Redesigning Pharmacy to Improve Public Health Outcomes: Expanding Retail Spaces for Digital Therapeutics to Replace Consumer Products That Increase Mortality and Morbidity Risks
Abstract
:1. Introduction
2. Digital Health Technologies for Improving Healthcare Outcomes
Products | Type of Product | Healthcare Outcomes | References |
---|---|---|---|
RelieVRx | FDA-cleared virtual reality system as PDT intended for treatment of chronic low back pain | Long-term, non-opioid pain reduction in adults with moderate to severe chronic low back pain | [39,55,56,57] |
Welldoc App, BlueStar | FDA-cleared PDT and OTC DTx mobile apps that provide support and digital coaching for patients with diabetes, prediabetes, heart failure, and hypertension | Diabetic patients experienced a statistically significant improvement in hemoglobin A1c levels | [58,59] |
EndeavorOTC, EndeavorRx | OTC DTx and PDT mobile game designed to treat and improve attention deficit hyperactivity disorder (ADHD) symptoms in children and adults using a series of video games | Improvements in attention, multi-tasking, and cognitive function for adults with ADHD. PDT version was also effective for pediatric ADHD | [41,60,61] |
Daylight by Big Health | CBT-based mobile app marketed for generalized anxiety disorder under the FDA enforcement discretion | Long-lasting improvement of generalized anxiety | [62,63] |
Sleepio | Digital CBTi intervention for insomnia marketed under FDA enforcement discretion | Improves irregular sleeping patterns. Has shown effectiveness in improving sleep quality in working adults and adolescents | [64,65,66,67] |
Rejoyn | FDA-cleared adjunct PDT for adults with major depressive disorder (MDD) | Improvement of depressive symptoms for MDD patients who take antidepressants | [68] |
Samsung Galaxy Watch | FDA-cleared wearable for sleep tracking | Supports management and monitoring of sleep, sleep score, and time asleep | [69] |
Oura ring | Consumer wearable for monitoring sleep and general health | Supports healthy lifestyle by monitoring sleep, physical activity, heart rate, and overnight blood oxygen level | [53,70] |
Fitbit | Consumer activity tracker includes an FDA-cleared detection of irregular heart rhythms as signs of atrial fibrillation | Monitoring and promoting physical activity, heart health, and sleep to support healthy lifestyles | [50,71,72,73,74] |
Muse EEG headband | Consumer wearable, EEG-based biofeedback headband. Marketed as “at-home biofeedback training” device | Monitoring and improving mental well-being, obsessive–compulsive disorder (OCD) symptoms, and cognitive functions | [75,76,77,78,79,80] |
Nurosym | Non-invasive vagal neurostimulation device, certified medical device in Europe | Improved heart rate variability, reduction of postural orthostatic tachycardia syndrome (POTS) symptoms | [81,82] |
Nerivio | FDA-cleared, non-invasive neurostimulation wearable targeting inhibitory pain pathways | Provides pain relief, migraine treatment and prevention | [83,84,85,86,87] |
3. Redesigning Retail Pharmacy Spaces for Digital Health Technologies
4. Digital Health Aisles Support Patient Education and Marketing
5. Pharmacies Selling Consumer Products That Increase Mortality Risks
6. Transforming Pharmacies to Improve Healthcare and Public Health Outcomes
7. Limitations and Challenges
8. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Schneider, E.C.; Shah, A.; Doty, M.M.; Tikkanen, R.; Fields, K.; Williams, R.D., II. Reflecting Poorly: Health Care in the US Compared to Other High-Income Countries; The Commonwealth Fund: New York, NY, USA, 2021. [Google Scholar]
- Woolf, S.H.; Schoomaker, H. Life expectancy and mortality rates in the United States, 1959–2017. JAMA 2019, 322, 1996–2016. [Google Scholar] [CrossRef] [PubMed]
- Woolf, S.H. Falling Behind: The Growing Gap in Life Expectancy Between the United States and Other Countries, 1933–2021. Am. J. Public Health 2023, 113, 970–980. [Google Scholar] [CrossRef] [PubMed]
- The Centers for Disease Control and Prevention. Preventing Chronic Disease. Available online: https://www.cdc.gov/pcd/issues/2024/23_0267.htm (accessed on 8 July 2024).
- Bauer, U.E.; Briss, P.A.; Goodman, R.A.; Bowman, B.A. Prevention of chronic disease in the 21st century: Elimination of the leading preventable causes of premature death and disability in the USA. Lancet 2014, 384, 45–52. [Google Scholar] [CrossRef]
- Galvani, A.P.; Parpia, A.S.; Foster, E.M.; Singer, B.H.; Fitzpatrick, M.C. Improving the prognosis of health care in the USA. Lancet 2020, 395, 524–533. [Google Scholar] [CrossRef] [PubMed]
- Dickman, S.L.; Himmelstein, D.U.; Woolhandler, S. Inequality and the health-care system in the USA. Lancet 2017, 389, 1431–1441. [Google Scholar] [CrossRef]
- Corelli, R.L.; Aschebrook-Kilfoy, B.; Kim, G.; Ambrose, P.J.; Hudmon, K.S. Availability of tobacco and alcohol products in Los Angeles community pharmacies. J. Community Health 2012, 37, 113–118. [Google Scholar] [CrossRef] [PubMed]
- Corelli, R.L.; Chai, T.; Karic, A.; Fairman, M.; Baez, K.; Hudmon, K.S. Tobacco and alcohol sales in community pharmacies: Policy statements from U.S. professional pharmacy associations. J. Am. Pharm. Assoc. 2014, 54, 285–288. [Google Scholar] [CrossRef]
- Kotecki, J.E. Sale of alcohol in pharmacies: Results and implications of an empirical study. J. Community Health 2003, 28, 65–77. [Google Scholar] [CrossRef]
- The Centers for Disease Control and Prevention, Alcohol and Public Health. Available online: https://www.cdc.gov/alcohol/features/excessive-alcohol-deaths.html (accessed on 8 July 2024).
- Gellatly, S.; Moszczynski, A.; Fiedeldey, L.; Houle, S.; Smith, M.; Ogbogu, U.; Rudman, D.; Minaker, L.; Shelley, J. “No one went into pharmacy … to sell a lot of Coca-Cola. It’s just sort of a necessary evil”—Community pharmacists’ perceptions of front-of-store sales and ethical tensions in the retail environment. Explor. Res. Clin. Soc. Pharm. 2023, 11, 100312. [Google Scholar] [CrossRef]
- Wilking, C.; Gottlieb, M.A.; Rickles, N. The role of chain pharmacies to promote healthy food retail: Current trends, legal limits, and policy opportunities. Health Mark. Q. 2019, 36, 291–306. [Google Scholar] [CrossRef]
- Katz, M.H. Banning tobacco sales in pharmacies: The right prescription. JAMA 2008, 300, 1451–1453. [Google Scholar] [CrossRef]
- Mossialos, E.; Courtin, E.; Naci, H.; Benrimoj, S.; Bouvy, M.; Farris, K.; Noyce, P.; Sketris, I. From “retailers” to health care providers: Transforming the role of community pharmacists in chronic disease management. Health Policy 2015, 119, 628–639. [Google Scholar] [CrossRef] [PubMed]
- Rens, E.; Scheepers, J.; Foulon, V.; Hutsebaut, C.; Ghijselings, A.; Van den Broeck, K. Building Bridges between Pharmacy and Psychosocial Care: Supporting and Referring Patients with Psychosocial Needs in a Pilot Study with Community Pharmacists. Int. J. Integr. Care 2023, 23, 15. [Google Scholar] [CrossRef] [PubMed]
- Chan, J.T.N.; Nguyen, V.; Tran, T.N.; Nguyen, N.V.; Do, N.T.T.; van Doorn, H.R.; Lewycka, S. Point-of-care testing in private pharmacy and drug retail settings: A narrative review. BMC Infect. Dis. 2023, 23, 551. [Google Scholar] [CrossRef]
- Snyder, S.; Butala, N.; Williams, A.M.; Kneebusch, J. Pharmacist-Driven Alcohol Use Disorder Screening May Increase Inpatient Utilization of Extended-Release Naltrexone: A Single Center Pilot Study. Pharmacy 2024, 12, 26. [Google Scholar] [CrossRef] [PubMed]
- Pinto, S.; Kotschevar, C.; Hunt, A.; Middendorf, A.; Robbins, C.; Miller, E.; Van Gilder, D. Impact of a public health awareness campaign on patients’ perceptions of expanded pharmacy services in South Dakota using the Theory of Planned Behavior. Pharmacy 2022, 10, 178. [Google Scholar] [CrossRef]
- Thomson, K.; Hillier-Brown, F.; Walton, N.; Bilaj, M.; Bambra, C.; Todd, A. The effects of community pharmacy-delivered public health interventions on population health and health inequalities: A review of reviews. Prev. Med. 2019, 124, 98–109. [Google Scholar] [CrossRef]
- Brown, T.J.; Todd, A.; O’Malley, C.; Moore, H.J.; Husband, A.K.; Bambra, C.; Kasim, A.; Sniehotta, F.F.; Steed, L.; Smith, S.; et al. Community pharmacy-delivered interventions for public health priorities: A systematic review of interventions for alcohol reduction, smoking cessation and weight management, including meta-analysis for smoking cessation. BMJ Open 2016, 6, e009828. [Google Scholar] [CrossRef]
- Saramunee, K.; Dewsbury, C.; Cutler, S.; Mackridge, A.J.; Krska, J. Public attitudes towards community pharmacy attributes and preferences for methods for promotion of public health services. Public Health 2016, 140, 186–195. [Google Scholar] [CrossRef]
- Valliant, S.N.; Burbage, S.C.; Pathak, S.; Urick, B.Y. Pharmacists as accessible health care providers: Quantifying the opportunity. J. Manag. Care Spec. Pharm. 2022, 28, 85–90. [Google Scholar] [CrossRef]
- The US Food and Drug Administration, Digital Health Center of Excellence. Available online: https://www.fda.gov/medical-devices/digital-health-center-excellence (accessed on 8 July 2024).
- Shuren, J.; Patel, B.; Gottlieb, S. FDA Regulation of Mobile Medical Apps. JAMA 2018, 320, 337–338. [Google Scholar] [CrossRef] [PubMed]
- Shuren, J.; Doraiswamy, P. Digital therapeutics for MCI and Alzheimer’s disease: A regulatory perspective—Highlights From The Clinical Trials on Alzheimer’s Disease conference (CTAD). J. Prev. Alzheimer’s Dis. 2022, 9, 236–240. [Google Scholar] [CrossRef] [PubMed]
- Patel, N.A.; Butte, A.J. Characteristics and challenges of the clinical pipeline of digital therapeutics. Npj Digit. Med. 2020, 3, 159. [Google Scholar] [CrossRef] [PubMed]
- Hong, J.S.; Wasden, C.; Han, D.H. Introduction of digital therapeutics. Comput. Methods Programs Biomed. 2021, 209, 106319. [Google Scholar] [CrossRef] [PubMed]
- Watson, A.; Chapman, R.; Shafai, G.; Maricich, Y.A. FDA regulations and prescription digital therapeutics: Evolving with the technologies they regulate. Front. Digit. Health 2023, 5, 1086219. [Google Scholar] [CrossRef] [PubMed]
- Torous, J.; Stern, A.D.; Bourgeois, F.T. Regulatory considerations to keep pace with innovation in digital health products. Npj Digit. Med. 2022, 5, 121. [Google Scholar] [CrossRef] [PubMed]
- Biskupiak, Z.; Ha, V.V.; Rohaj, A.; Bulaj, G. Digital Therapeutics for Improving Effectiveness of Pharmaceutical Drugs and Biological Products: Preclinical and Clinical Studies Supporting Development of Drug + Digital Combination Therapies for Chronic Diseases. J. Clin. Med. 2024, 13, 403. [Google Scholar] [CrossRef]
- Jiang, X.; Ming, W.K.; You, J.H. The Cost-Effectiveness of Digital Health Interventions on the Management of Cardiovascular Diseases: Systematic Review. J. Med. Internet Res. 2019, 21, e13166. [Google Scholar] [CrossRef] [PubMed]
- Abbadessa, G.; Brigo, F.; Clerico, M.; De Mercanti, S.; Trojsi, F.; Tedeschi, G.; Bonavita, S.; Lavorgna, L. Digital therapeutics in neurology. J. Neurol. 2022, 269, 1209–1224. [Google Scholar] [CrossRef]
- Chung, J.Y. Digital therapeutics and clinical pharmacology. Transl. Clin. Pharmacol. 2019, 27, 6–11. [Google Scholar] [CrossRef]
- Ribba, B.; Peck, R.; Hutchinson, L.; Bousnina, I.; Motti, D. Digital Therapeutics as a New Therapeutic Modality: A Review from the Perspective of Clinical Pharmacology. Clin. Pharmacol. Ther. 2023, 114, 578–590. [Google Scholar] [CrossRef]
- Wang, C.; Lee, C.; Shin, H. Digital therapeutics from bench to bedside. Npj Digit. Med. 2023, 6, 38. [Google Scholar] [CrossRef]
- Rohaj, A.; Bulaj, G. Digital Therapeutics (DTx) Expand Multimodal Treatment Options for Chronic Low Back Pain: The Nexus of Precision Medicine, Patient Education, and Public Health. Healthcare 2023, 11, 1469. [Google Scholar] [CrossRef]
- Maddox, T.; Oldstone, L.; Sparks, C.Y.; Sackman, J.; Oyao, A.; Garcia, L.; Maddox, R.U.; Ffrench, K.; Garcia, H.; Adair, T.; et al. In-Home Virtual Reality Program for Chronic Lower Back Pain: A Randomized Sham-Controlled Effectiveness Trial in a Clinically Severe and Diverse Sample. Mayo Clin. Proc. Digit. Health 2023, 1, 563–573. [Google Scholar] [CrossRef]
- Garcia, L.M.; Birckhead, B.J.; Krishnamurthy, P.; Sackman, J.; Mackey, I.G.; Louis, R.G.; Salmasi, V.; Maddox, T.; Darnall, B.D. An 8-Week Self-Administered at-Home Behavioral Skills-Based Virtual Reality Program for Chronic Low Back Pain: Double-Blind, Randomized, Placebo-Controlled Trial Conducted during COVID-19. J. Med. Internet Res. 2021, 23, e26292. [Google Scholar] [CrossRef]
- Stamatis, C.A.; Mercaldi, C.; Kollins, S.H. A Single-Arm Pivotal Trial to Assess the Efficacy of Akl-T01, a Novel Digital Intervention for Attention, in Adults Diagnosed With ADHD. J. Am. Acad. Child Adolesc. Psychiatry 2023, 62, S318. [Google Scholar] [CrossRef]
- Kollins, S.H.; DeLoss, D.J.; Cañadas, E.; Lutz, J.; Findling, R.L.; Keefe, R.S.; Epstein, J.N.; Cutler, A.J.; Faraone, S.V. A novel digital intervention for actively reducing severity of paediatric ADHD (STARS-ADHD): A randomised controlled trial. Lancet Digit. Health 2020, 2, e168–e178. [Google Scholar] [CrossRef] [PubMed]
- Akili Interactive, EndeavorOTC. Available online: https://www.endeavorotc.com/ (accessed on 8 July 2024).
- Mattison, G.; Canfell, O.; Forrester, D.; Dobbins, C.; Smith, D.; Töyräs, J.; Sullivan, C. The influence of wearables on health care outcomes in chronic disease: Systematic review. J. Med. Internet Res. 2022, 24, e36690. [Google Scholar] [CrossRef] [PubMed]
- Kang, H.S.; Exworthy, M. Wearing the future—Wearables to empower users to take greater responsibility for their health and care: Scoping review. JMIR Mhealth Uhealth 2022, 10, e35684. [Google Scholar] [CrossRef]
- Babu, M.; Lautman, Z.; Lin, X.; Sobota, M.H.; Snyder, M.P. Wearable Devices: Implications for Precision Medicine and the Future of Health Care. Annu. Rev. Med. 2024, 75, 401–415. [Google Scholar] [CrossRef]
- Brickwood, K.-J.; Watson, G.; O’Brien, J.; Williams, A.D. Consumer-based wearable activity trackers increase physical activity participation: Systematic review and meta-analysis. JMIR Mhealth Uhealth 2019, 7, e11819. [Google Scholar] [CrossRef] [PubMed]
- Zahrt, O.H.; Evans, K.; Murnane, E.; Santoro, E.; Baiocchi, M.; Landay, J.; Delp, S.; Crum, A. Effects of wearable fitness trackers and activity adequacy mindsets on affect, behavior, and health: Longitudinal randomized controlled trial. J. Med. Internet Res. 2023, 25, e40529. [Google Scholar] [CrossRef] [PubMed]
- Szeto, K.; Arnold, J.; Singh, B.; Gower, B.; Simpson, C.E.; Maher, C. Interventions Using Wearable Activity Trackers to Improve Patient Physical Activity and Other Outcomes in Adults Who Are Hospitalized: A Systematic Review and Meta-analysis. JAMA Netw. Open 2023, 6, e2318478. [Google Scholar] [CrossRef] [PubMed]
- Heizmann, A.-N.; Chapelle, C.; Laporte, S.; Roche, F.; Hupin, D.; Le Hello, C. Impact of wearable device-based interventions with feedback for increasing daily walking activity and physical capacities in cardiovascular patients: A systematic review and meta-analysis of randomised controlled trials. BMJ Open 2023, 13, e069966. [Google Scholar] [CrossRef] [PubMed]
- Master, H.; Annis, J.; Huang, S.; Beckman, J.A.; Ratsimbazafy, F.; Marginean, K.; Carroll, R.; Natarajan, K.; Harrell, F.E.; Roden, D.M.; et al. Association of step counts over time with the risk of chronic disease in the All of Us Research Program. Nat. Med. 2022, 28, 2301–2308. [Google Scholar] [CrossRef] [PubMed]
- Electronics, S. Samsung’s Sleep Apnea Feature on Galaxy Watch First of Its Kind Authorized by US FDA. Available online: https://news.samsung.com/us/samsung-sleep-apnea-feature-galaxy-watch-first-its-kind-authorized-us-fda/ (accessed on 8 July 2024).
- Bloem, B.R.; Post, E.; Hall, D.A. An apple a day to keep the Parkinson’s disease doctor away? Ann. Neurol. 2023, 93, 681–685. [Google Scholar] [CrossRef] [PubMed]
- Svensson, T.; Madhawa, K.; Nt, H.; Chung, U.-i.; Svensson, A.K. Validity and reliability of the Oura Ring Generation 3 (Gen3) with Oura sleep staging algorithm 2.0 (OSSA 2.0) when compared to multi-night ambulatory polysomnography: A validation study of 96 participants and 421,045 epochs. Sleep Med. 2024, 115, 251–263. [Google Scholar] [CrossRef] [PubMed]
- Amirdelfan, K.; Hong, M.; Tay, B.; Reddy, S.; Reddy, V.; Yang, M.; Khanna, K.; Shirvalkar, P.; Abrecht, C.; Gulati, A. High-Frequency Impulse Therapy for Treatment of Chronic Back Pain: A Multicenter Randomized Controlled Pilot Study. J. Pain Res. 2021, 14, 2991–2999. [Google Scholar] [CrossRef]
- Maddox, T.; Sparks, C.; Oldstone, L.; Maddox, R.; Ffrench, K.; Garcia, H.; Krishnamurthy, P.; Okhotin, D.; Garcia, L.M.; Birckhead, B.J.; et al. Durable chronic low back pain reductions up to 24 months after treatment for an accessible, 8-week, in-home behavioral skills-based virtual reality program: A randomized controlled trial. Pain Med. 2023, 24, 1200–1203. [Google Scholar] [CrossRef]
- Garcia, L.; Birckhead, B.; Krishnamurthy, P.; Mackey, I.; Sackman, J.; Salmasi, V.; Louis, R.; Castro, C.; Maddox, R.; Maddox, T.; et al. Durability of the Treatment Effects of an 8-Week Self-administered Home-Based Virtual Reality Program for Chronic Low Back Pain: 6-Month Follow-Up Study of a Randomized Clinical Trial. J. Med. Internet Res. 2022, 24, e37480. [Google Scholar] [CrossRef] [PubMed]
- Maddox, T.; Oldstone, L.; Sackman, J.; Judge, E.; Maddox, R.; Adair, T.; Ffrench, K.; Sparks, C.Y.; Darnall, B.D. Sociodemographic Predictors of Clinical Effectiveness, Therapeutic Program Engagement, and Device Usability for an In-Home Virtual Reality Program for Chronic Low Back Pain: Secondary Analysis of a Randomized Controlled Trial. J. Med. Ext. Real. 2024, 1, 65–72. [Google Scholar] [CrossRef]
- Quinn, C.C.; Clough, S.S.; Minor, J.M.; Lender, D.; Okafor, M.C.; Gruber-Baldini, A. WellDoc mobile diabetes management randomized controlled trial: Change in clinical and behavioral outcomes and patient and physician satisfaction. Diabetes Technol. Ther. 2008, 10, 160–168. [Google Scholar] [CrossRef] [PubMed]
- Agarwal, P.; Mukerji, G.; Desveaux, L.; Ivers, N.M.; Bhattacharyya, O.; Hensel, J.M.; Shaw, J.; Bouck, Z.; Jamieson, T.; Onabajo, N. Mobile app for improved self-management of type 2 diabetes: Multicenter pragmatic randomized controlled trial. JMIR Mhealth Uhealth 2019, 7, e10321. [Google Scholar] [CrossRef] [PubMed]
- Kollins, S.H.; Childress, A.; Heusser, A.C.; Lutz, J. Effectiveness of a digital therapeutic as adjunct to treatment with medication in pediatric ADHD. Npj Digit. Med. 2021, 4, 58. [Google Scholar] [CrossRef] [PubMed]
- Maple, A.; Palko, L.; Cañadas, E.; Jina, A. STARS Adjunct Trial: Evidence for the Effectiveness of a Digital Therapeutic as Adjunct to Treatment With Medication in Pediatric ADHD. CNS Spectr. 2023, 28, 215–216. [Google Scholar] [CrossRef]
- Carl, J.R.; Miller, C.B.; Henry, A.L.; Davis, M.L.; Stott, R.; Smits, J.A.J.; Emsley, R.; Gu, J.; Shin, O.; Otto, M.W.; et al. Efficacy of digital cognitive behavioral therapy for moderate-to-severe symptoms of generalized anxiety disorder: A randomized controlled trial. Depress Anxiety 2020, 37, 1168–1178. [Google Scholar] [CrossRef] [PubMed]
- Miller, C.B.; Gu, J.; Henry, A.L.; Davis, M.L.; Espie, C.A.; Stott, R.; Heinz, A.J.; Bentley, K.H.; Goodwin, G.M.; Gorman, B.S. Feasibility and efficacy of a digital CBT intervention for symptoms of Generalized Anxiety Disorder: A randomized multiple-baseline study. J. Behav. Ther. Exp. Psychiatry 2021, 70, 101609. [Google Scholar] [CrossRef]
- Cowie, J.; Bower, J.L.; Gonzalez, R.; Alfano, C.A. Multimedia field test: Digitalizing better sleep using the Sleepio Program. Cogn. Behav. Pract. 2018, 25, 442–448. [Google Scholar] [CrossRef]
- Mathews, A.; Gibbons, N.; Harrison, E.; Ukoumunne, O.C.; Stallard, P. A feasibility study to explore the use of digital treatment of sleep as a first-step intervention to improve adolescent mental health. Behav. Sleep Med. 2023, 21, 172–184. [Google Scholar] [CrossRef]
- Bostock, S.; Luik, A.I.; Espie, C.A. Sleep and Productivity Benefits of Digital Cognitive Behavioral Therapy for Insomnia: A Randomized Controlled Trial Conducted in the Workplace Environment. J. Occup. Environ. Med. 2016, 58, 683–689. [Google Scholar] [CrossRef]
- Espie, C.A.; Emsley, R.; Kyle, S.D.; Gordon, C.; Drake, C.L.; Siriwardena, A.N.; Cape, J.; Ong, J.C.; Sheaves, B.; Foster, R.; et al. Effect of Digital Cognitive Behavioral Therapy for Insomnia on Health, Psychological Well-being, and Sleep-Related Quality of Life: A Randomized Clinical Trial. JAMA Psychiatry 2019, 76, 21–30. [Google Scholar] [CrossRef] [PubMed]
- Rejoynhsp.com. Available online: https://www.rejoynhcp.com/ (accessed on 8 July 2024).
- Kim, D.; Joo, E.Y.; Choi, S.J. Validation of the Samsung Smartwatch for Sleep–Wake Determination and Sleep Stage Estimation. J. Sleep Med. 2023, 20, 28–34. [Google Scholar] [CrossRef]
- Ong, J.L.; Golkashani, H.A.; Ghorbani, S.; Wong, K.F.; Chee, N.I.Y.N.; Willoughby, A.R.; Chee, M.W.L. Selecting a sleep tracker from EEG-based, iteratively improved, low-cost multisensor, and actigraphy-only devices. Sleep Health 2024, 10, 9–23. [Google Scholar] [CrossRef] [PubMed]
- Haghayegh, S.; Khoshnevis, S.; Smolensky, M.H.; Diller, K.R.; Castriotta, R.J. Accuracy of Wristband Fitbit Models in Assessing Sleep: Systematic Review and Meta-Analysis. J. Med. Internet Res. 2019, 21, e16273. [Google Scholar] [CrossRef] [PubMed]
- Ringeval, M.; Wagner, G.; Denford, J.; Paré, G.; Kitsiou, S. Fitbit-based interventions for healthy lifestyle outcomes: Systematic review and meta-analysis. J. Med. Internet Res. 2020, 22, e23954. [Google Scholar] [CrossRef] [PubMed]
- Eylon, G.; Tikotzky, L.; Dinstein, I. Performance evaluation of Fitbit Charge 3 and actigraphy vs. polysomnography: Sensitivity, specificity, and reliability across participants and nights. Sleep Health 2023, 9, 407–416. [Google Scholar] [CrossRef] [PubMed]
- Lubitz, S.A.; Faranesh, A.Z.; Selvaggi, C.; Atlas, S.J.; McManus, D.D.; Singer, D.E.; Pagoto, S.; McConnell, M.V.; Pantelopoulos, A.; Foulkes, A.S. Detection of Atrial Fibrillation in a Large Population Using Wearable Devices: The Fitbit Heart Study. Circulation 2022, 146, 1415–1424. [Google Scholar] [CrossRef] [PubMed]
- Viczko, J.; Tarrant, J.; Jackson, R. Effects on mood and EEG states after meditation in augmented reality with and without adjunctive neurofeedback. Front. Virtual Real. 2021, 2, 618381. [Google Scholar] [CrossRef]
- Krigolson, O.E.; Hammerstrom, M.R.; Abimbola, W.; Trska, R.; Wright, B.W.; Hecker, K.G.; Binsted, G. Using Muse: Rapid Mobile Assessment of Brain Performance. Front. Neurosci. 2021, 15, 634147. [Google Scholar] [CrossRef] [PubMed]
- Sidelinger, L.; Zhang, M.; Frohlich, F.; Daughters, S.B. Day-to-day individual alpha frequency variability measured by a mobile EEG device relates to anxiety. Eur. J. Neurosci. 2023, 57, 1815–1833. [Google Scholar] [CrossRef]
- Hawley, L.L.; Rector, N.A.; DaSilva, A.; Laposa, J.M.; Richter, M.A. Technology supported mindfulness for obsessive compulsive disorder: Self-reported mindfulness and EEG correlates of mind wandering. Behav. Res. Ther. 2021, 136, 103757. [Google Scholar] [CrossRef] [PubMed]
- Arsalan, A.; Majid, M.; Butt, A.R.; Anwar, S.M. Classification of perceived mental stress using a commercially available EEG headband. IEEE J. Biomed. Health Inform. 2019, 23, 2257–2264. [Google Scholar] [CrossRef]
- Arsalan, A.; Majid, M. A study on multi-class anxiety detection using wearable EEG headband. J. Ambient Intell. Humaniz. Comput. 2022, 13, 5739–5749. [Google Scholar] [CrossRef]
- Stavrakis, S.; Chakraborty, P.; Farhat, K.; Whyte, S.; Morris, L.; Abideen Asad, Z.U.; Karfonta, B.; Anjum, J.; Matlock, H.G.; Cai, X.; et al. Noninvasive Vagus Nerve Stimulation in Postural Tachycardia Syndrome: A Randomized Clinical Trial. JACC Clin. Electrophysiol. 2024, 10, 346–355. [Google Scholar] [CrossRef] [PubMed]
- Geng, D.; Liu, X.; Wang, Y.; Wang, J. The effect of transcutaneous auricular vagus nerve stimulation on HRV in healthy young people. PLoS ONE 2022, 17, e0263833. [Google Scholar] [CrossRef] [PubMed]
- Yarnitsky, D.; Dodick, D.W.; Grosberg, B.M.; Burstein, R.; Ironi, A.; Harris, D.; Lin, T.; Silberstein, S.D. Remote Electrical Neuromodulation (REN) Relieves Acute Migraine: A Randomized, Double-Blind, Placebo-Controlled, Multicenter Trial. Headache J. Head Face Pain 2019, 59, 1240–1252. [Google Scholar] [CrossRef] [PubMed]
- Tepper, S.J.; Rabany, L.; Cowan, R.P.; Smith, T.R.; Grosberg, B.M.; Torphy, B.D.; Harris, D.; Vizel, M.; Ironi, A.; Stark-Inbar, A.; et al. Remote electrical neuromodulation for migraine prevention: A double-blind, randomized, placebo-controlled clinical trial. Headache J. Head Face Pain 2023, 63, 377–389. [Google Scholar] [CrossRef] [PubMed]
- Hershey, A.D.; Lin, T.; Gruper, Y.; Harris, D.; Ironi, A.; Berk, T.; Szperka, C.L.; Berenson, F. Remote electrical neuromodulation for acute treatment of migraine in adolescents. Headache J. Head Face Pain 2021, 61, 310–317. [Google Scholar] [CrossRef]
- Grosberg, B.; Rabany, L.; Lin, T.; Harris, D.; Vizel, M.; Ironi, A.; O’Carroll, C.P.; Schim, J. Safety and efficacy of remote electrical neuromodulation for the acute treatment of chronic migraine: An open-label study. Pain Rep. 2021, 6, e966. [Google Scholar] [CrossRef]
- Blumenfeld, A.M.; Rabany, L.; Ironi, A.; Stark-Inbar, A.; Harris, D.; Singh, R.B.H.; Harriott, A.M. Temporal analysis of remote electric neuromodulation for the prevention of migraine. Pain Manag. 2023, 13, 425–432. [Google Scholar] [CrossRef]
- Vatanka, P.; Lofton, J.C. Re-envisioning the Pharmacist’s Role in the Era of Digital Health—CPhA’s Inaugural Digital Health Conference. J. Contemp. Pharm. Pract. 2020, 67, 23–32. [Google Scholar] [CrossRef]
- Aungst, T.D.; Miranda, A.C.; Serag-Bolos, E.S. How mobile devices are changing pharmacy practice. Am. J. Health Syst. Pharm. 2015, 72, 494–500. [Google Scholar] [CrossRef] [PubMed]
- Shafai, G.; Aungst, T.D. Prescription digital therapeutics: A new frontier for pharmacists and the future of treatment. J. Am. Pharm. Assoc. 2023, 63, 1030–1034. [Google Scholar] [CrossRef]
- Alsahali, S. Awareness, views, perceptions, and beliefs of pharmacy interns regarding digital health in Saudi Arabia: Cross-sectional study. JMIR Med. Educ. 2021, 7, e31149. [Google Scholar] [CrossRef] [PubMed]
- AMCP Partnership Forum Develops Steps to Strengthen Evaluation of Digital Therapeutics. Available online: https://www.amcp.org/About/Media/Press-Releases/amcp-partnership-forum-steps-strengthen-evaluation-dtx (accessed on 18 March 2024).
- Ranchon, F.; Chanoine, S.; Lambert-Lacroix, S.; Bosson, J.-L.; Moreau-Gaudry, A.; Bedouch, P. Development of artificial intelligence powered apps and tools for clinical pharmacy services: A systematic review. Int. J. Med. Inform. 2023, 172, 104983. [Google Scholar] [CrossRef]
- Cochran, J.M.; Heidary, Z.; Knights, J. Characterization of activity behavior using a digital medicine system and comparison to medication ingestion in patients with serious mental illness. Npj Digit. Med. 2021, 4, 63. [Google Scholar] [CrossRef] [PubMed]
- Sverdlov, O.; van Dam, J.; Hannesdottir, K.; Thornton-Wells, T. Digital Therapeutics: An Integral Component of Digital Innovation in Drug Development. Clin. Pharmacol. Ther. 2018, 104, 72–80. [Google Scholar] [CrossRef]
- Giravi, H.Y.; Biskupiak, Z.; Tyler, L.S.; Bulaj, G. Adjunct Digital Interventions Improve Opioid-Based Pain Management: Impact of Virtual Reality and Mobile Applications on Patient-Centered Pharmacy Care. Front. Digit. Health 2022, 4, 884047. [Google Scholar] [CrossRef] [PubMed]
- Maricich, Y.A.; Xiong, X.; Gerwien, R.; Kuo, A.; Velez, F.; Imbert, B.; Boyer, K.; Luderer, H.F.; Braun, S.; Williams, K. Real-world evidence for a prescription digital therapeutic to treat opioid use disorder. Curr. Med. Res. Opin. 2021, 37, 175–183. [Google Scholar] [CrossRef]
- Maricich, Y.A.; Bickel, W.K.; Marsch, L.A.; Gatchalian, K.; Botbyl, J.; Luderer, H.F. Safety and efficacy of a prescription digital therapeutic as an adjunct to buprenorphine for treatment of opioid use disorder. Curr. Med. Res. Opin. 2021, 37, 167–173. [Google Scholar] [CrossRef]
- Maricich, Y.A.; Gerwien, R.; Kuo, A.; Malone, D.C.; Velez, F.F. Real-world use and clinical outcomes after 24 weeks of treatment with a prescription digital therapeutic for opioid use disorder. Hosp. Pract. 2021, 48, 348–355. [Google Scholar] [CrossRef] [PubMed]
- Velez, F.F.; Anastassopoulos, K.P.; Colman, S.; Shah, N.; Kauffman, L.; Murphy, S.M.; Ruetsch, C.; Maricich, Y.A. Reduced Healthcare Resource Utilization in Patients with Opioid Use Disorder in the 12 Months After Initiation of a Prescription Digital Therapeutic. Adv. Ther. 2022, 39, 4131–4145. [Google Scholar] [CrossRef] [PubMed]
- Velez, F.F.; Malone, D.C. Cost-Effectiveness Analysis of a Prescription Digital Therapeutic for the Treatment of Opioid Use Disorder. J. Mark. Access Health Policy 2021, 9, 1966187. [Google Scholar] [CrossRef] [PubMed]
- MacLeod, J.; Im, G.H.; Smith, M.; Vigersky, R.A. Shining the Spotlight on Multiple Daily Insulin Therapy: Real-World Evidence of the InPen Smart Insulin Pen. Diabetes Technol. Ther. 2024, 26, 33–39. [Google Scholar] [CrossRef] [PubMed]
- Daly, A.B.; Boughton, C.K.; Nwokolo, M.; Hartnell, S.; Wilinska, M.E.; Cezar, A.; Evans, M.L.; Hovorka, R. Fully automated closed-loop insulin delivery in adults with type 2 diabetes: An open-label, single-center, randomized crossover trial. Nat. Med. 2023, 29, 203–208. [Google Scholar] [CrossRef] [PubMed]
- Rafiei, R.; Williams, C.; Jiang, J.; Aungst, T.D.; Durrer, M.; Tran, D.; Howald, R. Digital Health Integration Assessment and Maturity of the United States Biopharmaceutical Industry: Forces Driving the Next Generation of Connected Autoinjectable Devices. JMIR Mhealth Uhealth 2021, 9, e25406. [Google Scholar] [CrossRef] [PubMed]
- Hakami, A.M.; Almutairi, B.; Alanazi, A.S.; Alzahrani, M.A.; Alanazi, A.S.; Alzahrani, M.A., Sr. Effect of Mobile Apps on Medication Adherence of Type 2 Diabetes Mellitus: A Systematic Review of Recent Studies. Cureus 2024, 16, e51791. [Google Scholar] [CrossRef] [PubMed]
- Islam, S.M.S.; Mishra, V.; Siddiqui, M.U.; Moses, J.C.; Adibi, S.; Nguyen, L.; Wickramasinghe, N. Smartphone Apps for Diabetes Medication Adherence: Systematic Review. JMIR Diabetes 2022, 7, e33264. [Google Scholar] [CrossRef]
- FDA. Regulatory Considerations for Prescription Drug Use-Related Software. Available online: https://www.fda.gov/regulatory-information/search-fda-guidance-documents/regulatory-considerations-prescription-drug-use-related-software (accessed on 10 January 2023).
- Johnson, K.B.; Wei, W.-Q.; Weeraratne, D.; Frisse, M.E.; Misulis, K.; Rhee, K.; Zhao, J.; Snowdon, J.L. Precision Medicine, AI, and the Future of Personalized Health Care. Clin. Transl. Sci. 2021, 14, 86–93. [Google Scholar] [CrossRef]
- Dhital, R.; Sakulwach, S.; Robert, G.; Vasilikou, C.; Sin, J. Systematic review on the effects of the physical and social aspects of community pharmacy spaces on service users and staff. Perspect. Public Health 2022, 142, 77–93. [Google Scholar] [CrossRef]
- Fleming, G.A.; Petrie, J.R.; Bergenstal, R.M.; Holl, R.W.; Peters, A.L.; Heinemann, L. Diabetes Digital App Technology: Benefits, Challenges, and Recommendations. A Consensus Report by the European Association for the Study of Diabetes (EASD) and the American Diabetes Association (ADA) Diabetes Technology Working Group. Diabetes Care 2020, 43, 250–260. [Google Scholar] [CrossRef]
- Doyle-Delgado, K.; Chamberlain, J.J. Use of diabetes-related applications and digital health tools by people with diabetes and their health care providers. Clin. Diabetes 2020, 38, 449–461. [Google Scholar] [CrossRef] [PubMed]
- Moschonis, G.; Siopis, G.; Jung, J.; Eweka, E.; Willems, R.; Kwasnicka, D.; Asare, B.Y.-A.; Kodithuwakku, V.; Verhaeghe, N.; Vedanthan, R. Effectiveness, reach, uptake, and feasibility of digital health interventions for adults with type 2 diabetes: A systematic review and meta-analysis of randomised controlled trials. Lancet Digit. Health 2023, 5, e125–e143. [Google Scholar] [CrossRef] [PubMed]
- Yao, W.; Han, Y.; Yang, L.; Chen, Y.; Yan, S.; Cheng, Y. Electronic Interactive Games for Glycemic Control in Individuals With Diabetes: Systematic Review and Meta-Analysis. JMIR Serious Games 2024, 12, e43574. [Google Scholar] [CrossRef] [PubMed]
- Raza, A.; Wasim, M.; Ishaq, M.I. Virtual reality-based product displays to inspire consumers’ purchase intentions: An experimental study. J. Bus. Res. 2024, 175, 114540. [Google Scholar] [CrossRef]
- Ryan, J.; Edney, S.; Maher, C. Anxious or empowered? A cross-sectional study exploring how wearable activity trackers make their owners feel. BMC Psychol. 2019, 7, 42. [Google Scholar] [CrossRef] [PubMed]
- Nuss, K.; Moore, K.; Nelson, T.; Li, K. Effects of motivational interviewing and wearable fitness trackers on motivation and physical activity: A systematic review. Am. J. Health Promot. 2021, 35, 226–235. [Google Scholar] [CrossRef] [PubMed]
- Hunkin, H.; King, D.L.; Zajac, I.T. Evaluating the feasibility of a consumer-grade wearable EEG headband to aid assessment of state and trait mindfulness. J. Clin. Psychol. 2021, 77, 2559–2575. [Google Scholar] [CrossRef]
- Herman, K.; Ciechanowski, L.; Przegalińska, A. Emotional well-being in urban wilderness: Assessing states of calmness and alertness in informal green spaces (IGSs) with muse—Portable EEG headband. Sustainability 2021, 13, 2212. [Google Scholar] [CrossRef]
- Acabchuk, R.L.; Simon, M.A.; Low, S.; Brisson, J.M.; Johnson, B.T. Measuring meditation progress with a consumer-grade EEG device: Caution from a randomized controlled trial. Mindfulness 2021, 12, 68–81. [Google Scholar] [CrossRef]
- Ciardulli, L.M.; Goode, J.-V.R. Using Health Observances to Promote Wellness in Community Pharmacies. J. Am. Pharm. Assoc. 2003, 43, 61–68. [Google Scholar] [CrossRef] [PubMed]
- Ward, K.; Hawthorne, K. Do patients read health promotion posters in the waiting room? A study in one general practice. Br. J. Gen. Pract. 1994, 44, 583–585. [Google Scholar]
- WICKE, D.; LORGE, R.; COPPIN, R.; JONES, K. The Effectiveness of Waiting Room Notice-Boards as a Vehicle for Health Education. Fam. Pract. 1994, 11, 292–295. [Google Scholar] [CrossRef] [PubMed]
- Chadi, A.; Thirion, D.J.; David, P.-M. Vaccine promotion strategies in community pharmacy addressing vulnerable populations: A scoping review. BMC Public Health 2023, 23, 1855. [Google Scholar] [CrossRef] [PubMed]
- Hasanica, N.; Ramic-Catak, A.; Mujezinovic, A.; Begagic, S.; Galijasevic, K.; Oruc, M. The Effectiveness of Leaflets and Posters as a Health Education Method. Mater Sociomed 2020, 32, 135–139. [Google Scholar] [CrossRef]
- Maskell, K.; McDonald, P.; Paudyal, P. Effectiveness of health education materials in general practice waiting rooms: A cross-sectional study. Br. J. Gen. Pract. 2018, 68, e869–e876. [Google Scholar] [CrossRef] [PubMed]
- Han, Y.; Chandukala, S.R.; Li, S. Impact of different types of in-store displays on consumer purchase behavior. J. Retail. 2022, 98, 432–452. [Google Scholar] [CrossRef]
- Scandiffio, J.; Zhang, M.; Karsan, I.; Charow, R.; Anderson, M.; Salhia, M.; Wiljer, D. The role of mentoring and coaching of healthcare professionals for digital technology adoption and implementation: A scoping review. Digit. Health 2024, 10, 20552076241238075. [Google Scholar] [CrossRef]
- Nazeha, N.; Pavagadhi, D.; Kyaw, B.M.; Car, J.; Jimenez, G.; Tudor Car, L. A digitally competent health workforce: Scoping review of educational frameworks. J. Med. Internet Res. 2020, 22, e22706. [Google Scholar] [CrossRef] [PubMed]
- Borges do Nascimento, I.J.; Abdulazeem, H.; Vasanthan, L.T.; Martinez, E.Z.; Zucoloto, M.L.; Østengaard, L.; Azzopardi-Muscat, N.; Zapata, T.; Novillo-Ortiz, D. Barriers and facilitators to utilizing digital health technologies by healthcare professionals. Npj Digit. Med. 2023, 6, 161. [Google Scholar] [CrossRef]
- Mantel-Teeuwisse, A.K.; Meilianti, S.; Khatri, B.; Yi, W.; Azzopardi, L.M.; Acosta Gómez, J.; Gülpınar, G.; Bennara, K.; Uzman, N. Digital Health in Pharmacy Education: Preparedness and Responsiveness of Pharmacy Programmes. Educ. Sci. 2021, 11, 296. [Google Scholar] [CrossRef]
- Wong, J.C.; Hekimyan, L.; Cruz, F.A.; Brower, T. Identifying Pertinent Digital Health Topics to Incorporate into Self-Care Pharmacy Education. Pharmacy 2024, 12, 96. [Google Scholar] [CrossRef]
- Rodis, J.; Aungst, T.D.; Brown, N.V.; Cui, Y.; Tam, L. Enhancing Pharmacy Student Learning and Perceptions of Medical Apps. JMIR Mhealth Uhealth 2016, 4, e55. [Google Scholar] [CrossRef]
- Darnell, J.C.; Lou, M.; Goldstone, L.W. Evaluating Change in Student Pharmacists’ Familiarity, Attitudes, Comfort, and Knowledge as a Result of Integrating Digital Health Topics Into a Case Conference Series: Cohort Study. JMIR Med. Educ. 2023, 9, e43313. [Google Scholar] [CrossRef]
- Hoving, C.; Visser, A.; Dolan Mullen, P.; Van den Borne, B. A history of patient education by health professionals in Europe and North America: From authority to shared decision making education. Patient Edu. Counsel. 2010, 78, 275–281. [Google Scholar] [CrossRef]
- Crosbie, E.; Florence, D. Expanding our understanding of industry opposition to help implement sugar-sweetened beverage taxation. Public Health Nutr. 2022, 25, 180–182. [Google Scholar] [CrossRef] [PubMed]
- Moodie, R.; Stuckler, D.; Monteiro, C.; Sheron, N.; Neal, B.; Thamarangsi, T.; Lincoln, P.; Casswell, S. Profits and pandemics: Prevention of harmful effects of tobacco, alcohol, and ultra-processed food and drink industries. Lancet 2013, 381, 670–679. [Google Scholar] [CrossRef]
- Hoe, C.; Weiger, C.; Minosa, M.K.R.; Alonso, F.; Koon, A.D.; Cohen, J.E. Strategies to expand corporate autonomy by the tobacco, alcohol and sugar-sweetened beverage industry: A scoping review of reviews. Glob. Health 2022, 18, 17. [Google Scholar] [CrossRef] [PubMed]
- The Centers for Disease Control and Prevention, Smoking and Tobacco Use. Available online: https://www.cdc.gov/tobacco/data_statistics/fact_sheets/adult_data/cig_smoking/index.htm (accessed on 8 July 2024).
- The, L. Tobacco elimination: An economic and public health imperative. Lancet 2017, 389, 225. [Google Scholar] [CrossRef]
- Levy, D.E.; Regan, S.; Perez, G.K.; Muzikansky, A.; Friedman, E.R.; Rabin, J.; Rigotti, N.A.; Ostroff, J.S.; Park, E.R. Cost-effectiveness of Implementing Smoking Cessation Interventions for Patients With Cancer. JAMA Netw. Open 2022, 5, e2216362. [Google Scholar] [CrossRef]
- Ali, F.R.M.; Neff, L.; Wang, X.; Hu, S.S.; Schecter, A.; Mahoney, M.; Melstrom, P.C. Tobacco-Free Pharmacies and U.S. Adult Smoking Behavior: Evidence From CVS Health’s Removal of Tobacco Sales. Am. J. Prev. Med. 2020, 58, 41–49. [Google Scholar] [CrossRef] [PubMed]
- Seidenberg, A.B.; Henriksen, L.; Ribisl, K.M. Cigarette Promotions in U.S. Pharmacies. Nicotine Tob. Res. 2022, 24, 612–616. [Google Scholar] [CrossRef] [PubMed]
- Little, M.A.; Reid, T.; Moncrief, M.; Cohn, W.; Wiseman, K.P.; Wood, C.H.; You, W.; Anderson, R.T.; Krukowski, R.A. Testing the feasibility of the QuitAid smoking cessation intervention in a randomized factorial design in an independent, rural community pharmacy. Pilot Feasibility Stud. 2024, 10, 41. [Google Scholar] [CrossRef] [PubMed]
- Martínez, J.C.G.; Lavesa, L.G.; Barbero, A.M.; Zamora, J.P.; Piñón, M.L.; Juanola, M.A.; Catalá, M.C.; de Andrés Dirube, A.; Moreno, L.G.; Magariños, I.J. Smoking cessation intervention in the community pharmacy: Cost-effectiveness of a non-randomized cluster-controlled trial at 12-months’ follow-up. Res. Soc. Adm. Pharm. 2024, 20, 19–27. [Google Scholar] [CrossRef] [PubMed]
- Saba, M.; Diep, J.; Saini, B.; Dhippayom, T. Meta-analysis of the effectiveness of smoking cessation interventions in community pharmacy. J. Clin. Pharm. Ther. 2014, 39, 240–247. [Google Scholar] [CrossRef] [PubMed]
- Condinho, M.; Ramalhinho, I.; Sinogas, C. Smoking Cessation at the Community Pharmacy: Determinants of Success from a Real-Life Practice. Pharmacy 2021, 9, 143. [Google Scholar] [CrossRef] [PubMed]
- The National Institute on Alcohol Abuse and Alcoholism, NAlcohol Use Disorder (AUD) in the United States: Age Groups and Demographic Characteristics. Available online: https://www.niaaa.nih.gov/alcohols-effects-health/alcohol-topics/alcohol-facts-and-statistics/alcohol-use-disorder-aud-united-states-age-groups-and-demographic-characteristics (accessed on 8 July 2024).
- Dimitropoulos, E.; Bertucci, S.; Wong, K. Integration of a Clinical Pharmacy Specialist into a Substance use Disorder Intensive Outpatient Treatment Program to Improve Prescribing Rates of Alcohol use Disorder Pharmacotherapy. Subst. Abus. 2018, 39, 190–192. [Google Scholar] [CrossRef]
- Anderson, B.O.; Berdzuli, N.; Ilbawi, A.; Kestel, D.; Kluge, H.P.; Krech, R.; Mikkelsen, B.; Neufeld, M.; Poznyak, V.; Rekve, D.; et al. Health and cancer risks associated with low levels of alcohol consumption. Lancet Public Health 2023, 8, e6–e7. [Google Scholar] [CrossRef] [PubMed]
- Esser, M.B.; Sherk, A.; Liu, Y.; Henley, S.J.; Naimi, T.S. Reducing Alcohol Use to Prevent Cancer Deaths: Estimated Effects Among U.S. Adults. Am. J. Prev. Med. 2024, 66, 725–729. [Google Scholar] [CrossRef]
- Esser, M.B.; Leung, G.; Sherk, A.; Bohm, M.K.; Liu, Y.; Lu, H.; Naimi, T.S. Estimated Deaths Attributable to Excessive Alcohol Use Among US Adults Aged 20 to 64 Years, 2015 to 2019. JAMA Netw. Open 2022, 5, e2239485. [Google Scholar] [CrossRef]
- Whitehouse, A.; Simon, A.; French, S.A.; Wolfson, J. Availability of snacks, candy and beverages in hospital, community clinic and commercial pharmacies. Public Health Nutr. 2012, 15, 1117–1123. [Google Scholar] [CrossRef]
- Roberto, C.A.; Lawman, H.G.; LeVasseur, M.T.; Mitra, N.; Peterhans, A.; Herring, B.; Bleich, S.N. Association of a Beverage Tax on Sugar-Sweetened and Artificially Sweetened Beverages With Changes in Beverage Prices and Sales at Chain Retailers in a Large Urban Setting. JAMA 2019, 321, 1799–1810. [Google Scholar] [CrossRef]
- Hua, S.V.; Petimar, J.; Mitra, N.; Roberto, C.A.; Kenney, E.L.; Thorndike, A.N.; Rimm, E.B.; Volpp, K.G.; Gibson, L.A. Philadelphia Beverage Tax and Association With Prices, Purchasing, and Individual-Level Substitution in a National Pharmacy Chain. JAMA Netw. Open 2023, 6, e2323200. [Google Scholar] [CrossRef]
- Malik, V.S.; Hu, F.B. The role of sugar-sweetened beverages in the global epidemics of obesity and chronic diseases. Nat. Rev. Endocrinol. 2022, 18, 205–218. [Google Scholar] [CrossRef]
- Malik, V.S.; Li, Y.; Pan, A.; Koning, L.D.; Schernhammer, E.; Willett, W.C.; Hu, F.B. Long-Term Consumption of Sugar-Sweetened and Artificially Sweetened Beverages and Risk of Mortality in US Adults. Circulation 2019, 139, 2113–2125. [Google Scholar] [CrossRef] [PubMed]
- Mullee, A.; Romaguera, D.; Pearson-Stuttard, J.; Viallon, V.; Stepien, M.; Freisling, H.; Fagherazzi, G.; Mancini, F.R.; Boutron-Ruault, M.-C.; Kühn, T.; et al. Association Between Soft Drink Consumption and Mortality in 10 European Countries. JAMA Intern. Med. 2019, 179, 1479–1490. [Google Scholar] [CrossRef]
- Alcaraz, A.; Pichon-Riviere, A.; Palacios, A.; Bardach, A.; Balan, D.J.; Perelli, L.; Augustovski, F.; Ciapponi, A. Sugar sweetened beverages attributable disease burden and the potential impact of policy interventions: A systematic review of epidemiological and decision models. BMC Public Health 2021, 21, 1460. [Google Scholar] [CrossRef] [PubMed]
- Yuan, C.; Joh, H.K.; Wang, Q.L.; Zhang, Y.; Smith-Warner, S.A.; Wang, M.; Song, M.; Cao, Y.; Zhang, X.; Zoltick, E.S.; et al. Sugar-sweetened beverage and sugar consumption and colorectal cancer incidence and mortality according to anatomic subsite. Am. J. Clin. Nutr. 2022, 115, 1481–1489. [Google Scholar] [CrossRef] [PubMed]
- McCullough, M.L.; Hodge, R.A.; Campbell, P.T.; Guinter, M.A.; Patel, A.V. Sugar- and Artificially-Sweetened Beverages and Cancer Mortality in a Large U.S. Prospective Cohort. Cancer Epidemiol. Biomark. Prev. 2022, 31, 1907–1918. [Google Scholar] [CrossRef]
- Tran, Q.D.; Nguyen, T.H.H.; Le, C.L.; Van Hoang, L.; Vu, T.Q.C.; Phan, N.Q.; Bui, T.T. Sugar-sweetened beverages consumption increases the risk of metabolic syndrome and its components in adults: Consistent and robust evidence from an umbrella review. Clin. Nutr. ESPEN 2023, 57, 655–664. [Google Scholar] [CrossRef]
- Ding, P.; Yue, W.; Wang, X.; Zhang, Y.; Liu, Y.; Guo, X. Effects of sugary drinks, coffee, tea and fruit juice on incidence rate, mortality and cardiovascular complications of type2 diabetes patients: A systematic review and meta-analysis. J. Diabetes Metab. Disord. 2024, 23, 1113–1123. [Google Scholar] [CrossRef] [PubMed]
- Fung, T.T.; Rossato, S.L.; Chen, Z.; Khandpur, N.; Rodriguez-Artalejo, F.; Willett, W.C.; Struijk, E.A.; Lopez-Garcia, E. Ultra-processed foods, unprocessed/minimally processed foods and risk of frailty in a cohort of US females. Am. J. Clin. Nutr. 2024, 120, 232–239. [Google Scholar] [CrossRef] [PubMed]
- Arroyo-Quiroz, C.; Brunauer, R.; Alavez, S. Sugar-sweetened beverages and Cancer risk: A narrative review. Nutr. Cancer 2022, 74, 3077–3095. [Google Scholar] [CrossRef] [PubMed]
- Malik, V.S.; Pan, A.; Willett, W.C.; Hu, F.B. Sugar-sweetened beverages and weight gain in children and adults: A systematic review and meta-analysis123. Am. J. Clin. Nutr. 2013, 98, 1084–1102. [Google Scholar] [CrossRef]
- Malik, V.S.; Popkin, B.M.; Bray, G.A.; Després, J.-P.; Hu, F.B. Sugar-Sweetened Beverages, Obesity, Type 2 Diabetes Mellitus, and Cardiovascular Disease Risk. Circulation 2010, 121, 1356–1364. [Google Scholar] [CrossRef] [PubMed]
- Imamura, F.; O’Connor, L.; Ye, Z.; Mursu, J.; Hayashino, Y.; Bhupathiraju, S.N.; Forouhi, N.G. Consumption of sugar sweetened beverages, artificially sweetened beverages, and fruit juice and incidence of type 2 diabetes: Systematic review, meta-analysis, and estimation of population attributable fraction. BMJ Br. Med. J. 2015, 351, h3576. [Google Scholar] [CrossRef] [PubMed]
- Wang, M.; Yu, M.; Fang, L.; Hu, R.-Y. Association between sugar-sweetened beverages and type 2 diabetes: A meta-analysis. J. Diabetes Investig. 2015, 6, 360–366. [Google Scholar] [CrossRef] [PubMed]
- Hu, D.; Cheng, L.; Jiang, W. Sugar-sweetened beverages consumption and the risk of depression: A meta-analysis of observational studies. J. Affect. Disord. 2019, 245, 348–355. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Zhao, R.; Wang, B.; Zhao, C.; Zhu, B.; Tian, X. The dose-response associations of sugar-sweetened beverage intake with the risk of stroke, depression, cancer, and cause-specific mortality: A systematic review and meta-analysis of prospective studies. Nutrients 2022, 14, 777. [Google Scholar] [CrossRef]
- Freije, S.L. Association between consumption of sugar-sweetened beverages and 100% fruit juice with poor mental health among US adults in 11 US States and the District of Columbia. Prev. Chronic Dis. 2021, 18, E51. [Google Scholar] [CrossRef]
- Farsad-Naeimi, A.; Asjodi, F.; Omidian, M.; Askari, M.; Nouri, M.; Pizarro, A.B.; Daneshzad, E. Sugar consumption, sugar sweetened beverages and Attention Deficit Hyperactivity Disorder: A systematic review and meta-analysis. Complement. Ther. Med. 2020, 53, 102512. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Liu, Y.; Shi, M.; Zhou, Y.; Zhao, Y.; Xia, Y. Meta-analysis of sugar-sweetened beverage intake and the risk of cognitive disorders. J. Affect. Disord. 2022, 313, 177–185. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Zhang, Y.; Yang, H.; Li, H.; Zhou, L.; Zhang, M.; Wang, Y. Associations of sugar-sweetened, artificially sweetened, and naturally sweet juices with Alzheimer’s disease: A prospective cohort study. GeroScience 2024, 46, 1229–1240. [Google Scholar] [CrossRef] [PubMed]
- Cordova, R.; Viallon, V.; Fontvieille, E.; Peruchet-Noray, L.; Jansana, A.; Wagner, K.-H.; Kyrø, C.; Tjønneland, A.; Katzke, V.; Bajracharya, R.; et al. Consumption of ultra-processed foods and risk of multimorbidity of cancer and cardiometabolic diseases: A multinational cohort study. Lancet Reg. Health-Eur. 2023, 35, 100771. [Google Scholar] [CrossRef]
- Li, B.; Yan, N.; Jiang, H.; Cui, M.; Wu, M.; Wang, L.; Mi, B.; Li, Z.; Shi, J.; Fan, Y. Consumption of sugar sweetened beverages, artificially sweetened beverages and fruit juices and risk of type 2 diabetes, hypertension, cardiovascular disease, and mortality: A meta-analysis. Front. Nutr. 2023, 10, 1019534. [Google Scholar] [CrossRef] [PubMed]
- Ma, J.; Jacques, P.F.; Meigs, J.B.; Fox, C.S.; Rogers, G.T.; Smith, C.E.; Hruby, A.; Saltzman, E.; McKeown, N.M. Sugar-Sweetened Beverage but Not Diet Soda Consumption Is Positively Associated with Progression of Insulin Resistance and Prediabetes123. J. Nutr. 2016, 146, 2544–2550. [Google Scholar] [CrossRef] [PubMed]
- The Centers for Disease Control and Prevention, Diabetes. Available online: https://www.cdc.gov/diabetes/index.html (accessed on 8 July 2024).
- Martin, S.S.; Aday, A.W.; Almarzooq, Z.I.; Anderson, C.A.M.; Arora, P.; Avery, C.L.; Baker-Smith, C.M.; Gibbs, B.B.; Beaton, A.Z.; Boehme, A.K.; et al. 2024 Heart Disease and Stroke Statistics: A Report of US and Global Data From the American Heart Association. Circulation 2024, 149, e347–e913. [Google Scholar] [CrossRef]
- Chiu, C.; Wong, A.; Chhen, J.; Roderos, A.-J.; Apollonio, D.E. Retail chain pharmacy opioid dispensing practices from 1997 to 2020: A content analysis of internal industry documents. Drug Alcohol Depend. Rep. 2023, 9, 100199. [Google Scholar] [CrossRef] [PubMed]
- Gonick, S.A. Opioid Litigation: Lessons Learned from a Retail Pharmacy Settlement. Am. J. Law Med. 2022, 48, 472–480. [Google Scholar] [CrossRef]
- Tanne, J.H. US pharmacy chains settle opioid lawsuits for $13bn. BMJ 2022, 379, o2688. [Google Scholar] [CrossRef]
- Belkhir, L.; Elmeligi, A. Carbon footprint of the global pharmaceutical industry and relative impact of its major players. J. Clean. Prod. 2019, 214, 185–194. [Google Scholar] [CrossRef]
- Richie, C. Environmental sustainability and the carbon emissions of pharmaceuticals. J. Med. Ethics 2022, 48, 334–337. [Google Scholar] [CrossRef]
- Keil, M.; Frehse, L.; Hagemeister, M.; Knieß, M.; Lange, O.; Kronenberg, T.; Rogowski, W. Carbon footprint of healthcare systems: A systematic review of evidence and methods. BMJ Open 2024, 14, e078464. [Google Scholar] [CrossRef]
- Freishtat, H.; Roesler, A.R.; Lin-Schweitzer, A.; Moreno, I.; Hesse-Fong, J. Catalyzing Action for Pharmacist-Provided Food Is Medicine Care; The Milken Institute: Santa Monica, WA, USA, 2024. [Google Scholar]
- National Association of Chain Drug Stores, NACDS Hails Innovative and Groundbreaking Report by Milken Institute on Effectively Implementing and Scaling Pharmacist-Provided Food Is Medicine Care. Available online: https://www.nacds.org/news/nacds-hails-innovative-and-groundbreaking-report-by-milken-institute-on-effectively-implementing-and-scaling-pharmacist-provided-food-is-medicine-care/ (accessed on 8 July 2024).
- Smith, M.A. Implementing primary care pharmacist services: Go upstream in the world of value-based payment models. Res. Soc. Adm. Pharm. 2017, 13, 892–895. [Google Scholar] [CrossRef]
- Sullivan, S.D.; Yeung, K.; Vogeler, C.; Ramsey, S.D.; Wong, E.; Murphy, C.O.; Danielson, D.; Veenstra, D.L.; Garrison, L.P.; Burke, W.; et al. Design, Implementation, and First-Year Outcomes of a Value-Based Drug Formulary. J. Manag. Care Spec. Pharm. 2015, 21, 269–275. [Google Scholar] [CrossRef]
- Liu, L.; Li, S.; Opara, M. Corporate social responsibility and strategic company behaviour: CVS Health’s discontinuation of tobacco products. Corp. Soc. Responsib. Environ. Manag. 2018, 25, 1293–1305. [Google Scholar] [CrossRef]
- Mattingly, T.J.; Ben-Umeh, K.C.; Bai, G.; Anderson, G.F. Pharmacy Benefit Manager Pricing and Spread Pricing for High-Utilization Generic Drugs. JAMA Health Forum 2023, 4, e233660. [Google Scholar] [CrossRef]
- Trish, E.; Van Nuys, K.; Popovian, R. US consumers overpay for generic drugs. Schaeffer Cent. White Pap. Ser. 2022, 10, m589-2268. [Google Scholar]
- Nichols, M.A.; Hettinger, K.N.; Greiwe, L.D.; Howard, H.G.; Adeoye-Olatunde, O.A.; Olenik, N.L.; Snyder, M.E. Strengths and limitations of a novel “Flip the Pharmacy” practice transformation coach advanced pharmacy practice experience. Curr. Pharm. Teach. Learn. 2023, 15, 761–768. [Google Scholar] [CrossRef] [PubMed]
- Bacci, J.L.; Ferreri, S.P.; Coley, K.C.; Daly, C.J.; Hake, K.L.; Herbert, S.M.; Hughes, T.D.; McDonough, R.P.; Roller, J.S.; McGivney, M.S. Qualitative analysis of a community pharmacy practice transformation initiative. J. Am. Coll. Clin. Pharm. 2022, 5, 1236–1252. [Google Scholar] [CrossRef]
- Kondic, A.M.S.; Trygstad, T.; McDonough, R.; Osterhaus, M. Scaling community pharmacy transformation with the ‘Flip the Pharmacy’implementation model: Program origins. INNOVATIONS Pharm. 2020, 11. [Google Scholar] [CrossRef]
- Cornell, W.K.; Clauson, K.A.; Cain, J. Updating the Model: The Case for Independent Pharmacy to Embrace Digital Health. Innov. Pharm. 2019, 10, 1645. [Google Scholar] [CrossRef]
- Martin, A.; Brummond, P.; Vlasimsky, T.; Steffenhagen, A.; Langley, J.; Glowczewski, J.; Boyd, A.; Engels, M.; Hermann, S.; Skaff, A. The Evolving Frontier of Digital Health: Opportunities for Pharmacists on the Horizon. Hosp. Pharm. 2018, 53, 7–11. [Google Scholar] [CrossRef]
- Budenz, A.; Moser, R.P.; Eck, R.; Agurs-Collins, T.; McNeel, T.S.; Klein, W.M.; Berrigan, D. Awareness of alcohol and cancer risk and the California Proposition 65 Warning Sign updates: A natural experiment. Int. J. Environ. Res. Public Health 2022, 19, 11862. [Google Scholar] [CrossRef]
- