Identifying Prescription-Opioid-Related Risks Using Prescription Drug Monitoring Programs’ Algorithms and Clinical Screening Tools
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants and Procedures
2.2. ‘At-Risk’ Definitions
2.3. Statistical Analysis
3. Results
3.1. Sample Characteristics
3.2. Any PDMP Alert and Any ROOM Clinical Risk Factor
3.3. Any PDMP Alert and Prescription Opioid Use Disorder
3.4. High-Dose PDMP Alert and Any ROOM Clinical Risk
4. Discussion
Strengths and Limitations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bialas, P.; Maier, C.; Klose, P.; Häuser, W. Efficacy and harms of long-term opioid therapy in chronic non-cancer pain: Systematic review and meta-analysis of open-label extension trials with a study duration ≥26 weeks. Eur. J. Pain. 2020, 24, 265–278. [Google Scholar] [CrossRef]
- Vojtila, L.; Pang, M.; Goldman, B.; Kurdyak, P.; Fischer, B. Non-medical opioid use, harms, and interventions in Canada—A 10-year update on an unprecedented substance use-related public health crisis. Drugs Educ. Prev. Policy 2020, 27, 118–122. [Google Scholar] [CrossRef]
- Wilson, N.; Kariisa, M.; Seth, P.; Smith, H.; Davis, N.L. Drug and Opioid-Involved Overdose Deaths—United States, 2017–2018. MMWR Morb. Mortal. Wkly. Rep. 2020, 69, 290–297. [Google Scholar] [CrossRef]
- Spencer, M.R.; Miniño, M.A.; Warner, M. Drug Overdose Deaths in the United States, 2001–2021; Data Brief, no 457; National Center for Health Statistics: Hyattsville, MD, USA, 2022.
- Chrzanowska, A.; Man, N.; Sutherland, R.; Degenhardt, L.; Peacock, A. Trends in Overdose and Other Drug-Induced Deaths in Australia, 1997–2020; National Drug and Alcohol Research Centre: Sydney, Australia, 2022. [Google Scholar]
- Hsu, D.J.; McCarthy, E.P.; Stevens, J.P.; Mukamal, K.J. Hospitalizations, costs and outcomes associated with heroin and prescription opioid overdoses in the United States 2001–12. Addiction 2017, 112, 1558–1564. [Google Scholar] [CrossRef]
- Department of Health. National Drug Strategy 2017–2026; Commonwealth of Australia: Canberra, Australia, 2017; pp. 1–56. [Google Scholar]
- Wu, L.-T.; Ghitza, U.E.; Burns, A.L.; Mannelli, P. The opioid overdose epidemic: Opportunities for pharmacists. Subst. Abus. Rehabil. 2017, 8, 53–55. [Google Scholar] [CrossRef] [PubMed]
- Pharmacy Guild of Australia. Community Pharmacies: Part of the Solution. 2019. Available online: https://www.guild.org.au/__data/assets/pdf_file/0013/80230/Community-Pharmacies-Part-of-the-Solution.pdf (accessed on 1 August 2022).
- Green, T.C.; Dauria, E.F.; Bratberg, J.; Davis, C.S.; Walley, A.Y. Orienting patients to greater opioid safety: Models of community pharmacy-based naloxone. Harm Reduct. J. 2015, 12, 25. [Google Scholar] [CrossRef] [PubMed]
- Wilson, M.N.; Hayden, J.A.; Rhodes, E.; Robinson, A.; Asbridge, M. Effectiveness of Prescription Monitoring Programs in Reducing Opioid Prescribing, Dispensing, and Use Outcomes: A Systematic Review. J. Pain. 2019, 20, 1383–1393. [Google Scholar] [CrossRef]
- Reisman, R.M.; Shenoy, P.J.; Atherly, A.J.; Flowers, C.R. Prescription opioid usage and abuse relationships: An evaluation of state prescription drug monitoring program efficacy. Subst. Abus. 2009, 3, SART-S2345. [Google Scholar] [CrossRef]
- Manasco, A.T.; Griggs, C.; Leeds, R.; Langlois, B.K.; Breaud, A.H.; Mitchell, P.M.; Weiner, S.G. Characteristics of state prescription drug monitoring programs: A state-by-state survey. Pharmacoepidemiol. Drug Saf. 2016, 25, 847–851. [Google Scholar] [CrossRef] [PubMed]
- Geissert, P.; Hallvik, S.; Van Otterloo, J.; O’Kane, N.; Alley, L.; Carson, J.; Leichtling, G.; Hildebran, C., 3rd; Wakeland, W.; Deyo, R.A. High-risk prescribing and opioid overdose: Prospects for prescription drug monitoring program-based proactive alerts. Pain 2018, 159, 150–156. [Google Scholar] [CrossRef]
- Fink, D.S.; Schleimer, J.P.; Sarvet, A.; Grover, K.K.; Delcher, C.; Castillo-Carniglia, A.; Kim, J.H.; Rivera-Aguirre, A.E.; Henry, S.G.; Martins, S.S. Association between prescription drug monitoring programs and nonfatal and fatal drug overdoses: A systematic review. Ann. Intern. Med. 2018, 168, 783–790. [Google Scholar] [CrossRef] [PubMed]
- Picco, L.; Sanfilippo, P.; Xia, T.; Lam, T.; Nielsen, S. How do patient, pharmacist and medication characteristics and prescription drug monitoring program alerts influence pharmacists’ decisions to dispense opioids? A randomised controlled factorial experiment. Int. J. Drug Policy 2022, 109, 103856. [Google Scholar] [CrossRef]
- Picco, L.; Lam, T.; Haines, S.; Nielsen, S. How prescription drug monitoring programs inform clinical decision-making: A mixed methods systematic review. Drug Alcohol. Depend. 2021, 228, 109090. [Google Scholar] [CrossRef]
- Webster, L.R.; Webster, R.M. Predicting aberrant behaviors in opioid-treated patients: Preliminary validation of the Opioid Risk Tool. Pain. Med. 2005, 6, 432–442. [Google Scholar] [CrossRef] [PubMed]
- Meltzer, E.C.; Rybin, D.; Saitz, R.; Samet, J.H.; Schwartz, S.L.; Butler, S.F.; Liebschutz, J.M. Identifying prescription opioid use disorder in primary care: Diagnostic characteristics of the Current Opioid Misuse Measure (COMM). Pain 2011, 152, 397–402. [Google Scholar] [CrossRef]
- Atluri, S.L.; Sudarshan, G. Development of a screening tool to detect the risk of inappropriate prescription opioid use in patients with chronic pain. Pain. Physician 2004, 7, 333–338. [Google Scholar] [CrossRef]
- Webster, L.R. Risk Factors for Opioid-Use Disorder and Overdose. Anesth. Analg. 2017, 125, 1741–1748. [Google Scholar] [CrossRef] [PubMed]
- Cragg, A.; Hau, J.P.; Woo, S.A.; Kitchen, S.A.; Liu, C.; Doyle-Waters, M.M.; Hohl, C.M. Risk Factors for Misuse of Prescribed Opioids: A Systematic Review and Meta-Analysis. Ann. Emerg. Med. 2019, 74, 634–646. [Google Scholar] [CrossRef] [PubMed]
- Rose, M.E. Are Prescription Opioids Driving the Opioid Crisis? Assumptions vs. Facts. Pain. Med. 2017, 19, 793–807. [Google Scholar] [CrossRef]
- Passik, S.D.; Kirsh, K.L.; Whitcomb, L.; Portenoy, R.K.; Katz, N.P.; Kleinman, L.; Dodd, S.L.; Schein, J.R. A new tool to assess and document pain outcomes in chronic pain patients receiving opioid therapy. Clin. Ther. 2004, 26, 552–561. [Google Scholar] [CrossRef]
- Picco, L.; Middleton, M.; Bruno, R.; Kowalski, M.; Nielsen, S. Validity and Reliability of the Computer-Administered Routine Opioid Outcome Monitoring (ROOM) Tool. Pain. Med. 2020, 21, 3645–3654. [Google Scholar] [CrossRef] [PubMed]
- Krebs, E.E.; Lorenz, K.A.; Bair, M.J.; Damush, T.M.; Wu, J.; Sutherland, J.M.; Asch, S.M.; Kroenke, K. Development and initial validation of the PEG, a three-item scale assessing pain intensity and interference. J. Gen. Intern. Med. 2009, 24, 733–738. [Google Scholar] [CrossRef]
- Picco, L.; Middleton, M.; Bruno, R.; Kowalski, M.; Nielsen, S. Validation of the OWLS, a Screening Tool for Measuring Prescription Opioid Use Disorder in Primary Care. Pain. Med. 2020, 21, 2757–2764. [Google Scholar] [CrossRef]
- Kroenke, K.; Spitzer, R.L.; Williams, J.B. The Patient Health Questionnaire-2: Validity of a two-item depression screener. Med. Care 2003, 41, 1284–1292. [Google Scholar] [CrossRef]
- Smith, P.C.; Schmidt, S.M.; Allensworth-Davies, D.; Saitz, R. Primary care validation of a single-question alcohol screening test. J. Gen. Intern. Med. 2009, 24, 783–788. [Google Scholar] [CrossRef] [PubMed]
- Ducrotté, P.; Caussé, C. The Bowel Function Index: A new validated scale for assessing opioid-induced constipation. Curr. Med. Res. Opin. 2012, 28, 457–466. [Google Scholar] [CrossRef]
- Volkow, N.D.; Icaza, M.E.M.-M.; Poznyak, V.; Saxena, S.; Gerra, G.; UNODC-WHO Informal Scientific Network. Addressing the opioid crisis globally. World Psychiatry 2019, 18, 231–232. [Google Scholar] [CrossRef]
- Compton, W.M.; Jones, C.M.; Stein, J.B.; Wargo, E.M. Promising roles for pharmacists in addressing the U.S. opioid crisis. Res. Soc. Adm. Pharm. 2019, 15, 910–916. [Google Scholar] [CrossRef]
- Makdessi, C.J.; Day, C.; Chaar, B.B. Challenges faced with opioid prescriptions in the community setting—Australian pharmacists’ perspectives. Res. Soc. Adm. Pharm. 2019, 15, 966–973. [Google Scholar] [CrossRef] [PubMed]
- Gourlay, D.L.; Heit, H.A.; Almahrezi, A. Universal precautions in pain medicine: A rational approach to the treatment of chronic pain. Pain. Med. 2005, 6, 107–112. [Google Scholar] [CrossRef]
- Campbell, G.; Lintzeris, N.; Gisev, N.; Larance, B.; Pearson, S.; Degenhardt, L. Regulatory and other responses to the pharmaceutical opioid problem. Med. J. Aust. 2019, 210, 6–8.e1. [Google Scholar] [CrossRef] [PubMed]
- Nielsen, S.; Picco, L.; Kowalski, M.; Sanfilippo, P.; Wood, P.; Larney, S.; Bruno, R.; Ritter, A. Routine opioid outcome monitoring in community pharmacy: Outcomes from an open-label single-arm implementation-effectiveness pilot study. Res. Soc. Adm. Pharm. 2020, 16, 1694–1701. [Google Scholar] [CrossRef]
- Lalic, S.; Gisev, N.; Bell, J.S.; Korhonen, M.J.; Ilomäki, J. Predictors of persistent prescription opioid analgesic use among people without cancer in Australia. Br. J. Clin. Pharmacol. 2018, 84, 1267–1278. [Google Scholar] [CrossRef] [PubMed]
