk factors for infection by extended-spectrum beta-lactamase producing Klebsiella pneumoniae in a tertiary hospital in Salvador, Brazil. Braz. J. Infect. Dis. 2006, 10, 191–193. [Google Scholar] [CrossRef] [Green Version]
- Harris, P.A.; Taylor, R.; Thielke, R.; Payne, J.; Gonzalez, N.; Conde, J.G. Research electronic data capture (REDCap)—A metadata-driven methodology and workflow process for providing translational research informatics support. J. Biomed. Inform. 2009, 42, 377–381. [Google Scholar] [CrossRef] [Green Version]
- Augustine, M.; Testerman, T.; Justo, J.; Bookstaver, P.; Kohn, J.; Albrecht, H.; Al-Hasan, M. Clinical risk score for prediction of extended-spectrum β-lactamase–producing Enterobacteriaceae in bloodstreAm. isolates. Infect. Control Hosp. Epidemiol. 2017, 38, 266–272. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Holmbom, M.; Möller, V.; Kristinsdottir, L.; Nilsson, M.; Rashid, M.U.; Fredrikson, M.; Berglund, B.; Östholm Balkhed, Å. Risk factors and outcome due to extended-spectrum β-lactamase-producing uropathogenic Escherichia coli in community-onset bloodstreAm. infections: A ten-year cohort study in Sweden. PLoS ONE 2022, 17, e0277054. [Google Scholar] [CrossRef] [PubMed]
- Doi, Y.; Park, Y.S.; Rivera, J.I.; Adams-Haduch, J.M.; Hingwe, A.; Sordillo, E.M.; Lewis, J.S., 2nd; Howard, W.J.; Johnson, L.E.; Polsky, B.; et al. Community-associated extended-spectrum β-Lactamase–producing Escherichia coli infection in the United States. Clin. Infect. Dis. 2013, 56, 641–648. [Google Scholar] [CrossRef]
- Kassakian, S.Z.; Mermel, L.A. Changing epidemiology of infections due to extended spectrum beta-lactamase producing bacteria. Antimicrob. Resist. Infect. Control 2014, 3, 9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- CDC. Core Elements of Hospital Antibiotic Stewardship Programs; US Department of Health and Human Services; CDC: Atlanta, GA, USA, 2019. Available online: https://www.cdc.gov/antibiotic-use/core-elements/hospital.html (accessed on 30 March 2023).
- Rodríguez-Baño, J.; Navarro, M.D.; Retamar, P.; Picón, E.; Pascual, Á. Extended-Spectrum Beta-Lactamases–Red Española de Investigación en Patología Infecciosa/Grupo de Estudio de Infección Hospitalaria Group. β-Lactam/β-lactAm. inhibitor combinations for the treatment of bacteremia due to extended-spectrum β-lactamase-producing Escherichia coli: A post hoc analysis of prospective cohorts. Clin. Infect. Dis. 2012, 54, 167–174. [Google Scholar] [CrossRef] [PubMed]
- Tamma, P.D.; Han, J.H.; Rock, C.; Harris, A.D.; Lautenbach, E.; Hsu, A.J.; Avdic, E.; Cosgrove, S.E. Antibacterial Resistance Leadership Group. Carbapenem therapy is associated with improved survival compared with piperacillin-tazobactAm. for patients with extended-spectrum β-lactamase bacteremia. Clin. Infect. Dis. 2015, 60, 1319–1325. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Harris, P.N.A.; Tambyah, P.A.; Lye, D.C.; Mo, Y.; Lee, T.H.; Yilmaz, M.; Alenazi, T.H.; Arabi, Y.; Falcone, M.; Bassetti, M.; et al. MERINO Trial Investigators and the Australasian Society for Infectious Disease Clinical Research Network (ASID-CRN). Effect of piperacillin-tazobactAm. vs meropenem on 30-day mortality for patients with E coli or Klebsiella pneumoniae bloodstreAm. infection and ceftriaxone resistance: A randomized clinical trial. JAMA 2018, 320, 984–994. [Google Scholar] [CrossRef] [Green Version]
- Wang, R.; Cosgrove, S.E.; Tschudin-Sutter, S.; Han, J.H.; Turnbull, A.E.; Hsu, A.J.; Avdic, E.; Carroll, K.C.; Tamma, P.D. Cefepime therapy for cefepime-susceptible extended-spectrum β-lactamase-producing Enterobacteriaceae bacteremia. Open Forum Infect. Dis. 2016, 3, ofw132. [Google Scholar] [CrossRef] [Green Version]
- Lee, N.Y.; Lee, C.C.; Huang, W.H.; Tsui, K.C.; Hsueh, P.R.; Ko, W.C. Cefepime therapy for monomicrobial bacteremia caused by cefepime-susceptible extended-spectrum beta-lactamase–producing Enterobacteriaceae: MIC matters. Clin. Infect. Dis. 2013, 56, 488–495. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vu, C.H.; Venugopalan, V.; Santevecchi, B.A.; Voils, S.A.; Ramphal, R.; Cherabuddi, K.; DeSear, K. Re-evaluation of cefepime or piperacillin-tazobactAm. to decrease use of carbapenems in extended-spectrum beta-lactamase-producing Enterobacterales bloodstream infections (REDUCE-BSI). Antimicrob. Steward. Healthc. Epidemiol. 2022, 2, e39. [Google Scholar] [CrossRef]
- Frescas, B.E.; McCoy, C.M.; Kirby, J.; Bowden, R.; Mercuro, N.J. Outcomes associated with empiric cefepime for bloodstreAm. infections caused by ceftriaxone-resistant, cefepime-susceptible Escherichia coli and Klebsiella pneumoniae. Int. J. Antimicrob. Agents 2023, 61, 106762. [Google Scholar] [CrossRef]
- McCarthy, L.; Colley, P.; Nguyen, H.L.; Berhe, M. Impact of pharmacist intervention in response to automated molecular diagnostic tests of blood culture results. J. Pharm. Pract. 2022, 35, 47–53. [Google Scholar] [CrossRef]
- Shogbon, A.O.; Lundquist, L.M. Student pharmacists’ clinical interventions in advanced pharmacy practice experiences at a community nonteaching hospital. Am. J. Pharm. Educ. 2014, 78, 50. [Google Scholar] [CrossRef] [Green Version]
- Baker, C.; Ghassemi, E.; Bowers, R. Benefits of utilizing pharmacy learners in an inpatient anticoagulation education service. Innov. Pharm. 2021, 12, 1–8. [Google Scholar] [CrossRef]
- Heil, E.L.; Bork, J.T.; Abbo, L.M.; Barlam, T.F.; Cosgrove, S.E.; Davis, A.; Ha, D.R.; Jenkins, T.C.; Kaye, K.S.; Lewis, J.S.; et al. Optimizing the management of uncomplicated gram-negative bloodstreAm. infections: Consensus guidance using a modified delphi process. Open Forum Infect. Dis. 2021, 8, ofab434. [Google Scholar] [CrossRef]
- Yahav, D.; Franceschini, E.; Koppel, F.; Turjeman, A.; Babich, T.; Bitterman, R.; Neuberger, A.; Ghanem-Zoubi, N.; Santoro, A.; Eliakim-Raz, N.; et al. Seven versus 14 days of antibiotic therapy for uncomplicated gram-negative bacteremia: A noninferiority randomized controlled trial. Clin. Infect. Dis. 2019, 69, 1091–1098. [Google Scholar] [CrossRef] [Green Version]
- Corey, G.R.; Stryjewski, M.E.; Everts, R.J. Short-course therapy for bloodstreAm. infections in immunocompetent adults. Int. J Antimicrob. Agents 2009, 34, S47–S51. [Google Scholar] [CrossRef]
- Giannella, M.; Pascale, R.; Toschi, A.; Ferraro, G.; Graziano, E.; Furii, F.; Bartoletti, M.; Tedeschi, S.; Ambretti, S.; Lewis, R.E.; et al. Treatment duration for Escherichia coli bloodstreAm. infection and outcomes: Retrospective single-centre study. Clin. Microbiol. Infect. 2018, 24, 1077–1083. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tamma, P.D.; Conley, A.T.; Cosgrove, S.E.; Harris, A.D.; Lautenbach, E.; Amoah, J.; Avdic, E.; Tolomeo, P.; Wise, J.; Subudhi, S.; et al. Antibacterial Resistance Leadership Group. Association of 30-day mortality with oral step-down vs continued intravenous therapy in patients hospitalized with Enterobacteriaceae bacteremia. JAMA Intern. Med. 2019, 179, 316–323. [Google Scholar] [CrossRef] [PubMed]
- Mercuro, N.J.; Medler, C.J.; Kenney, R.M.; MacDonald, N.C.; Neuhauser, M.M.; Hicks, L.A.; Srinivasan, A.; Divine, G.; Beaulac, A.; Eriksson, E.; et al. Pharmacist-driven transitions of care practice model for prescribing oral antimicrobials at hospital discharge. JAMA Netw. Open 2022, 5, e2211331. [Google Scholar] [CrossRef] [PubMed]
- Magill, S.S.; O’Leary, E.; Ray, S.M.; Kainer, M.A.; Evans, C.; Bamberg, W.M.; Johnston, H.; Janelle, S.J.; Oyewumi, T.; Lynfield, R. Assessment of the appropriateness of antimicrobial use in US hospitals. JAMA Netw. Open 2021, 4, e212007. [Google Scholar] [CrossRef] [PubMed]
- Milani, R.V.; Wilt, J.K.; Entwisle, J.; Hand, J.; Cazabon, P.; Bohan, J.G. Reducing inappropriate outpatient antibiotic prescribing: Normative comparison using unblinded provider reports. BMJ Open Qual. 2019, 8, e000351. [Google Scholar] [CrossRef] [Green Version]
- CDC. Antibiotic Resistance Threats in the United States, 2019; U.S. Department of Health and Human Services; CDC: Atlanta, GA, USA, 2019. Available online: https://www.cdc.gov/drugresistance/pdf/threats-report/2019-ar-threats-report-508.pdf (accessed on 10 February 2023).
Variable n (%) or Median (IQR) | Non-ESBL (n = 100) | ESBL (n = 50) | p-Value |
---|---|---|---|
Age | 61.5 [52–72] | 58 [49–68] | 0.190 |
Female | 46 (46) | 22 (44) | 0.817 |
African American | 70 (70) | 29 (58) | 0.144 |
Organisms | 1.000 | ||
Escherichia coli | 76 (76) | 38 (76) | |
Klebsiella pneumoniae | 24 (24) | 12 (24) | |
Penicillin or Cephalosporin Allergy | 16 (16) | 8 (16) | 1.000 |
Infection source | |||
Urinary tract | 58 (58) | 27 (54) | 0.641 |
Intra-abdominal | 17 (17) | 2 (4) | 0.024 |
Lower respiratory tract | 9 (9) | 7 (14) | 0.350 |
Bone/joints | 1 (1) | 3 (6) | 0.108 |
Skin/soft tissue | 0 | 2 (4) | 0.110 |
Other | 3 (3) | 4 (8) | 0.096 |
Unknown | 12 (12) | 5 (10) | 0.716 |
Variable n (%) or Median [IQR] | Non-ESBL (n = 100) | ESBL (n = 50) | p-Value |
---|---|---|---|
Empirical antibiotic agent | |||
Cefepime | 49 (49) | 24 (48) | 0.908 |
Piperacillin-tazobactam | 37 (37) | 12 (24) | 0.110 |
Meropenem | 2 (2) | 11 (22) | <0.001 |
Ceftriaxone | 10 (10) | 2 (4) | 0.339 |
Other | 2 (2) | 1 (2) | 1.000 |
Days to definitive antibiotic initiation | 4 (2–6) | 5.5 (3.75–9) | 0.014 |
Total duration | 13 (8–16) | 14 (8–18) | 0.157 |
IV duration | 6 (4–11) | 14 (7.75–18) | <0.001 |
Oral stepdown | 50 (50) | 2 (4) | <0.001 |
Definitive treatment with a carbapenem | 3 (3) | 42 (84) | <0.001 |
Variable n (%) or Median (IQR) | Non-ESBL (n = 100) | ESBL (n = 50) | p-Value |
---|---|---|---|
Previous ESBL infection | 0 (0) | 9 (18) | <0.001 |
Quick Pitt bacteremia score | 1 [0–2] | 1 [0–3] | 0.518 |
Charlson comorbidity index | 5 [3–7] | 4 [3–6] | 0.817 |
Infection type | <0.001 | ||
Community-acquired | 39 (39) | 5 (10) | |
Healthcare-associated | 40 (40) | 24 (48) | |
Nosocomial-acquired | 21 (21) | 21 (42) | |
Antibiotic courses in past 90 days | 2 [1–2.5] | 3 [2–6] | <0.001 |
Admitted to ICU during hospitalization | 42 (42) | 25 (50) | 0.353 |
Urinary catheter | 19 (19) | 16 (32) | 0.076 |
Central line > 2 days | 11 (11) | 13 (26) | 0.018 |
Kidney stones | 13 (13) | 3 (6) | 0.190 |
End-stage renal disease | 4 (4) | 5 (10) | 0.161 |
Long-term care facility | 8 (8) | 9 (18) | 0.069 |
Previous admission in the past 12 months | 1 [0–2] | 1 [0–2.25] | 0.107 |
Urologic procedure | 1 (1) | 1 (2) | 1.000 |
Immunosuppression | 0.04 | ||
None | 71 (71) | 25 (50) | |
One agent | 13 (13) | 12 (24) | |
Corticosteroids | 5 (5) | 2 (4) | |
Chemotherapy | 3 (3) | 5 (10) | |
Radiation therapy | 1 (1) | 0 (0) | |
Immunomodulating agent | 4 (4) | 5 (10) | |
Multiple agents | 16 (16) | 13 (26) |
Final Model Variable | Odds Ratio | 95% Confidence Interval | p-Value |
---|---|---|---|
Central line > 2 days | 1.625 | 0.547–4.823 | 0.382 |
Community infection | 0.412 | 0.125–1.363 | 0.146 |
Immunosuppression | 1.783 | 0.793–4.010 | 0.162 |
>1 previous antibiotic | 3.448 | 1.494–7.957 | 0.004 |
Long-term care facility | 2.889 | 0.916–9.110 | 0.070 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vance, M.K.; Cretella, D.A.; Ward, L.M.; Vijayvargiya, P.; Garrigos, Z.E.; Wingler, M.J.B. Risk Factors for Bloodstream Infections Due to ESBL-Producing Escherichia coli, Klebsiella spp., and Proteus mirabilis. Pharmacy 2023, 11, 74. https://doi.org/10.3390/pharmacy11020074
Vance MK, Cretella DA, Ward LM, Vijayvargiya P, Garrigos ZE, Wingler MJB. Risk Factors for Bloodstream Infections Due to ESBL-Producing Escherichia coli, Klebsiella spp., and Proteus mirabilis. Pharmacy. 2023; 11(2):74. https://doi.org/10.3390/pharmacy11020074
Chicago/Turabian StyleVance, Mary Kathryn, David A. Cretella, Lori M. Ward, Prakhar Vijayvargiya, Zerelda Esquer Garrigos, and Mary Joyce B. Wingler. 2023. "Risk Factors for Bloodstream Infections Due to ESBL-Producing Escherichia coli, Klebsiella spp., and Proteus mirabilis" Pharmacy 11, no. 2: 74. https://doi.org/10.3390/pharmacy11020074
APA StyleVance, M. K., Cretella, D. A., Ward, L. M., Vijayvargiya, P., Garrigos, Z. E., & Wingler, M. J. B. (2023). Risk Factors for Bloodstream Infections Due to ESBL-Producing Escherichia coli, Klebsiella spp., and Proteus mirabilis. Pharmacy, 11(2), 74. https://doi.org/10.3390/pharmacy11020074