Charting the Knowledge and Patterns of Non-Steroidal Anti-Inflammatory Drugs Usage in Hail Population, Saudi Arabia: Insights into the Adverse Effect Profile
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design, Sampling, and Data Collection
2.2. Questionnaire Description
2.3. Pilot Study
2.4. Sample Size Calculation
2.5. Statistical Analysis
3. Results
3.1. Demographic Characteristics
3.2. Association between Demographic Variables and Pain Frequency
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bindu, S.; Mazumder, S.; Bandyopadhyay, U. Non-steroidal anti-inflammatory drugs (NSAIDs) and organ damage: A current perspective. Biochem. Pharmacol. 2020, 180, 114147. [Google Scholar] [CrossRef] [PubMed]
- Bhala, N.; Emberson, J.; Merhi, A.; Abramson, S.; Arber, N.; Baron, J.A.; Bombardier, C.; Cannon, C.; Farkouh, M.E.; FitzGerald, G.A.; et al. Vascular and upper gastrointestinal effects of non-steroidal anti-inflammatory drugs: Meta-analyses of individual participant data from randomised trials. Lancet 2013, 382, 769–779. [Google Scholar] [CrossRef] [PubMed]
- Conaghan, P.G. A turbulent decade for NSAIDs: Update on current concepts of classification, epidemiology, comparative efficacy, and toxicity. Rheumatol. Int. 2012, 32, 1491–1502. [Google Scholar] [CrossRef] [PubMed]
- CDC. Percentage of U.S. Adults Using Prescribed NSAIDs. Available online: https://nccd.cdc.gov/ckd/detail.aspx?Qnum=Q700 (accessed on 1 November 2023).
- AlKhamees, O.A.; AlNemer, K.A.; Bin Maneea, M.W.; AlSugair, F.A.; AlEnizi, B.H.; Alharf, A.A. Top 10 most used drugs in the Kingdom of Saudi Arabia 2010–2015. Saudi Pharm. J. 2018, 26, 211–216. [Google Scholar] [CrossRef]
- Ali, K.A.; Maity, A.; Roy, S.D.; Das Pramanik, S.; Pratim Das, P.; Shaharyar, M.A. Chapter 4—Insight into the mechanism of steroidal and non-steroidal anti-inflammatory drugs. In How Synthetic Drugs Work; Kazmi, I., Karmakar, S., Shaharyar, M.A., Afzal, M., Al-Abbasi, F.A., Eds.; Academic Press: Cambridge, MA, USA, 2023; pp. 61–94. [Google Scholar]
- Panchal, N.K.; Prince Sabina, E. Non-steroidal anti-inflammatory drugs (NSAIDs): A current insight into its molecular mechanism eliciting organ toxicities. Food Chem. Toxicol. 2023, 172, 113598. [Google Scholar] [CrossRef]
- Marra, P.S.; Nishizawa, Y.; Yamanashi, T.; Sullivan, E.J.; Comp, K.R.; Crutchley, K.J.; Wahba, N.E.; Shibata, K.; Nishiguchi, T.; Yamanishi, K.; et al. NSAIDs use history: Impact on the genome-wide DNA methylation profile and possible mechanisms of action. Clin. Exp. Med. 2023, 23, 3509–3516. [Google Scholar] [CrossRef]
- Ozleyen, A.; Yilmaz, Y.B.; Donmez, S.; Atalay, H.N.; Antika, G.; Tumer, T.B. Looking at NSAIDs from a historical perspective and their current status in drug repurposing for cancer treatment and prevention. J. Cancer Res. Clin. Oncol. 2023, 149, 2095–2113. [Google Scholar] [CrossRef]
- Sohail, R.; Mathew, M.; Patel, K.K.; Reddy, S.A.; Haider, Z.; Naria, M.; Habib, A.; Abdin, Z.U.; Chaudhry, W.R.; Akbar, A. Effects of Non-steroidal Anti-inflammatory Drugs (NSAIDs) and Gastroprotective NSAIDs on the Gastrointestinal Tract: A Narrative Review. Cureus 2023, 15, e37080. [Google Scholar] [CrossRef]
- Wan, E.Y.F.; Yu, E.Y.T.; Chan, L.; Mok, A.H.Y.; Wang, Y.; Chan, E.W.Y.; Wong, I.C.K.; Lam, C.L.K. Comparative Risks of Nonsteroidal Anti-inflammatory Drugs on Cardiovascular Diseases: A Population-Based Cohort Study. J. Clin. Pharmacol. 2023, 63, 126–134. [Google Scholar] [CrossRef]
- LaForge, J.M.; Urso, K.; Day, J.M.; Bourgeois, C.W.; Ross, M.M.; Ahmadzadeh, S.; Shekoohi, S.; Cornett, E.M.; Kaye, A.M.; Kaye, A.D. Non-steroidal Anti-inflammatory Drugs: Clinical Implications, Renal Impairment Risks, and AKI. Adv. Ther. 2023, 40, 2082–2096. [Google Scholar] [CrossRef]
- Martin, J.R.; Yu, M.; Erstad, B.L. Adverse effects of nonsteroidal anti-inflammatory drugs in critically ill patients: A scoping review. Am. J. Health Syst. Pharm. AJHP 2023, 80, 348–358. [Google Scholar] [CrossRef] [PubMed]
- Baker, M.; Perazella, M.A. NSAIDs in CKD: Are They Safe? Am. J. Kidney Dis. 2020, 76, 546–557. [Google Scholar] [CrossRef] [PubMed]
- Asiri, O.; Alzahrani, A.A.; Alshehri, K.M.; Althomali, O.W.; Alameen, A.A.I.; Serwah, M.A. Prevalence of non-steroidal anti-inflammatory drugs usage and assessment of knowledge related to its complications among Saudi population; a cross-sectional study. Int. J. Med. Dev. Ctries. IJMDC 2020, 4, 296–302. [Google Scholar] [CrossRef]
- Siddig, A.I.; Alqahtani, A.M.; AlShalawi, A.; Turkistani, M.; Binbaz, S.; Altowairqi, A. Awareness of analgesics complications in Saudi Arabia: A cross-sectional study. Future J. Pharm. Sci. 2020, 6, 6. [Google Scholar] [CrossRef]
- Babelghaith, S.D.; Alarifi, M.N.; Wajid, S.; Alhawassi, T.M.; Alqahtani, S.K.; Alghadeer, S.M. Knowledge of patients on safe medication use in relation to nonsteroidal anti-inflammatory drugs. Saudi J. Anaesth. 2019, 13, 106–111. [Google Scholar] [CrossRef] [PubMed]
- Mullan, J.; Weston, K.M.; Bonney, A.; Burns, P.; Mullan, J.; Rudd, R. Consumer knowledge about over-the-counter NSAIDs: They don’t know what they don’t know. Aust. N. Z. J. Public Health 2017, 41, 210–214. [Google Scholar] [CrossRef] [PubMed]
- Vina, E.R.; Hannon, M.J.; Quinones, C.; Hausmann, L.R.M.; Ibrahim, S.A.; Dagnino, J.; Kwoh, C.K. The Role of Knowledge and Attitudes About Nonsteroidal Anti-inflammatory Drugs in Determining Treatment Use. ACR Open Rheumatol. 2021, 3, 154–163. [Google Scholar] [CrossRef]
- AlMuammar, S.A.; Noorsaeed, A.S.; Alafif, R.A.; Kamal, Y.F.; Daghistani, G.M. The Use of Internet and Social Media for Health Information and Its Consequences Among the Population in Saudi Arabia. Cureus 2021, 13, e18338. [Google Scholar] [CrossRef]
- Wongrakpanich, S.; Wongrakpanich, A.; Melhado, K.; Rangaswami, J. A Comprehensive Review of Non-Steroidal Anti-Inflammatory Drug Use in The Elderly. Aging Dis. 2018, 9, 143–150. [Google Scholar] [CrossRef]
- Bäckryd, E. Gender differences in dispensed analgesics in Sweden during 2006–2015–an observational, nationwide, whole-population study. Int. J. Women’s Health 2018, 10, 55–64. [Google Scholar] [CrossRef]
- Coşkuner, İ.; Yilmaz, T.E. Awareness among patients taking oral non-steroidal anti-inflammatory drugs as analgesics: A cross-sectional study. J. Health Sci. Med. 2021, 4, 63–70. [Google Scholar] [CrossRef]
- Suleman, M.; Ahsan, A.h.m.e.d.; Kamran, M.; Ashraf, H.; Subata Siddiqui, U.N.; Siddiqui, A.H. Knowledge of Non-Steroidal Anti-Inflammatory Drugs (NSAIDs) and their Adverse Effects among Medical and Non-Medical Students. Pak. J. Med. Dent. 2022, 11, 94–99. [Google Scholar] [CrossRef]
- Bally, M.; Dendukuri, N.; Rich, B.; Nadeau, L.; Helin-Salmivaara, A.; Garbe, E.; Brophy, J.M. Risk of acute myocardial infarction with NSAIDs in real world use: Bayesian meta-analysis of individual patient data. BMJ (Clin. Res. Ed.) 2017, 357, j1909. [Google Scholar] [CrossRef] [PubMed]
- Schjerning Olsen, A.-M.; Gislason, G.H.; McGettigan, P.; Fosbøl, E.; Sørensen, R.; Hansen, M.L.; Køber, L.; Torp-Pedersen, C.; Lamberts, M. Association of NSAID Use With Risk of Bleeding and Cardiovascular Events in Patients Receiving Antithrombotic Therapy After Myocardial Infarction. JAMA 2015, 313, 805–814. [Google Scholar] [CrossRef]
- Matoulková, P.; Dosedel, M.; Růzková, B.; Kubena, A. Information and awareness concerning ibuprofen as an ingredient in over the counter analgesics: A questionnaire-based survey of residents of retirement communities. Acta Pol. Pharm. 2013, 70, 333–338. [Google Scholar]
Demographic | Variables | Number | Percentage |
---|---|---|---|
Gender | Male | 170 | 42.61 |
Female | 229 | 57.39 | |
Age | 18–20 | 73 | 18.43 |
21–29 | 124 | 30.96 | |
30–39 | 54 | 13.51 | |
40–49 | 85 | 21.13 | |
Education | High School or Less | 79 | 19.9 |
Diploma | 44 | 11.12 | |
Bachelors | 261 | 65.6 | |
Master | 18 | 4.45 | |
PhD | 9 | 2.36 | |
Occupation | Private Sector | 26 | 6.52 |
Government Job | 123 | 30.83 | |
Business | 12 | 3.01 | |
House Wife | 42 | 10.53 | |
Unemployed | 25 | 6.27 | |
Retired | 24 | 6.02 | |
Work From Home | 3 | 1 | |
Student | 143 | 35.84 | |
Monthly Income | Above the Average | 133 | 33.34 |
Average | 195 | 48.9 | |
Below the Average | 73 | 18.3 | |
Marital status | Divorced | 7 | 1.8 |
Married | 202 | 50.6 | |
Single | 188 | 47.1 | |
Widowed | 2 | 0.5 | |
Reasons for use | Muscle Pain | 53 | 13.34 |
Headache | 109 | 27.4 | |
Fever | 33 | 8.23 | |
Toothache | 68 | 17.2 | |
Menstrual Cycle | 60 | 26.20 * | |
Joint Pain | 52 | 13.2 | |
Others | 20 | 5.1 |
Demographic Factors | ||||||
---|---|---|---|---|---|---|
Variables | Gender p-Value | Age p-Value | Education p-Value | Occupation p-Value | Monthly Income p-Value | Marital Status p-Value |
Muscle pain | 0.34 | 0.01 | 0.24 | 0.12 | 0.55 | 0.14 |
Headache | 0.11 | 0.31 | 0.19 | 0.85 | 0.18 | 0.18 |
Fever | 0.16 | 0.03 | 0.63 | 0.26 | 0.34 | 0.53 |
Toothache | 0.10 | 0.35 | 0.12 | 0.11 | 0.22 | 0.66 |
Menstrual cycle | 0.001 | 0.001 | 0.23 | 0.01 | 0.05 | 0.01 |
Joint pain | 0.002 | 0.001 | 0.05 | 0.001 | 0.52 | 0.001 |
Others | 0.29 | 0.18 | 0.45 | 0.25 | 0.67 | 0.01 |
Variables | Categories | Pain Frequency | ||||
---|---|---|---|---|---|---|
Irregular | Daily | Weekly | Monthly | p-Value | ||
Gender | Male | 99 (47.6) | 7 (30.4) | 25 (53.2) | 39 (32.2) | 0.01 |
Female | 109 (52.4) | 16 (69.6) | 22 (46.8) | 82 (67.8) | ||
Age (years) | 18–20 | 30 (14.4) | 5 (21.7) | 14 (29.8) | 26 (21.5) | 0.03 |
21–29 | 67 (32.2) | 5 (21.7) | 12 (25.5) | 42 (34.7) | ||
30–39 | 29 (13.9) | 6 (26.1) | 4 (8.5) | 16 (13.2) | ||
40–49 | 46 (22.1) | 2 (8.7) | 7 (14.9) | 31 (25.6) | ||
50–59 | 30 (14.4) | 4 (17.4) | 8 (17.0) | 4 (3.3) | ||
Above 60 | 6 (2.9) | 1 (4.3) | 2 (4.3) | 2 (1.7) | ||
Education | High School or Less | 39 (18.8) | 5 (21.7) | 13 (27.7) | 20 (16.5) | 0.001 |
Diploma | 25 (12.0) | 2 (8.7) | 5 (10.6) | 12 (9.9) | ||
Bachelors | 136 (65.4) | 10 (43.5) | 26 (55.3) | 85 (70.2) | ||
Master | 6 (2.9) | 3 (13.0) | 1 (2.1) | 4 (3.3) | ||
PHD | 2 (1.0) | 3 (13.0) | 2 (4.3) | - | ||
Occupation | Private Sector | 14 (6.7) | - | 3 (6.4) | 9 (7.4) | 0.43 |
Government Job | 68 (32.7) | 8 (34.8) | 14 (29.8) | 33 (27.3) | ||
Business | 2 (1.0) | 1 (4.3) | 2 (4.3) | 7 (5.8) | ||
House Wife | 25 (12.0) | 3 (13.0) | 4 (8.5) | 10 (8.3) | ||
Unemployed | 13 (6.3) | 2 (8.7) | - | 10 (8.3) | ||
Retired | 14 (6.7) | 2 (8.7) | 4 (8.5) | 4 (3.3) | ||
Work From Home | 1 (0.5) | - | - | 3 (2.5) | ||
Student | 71 (34.1) | 7 (30.4) | 20 (42.6) | 45 (37.2) | ||
Monthly Income | Above the Average | 63 (30.3) | 8 (34.8) | 23 (48.9) | 36 (29.8) | 0.12 |
Average | 101 (48.6) | 9 (39.1) | 19 (40.4) | 66 (54.5) | ||
Below the Average | 44 (21.2) | 6 (26.1) | 5 (10.6) | 19 (15.7) | ||
Marital status | Divorced | 2 (1.0) | - | - | 5 (4.1) | 0.20 |
Married | 111 (53.4) | 12 (52.2) | 22 (46.8) | 57 (47.1) | ||
Single | 95 (45.7) | 10 (43.5) | 25 (53.2) | 58 (47.9) | ||
Widowed | - | 1 (4.3) | - | 1 (0.8) |
Variables | Categories | Regression Model | |
---|---|---|---|
COR (95% CI) | AOR (95% CI) | ||