- Thakral, M.; Walker, R.L.; Saunders, K.; Shortreed, S.M.; Parchman, M.; Hansen, R.N.; Ludman, E.; Sherman, K.J.; Dublin, S.; Von Korff, M. Comparing Pain and Depressive Symptoms of Chronic Opioid Therapy Patients Receiving Dose Reduction and Risk Mitigation Initiatives with Usual Care. J. Pain. 2018, 19, 111–120. [Google Scholar] [CrossRef]
- Nielsen, S.; Degenhardt, L.; Hoban, B.; Gisev, N. A synthesis of oral morphine equivalents (OME) for opioid utilisation studies. Pharmacoepidemiol. Drug Saf. 2016, 25, 733–737. [Google Scholar] [CrossRef]
- Strang, J.; Volkow, N.D.; Degenhardt, L.; Hickman, M.; Johnson, K.; Koob, G.F.; Marshall, B.D.L.; Tyndall, M.; Walsh, S.L. Opioid use disorder. Nat. Rev. Dis. Primers 2020, 6, 3. [Google Scholar] [CrossRef] [PubMed]
- Campbell, G.; Noghrehchi, F.; Nielsen, S.; Clare, P.; Bruno, R.; Lintzeris, N.; Cohen, M.; Blyth, F.; Hall, W.; Larance, B.; et al. Risk factors for indicators of opioid-related harms amongst people living with chronic non-cancer pain: Findings from a 5-year prospective cohort study. EClinicalMedicine 2020, 28, 100592. [Google Scholar] [CrossRef] [PubMed]
- Grattan, A.; Sullivan, M.D.; Saunders, K.W.; Campbell, C.I.; Von Korff, M.R. Depression and prescription opioid misuse among chronic opioid therapy recipients with no history of substance abuse. Ann. Fam. Med. 2012, 10, 304–311. [Google Scholar] [CrossRef]
- Cleland, C.M.; Bennett, A.S.; Elliott, L.; Rosenblum, A.; Britton, P.C.; Wolfson-Stofko, B. Between- and within-person associations between opioid overdose risk and depression, suicidal ideation, pain severity, and pain interference. Drug Alcohol. Depend. 2020, 206, 107734. [Google Scholar] [CrossRef]
- van der Schrier, R.; Jonkman, K.; van Velzen, M.; Olofsen, E.; Drewes, A.M.; Dahan, A.; Niesters, M. An experimental study comparing the respiratory effects of tapentadol and oxycodone in healthy volunteers. Br. J. Anaesth. 2017, 119, 1169–1177. [Google Scholar] [CrossRef]
- Dowell, D.; Haegerich, T.; Chou, R. No Shortcuts to Safer Opioid Prescribing. N. Engl. J. Med. 2019, 380, 2285–2287. [Google Scholar] [CrossRef] [PubMed]
- Coffin, P.O.; Rowe, C.; Oman, N.; Sinchek, K.; Santos, G.-M.; Faul, M.; Bagnulo, R.; Mohamed, D.; Vittinghoff, E. Illicit opioid use following changes in opioids prescribed for chronic non-cancer pain. PLoS ONE 2020, 15, e0232538. [Google Scholar] [CrossRef] [PubMed]
- Bauer, M.; Monteith, S.; Geddes, J.; Gitlin, M.J.; Grof, P.; Whybrow, P.C.; Glenn, T. Automation to optimise physician treatment of individual patients: Examples in psychiatry. Lancet Psychiatry 2019, 6, 338–349. [Google Scholar] [CrossRef] [PubMed]
- Doyle, S.; Leichtling, G.; Hildebran, C.; Reilly, C. Research to support optimization of prescription drug monitoring programs. Pharmacoepidemiol. Drug Saf. 2017, 26, 1425–1427. [Google Scholar] [CrossRef]
- Kaye, A.; Jones, M.; Kaye, A.; Ripoll, J.; Galan, V.; Beakley, B.; Calixto, F.; Bolden, J.; Urman, R.; Manchikanti, L. Prescription Opioid Abuse in Chronic Pain: An Updated Review of Opioid Abuse Predictors and Strategies to Curb Opioid Abuse: Part 1. Pain. Physician 2017, 20, S93–S109. [Google Scholar] [CrossRef]
- Barbeler, D. Prescription Monitoring: Keeping Watch; Pharmaceutical Society of Australia: Adelaide, Australia, 2018; Volume 37, pp. 28–33. [Google Scholar]
- Chisholm-Burns, M.A.; Spivey, C.A.; Sherwin, E.; Wheeler, J.; Hohmeier, K. The opioid crisis: Origins, trends, policies, and the roles of pharmacists. Am. J. Health-Syst. Pharm. AJHP Off. J. Am. Soc. Health-Syst. Pharm. 2019, 76, 424–435. [Google Scholar] [CrossRef]
- Bach, P.; Hartung, D. Leveraging the role of community pharmacists in the prevention, surveillance, and treatment of opioid use disorders. Addict. Sci. Clin. Pract. 2019, 14, 30. [Google Scholar] [CrossRef]
n | % | ||
---|---|---|---|
Demographics | |||
Gender | Male | 39 | 32.8 |
Female | 66 | 55.5 | |
Unspecified | 14 | 11.8 | |
Age * | 18–64 years | 65 | 54.6 |
≥65 years | 52 | 43.7 | |
Medications | |||
Polypharmacy (≥5 medications) | Yes | 70 | 58.8 |
No | 49 | 41.2 | |
Prescribed a benzodiazepine or z-drug | Yes | 40 | 33.6 |
No | 79 | 66.4 | |
PDMP alerts | |||
PDMP alert for high dose (>100 OME) | Yes | 16 | 13.4 |
No | 103 | 86.6 | |
PDMP alert for medium dose (50–100 OME) | Yes | 28 | 23.5 |
No | 91 | 76.5 | |
PDMP alert for high-risk drug combinations ** | Yes | 5 | 4.2 |
No | 114 | 95.8 | |
Any PDMP alert ^ | Yes | 46 | 38.7 |
No | 73 | 61.3 | |
ROOM risk | |||
ROOM severe pain (despite opioid use) | Yes | 65 | 54.6 |
No | 54 | 45.4 | |
ROOM opioid use disorder | Yes | 37 | 31.1 |
No | 82 | 68.9 | |
ROOM risky alcohol use | Yes | 45 | 37.8 |
No | 74 | 62.2 | |
ROOM risk for depression | Yes | 27 | 22.7 |
No | 92 | 77.3 | |
ROOM: Any clinical risk # | Yes | 94 | 79.0 |
No | 25 | 21.0 | |
OME—Oral Morphine Equivalent |
ROOM Risk Indicator | Any PDMP Alert | X2 | p-Value | |
---|---|---|---|---|
No | Yes | |||
Opioid Use Disorder (No) | 48 | 34 | 0.877 | 0.349 |
Opioid Use Disorder (Yes) | 25 | 12 | ||
Severe pain (despite opioid use) (No) | 35 | 19 | 0.502 | 0.479 |
Severe pain (despite opioid use) (Yes) | 38 | 27 | ||
Risky alcohol use (No) | 44 | 30 | 0.293 | 0.588 |
Risky alcohol use (Yes) | 29 | 16 | ||
Depression (No) | 58 | 34 | 0.494 | 0.482 |
Depression (Yes) | 15 | 12 | ||
Any ROOM risk (No) | 16 | 9 | 0.094 | 0.759 |
Any ROOM risk (Yes) | 57 | 37 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Picco, L.; Jung, M.; Cangadis-Douglass, H.; Lam, T.; Nielsen, S. Identifying Prescription-Opioid-Related Risks Using Prescription Drug Monitoring Programs’ Algorithms and Clinical Screening Tools. Pharmacy 2023, 11, 164. https://doi.org/10.3390/pharmacy11050164
Picco L, Jung M, Cangadis-Douglass H, Lam T, Nielsen S. Identifying Prescription-Opioid-Related Risks Using Prescription Drug Monitoring Programs’ Algorithms and Clinical Screening Tools. Pharmacy. 2023; 11(5):164. https://doi.org/10.3390/pharmacy11050164
Chicago/Turabian StylePicco, Louisa, Monica Jung, Helena Cangadis-Douglass, Tina Lam, and Suzanne Nielsen. 2023. "Identifying Prescription-Opioid-Related Risks Using Prescription Drug Monitoring Programs’ Algorithms and Clinical Screening Tools" Pharmacy 11, no. 5: 164. https://doi.org/10.3390/pharmacy11050164
APA StylePicco, L., Jung, M., Cangadis-Douglass, H., Lam, T., & Nielsen, S. (2023). Identifying Prescription-Opioid-Related Risks Using Prescription Drug Monitoring Programs’ Algorithms and Clinical Screening Tools. Pharmacy, 11(5), 164. https://doi.org/10.3390/pharmacy11050164