Gender | Male | 1 | 1 |
Female | 1.53 (1.10, 2.30) | 1.75 (1.10, 2.88) | |
Age (years) | 18–20 | 1 | 1 |
21–29 | 0.60 (0.33, 1.05) | 0.68 (0.34, 1.37) | |
30–39 | 0.59 (0.29, 1.21) | 0.50 (0.17, 1.34) | |
40–49 | 0.58 (0.31, 1.08) | 0.39 (0.15, 1.05) | |
50–59 | 0.36 (0.17, 0.76) | 0.21 (0.07, 0.66) | |
Above 60 | 0.56 (0.15, 1.98) | 0.30 (0.05, 1.92) | |
Education | High School or Less | 1 | 1 |
Diploma | 0.78 (0.37, 1.64) | 0.94 (0.40, 2.22) | |
Bachelors | 0.91 (0.43, 4.32) | 0.92 (0.52, 1.64) | |
Master | 1.37 (0.43, 4.32) | 1.42 (0.41, 4.94) | |
PHD | 2.60 (0.46, 14.04) | 3.50 (0.54, 22.51) | |
Occupation | Private Sector | 1 | 1 |
Government Job | 0.94 (0.40, 2.21) | 1.15 (0.44, 2.97) | |
Business | 5.83 (1.06, 32.02) | 6.12 (1.10, 35.10) | |
House Wife | 0.79 (0.30, 2.13) | 0.76 (0.25, 2.27) | |
Unemployed | 1.10 (0.35, 3.23) | 1.16 (0.37, 3.63) | |
Retired | 0.83 (0.27, 2.55) | 1.52 (0.35, 6.45) | |
Work From Home | 3.50 (0.32, 38.23) | 3.53 (0.29, 42.70) | |
Student | 1.20 (0.51, 2.73) | 0.76 (0.29, 1.97) | |
Monthly Income | Above the Average | 1 | 1 |
Average | 0.87 (0.56, 1.36) | 0.77 (0.47, 1.25) | |
Below the Average | 0.64 (0.36, 1.14) | 0.65 (0.34, 1.22) |
Variables | Categories | Regression Model | |
---|---|---|---|
COR (95% CI) | AOR (95% CI) | ||
Gender | Male | 1 | 1 |
Female | 1.53 (1.10, 2.30) | 1.75 (1.10, 2.88) | |
Age (years) | 18–20 | 1 | 1 |
21–29 | 0.60 (0.33, 1.05) | 0.68 (0.34, 1.37) | |
30–39 | 0.59 (0.29, 1.21) | 0.50 (0.17, 1.34) | |
40–49 | 0.58 (0.31, 1.08) | 0.39 (0.15, 1.05) | |
50–59 | 0.36 (0.17, 0.76) | 0.21 (0.07, 0.66) | |
Above 60 | 0.56 (0.15, 1.98) | 0.30 (0.05, 1.92) | |
Education | High School or Less | 1 | 1 |
Diploma | 0.78 (0.37, 1.64) | 0.94 (0.40, 2.22) | |
Bachelors | 0.91 (0.43, 4.32) | 0.92 (0.52, 1.64) | |
Master | 1.37 (0.43, 4.32) | 1.42 (0.41, 4.94) | |
PHD | 2.60 (0.46, 14.04) | 3.50 (0.54, 22.51) | |
Occupation | Private Sector | 1 | 1 |
Government Job | 0.94 (0.40, 2.21) | 1.15 (0.44, 2.97) | |
Business | 5.83 (1.06, 32.02) | 6.12 (1.10, 35.10) | |
House Wife | 0.79 (0.30, 2.13) | 0.76 (0.25, 2.27) | |
Unemployed | 1.10 (0.35, 3.23) | 1.16 (0.37, 3.63) | |
Retired | 0.83 (0.27, 2.55) | 1.52 (0.35, 6.45) | |
Work From Home | 3.50 (0.32, 38.23) | 3.53 (0.29, 42.70) | |
Student | 1.20 (0.51, 2.73) | 0.76 (0.29, 1.97) | |
Monthly Income | Above the Average | 1 | 1 |
Average | 0.87 (0.56, 1.36) | 0.77 (0.47, 1.25) | |
Below the Average | 0.64 (0.36, 1.14) | 0.65 (0.34, 1.22) |
Variables | Categories | Female | Male | p-Value |
---|---|---|---|---|
Physician | ||||
No | 173 (75.5) | 139 (81.8) | 0.12 | |
Yes | 56 (24.5) | 31 (18.2) | ||
Pharmacist | ||||
No | 159 (69.4) | 137 (80.6) | 0.01 | |
Yes | 70 (30.6) | 33 (19.4) | ||
Relatives | ||||
No | 188 (82.1) | 160 (94.1) | 0.001 | |
Yes | 41 (17.9) | 10 (5.9) | ||
Friends | ||||
No | 209 (91.3) | 156 (91.8) | 0.86 | |
Yes | 20 (8.7) | 14 (8.2) | ||
Social media | ||||
No | 213 (93.0) | 164 (96.5) | 0.13 | |
Yes | 16 (7.0) | 6 (3.5) | ||
Others | ||||
No | 217 (94.8) | 159 (93.5) | 0.60 | |
Yes | 12 (5.2) | 11 (6.5) | ||
Frequency | ||||
Not used | 76 (33.2) | 94 (55.3) | 0.001 | |
1 | 82 (35.8) | 42 (24.7) | ||
2 | 49 (21.4) | 25 (14.7) | ||
3 | 16 (7.0) | 6 (3.5) | ||
4 | 2 (0.9) | 1 (0.6) | ||
More than 4 tablets | 4 (1.7) | 2 (1.2) |
Variables | Categories | Female | Male | p-Value |
---|---|---|---|---|
Aspirin | No | 202 (56.6) | 155 (43.4) | 0.34 |
Yes | 27 (64.3) | 15 (35.7) | ||
Diclofenac | No | 110 (50.2) | 109 (49.8) | 0.001 |
Yes | 119 (66.1) | 61 (33.9) | ||
Ibuprofen | No | 160 (53.7) | 138 (46.3) | 0.01 |
Yes | 69 (69.0) | 32 (31.0) | ||
Celecoxib | No | 205 (55.4) | 165 (44.6) | 0.004 |
Yes | 24 (82.8) | 5 (17.2) | ||
Ketoprofen | No | 228 (57.6) | 168 (42.4) | 0.58 |
Yes | 1 (33.3) | 2 (66.7) | ||
Mefenamic acid | No | 222 (56.8) | 169 (43.2) | 0.08 |
Yes | 7 (87.5) | 1 (12.5) | ||
Meloxicam | No | 222 (56.8) | 166 (42.8) | 0.76 |
Yes | 7 (87.5) | 4 (36.4) | ||
Naproxen | No | 223 (57.3) | 166 (42.7) | 1.00 |
Yes | 6 (60.0) | 4 (40.0) | ||
Piroxicam | No | 221 (57.0) | 167 (43.0) | 0.36 |
Yes | 8 (72.7) | 3 (27.3) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Altahini, A.T.; Aburas, W.; Aljarwan, S.F.; Alsuwayagh, S.A.; Alqahtani, N.F.; Alquwaiay, S.; Anwar, S. Charting the Knowledge and Patterns of Non-Steroidal Anti-Inflammatory Drugs Usage in Hail Population, Saudi Arabia: Insights into the Adverse Effect Profile. Pharmacy 2024, 12, 9. https://doi.org/10.3390/pharmacy12010009
Altahini AT, Aburas W, Aljarwan SF, Alsuwayagh SA, Alqahtani NF, Alquwaiay S, Anwar S. Charting the Knowledge and Patterns of Non-Steroidal Anti-Inflammatory Drugs Usage in Hail Population, Saudi Arabia: Insights into the Adverse Effect Profile. Pharmacy. 2024; 12(1):9. https://doi.org/10.3390/pharmacy12010009
Chicago/Turabian StyleAltahini, Abdullah T., Waled Aburas, Saud F. Aljarwan, Suliman A. Alsuwayagh, Naif F. Alqahtani, Saleh Alquwaiay, and Sirajudheen Anwar. 2024. "Charting the Knowledge and Patterns of Non-Steroidal Anti-Inflammatory Drugs Usage in Hail Population, Saudi Arabia: Insights into the Adverse Effect Profile" Pharmacy 12, no. 1: 9. https://doi.org/10.3390/pharmacy12010009
APA StyleAltahini, A. T., Aburas, W., Aljarwan, S. F., Alsuwayagh, S. A., Alqahtani, N. F., Alquwaiay, S., & Anwar, S. (2024). Charting the Knowledge and Patterns of Non-Steroidal Anti-Inflammatory Drugs Usage in Hail Population, Saudi Arabia: Insights into the Adverse Effect Profile. Pharmacy, 12(1), 9. https://doi.org/10.3390/pharmacy12010009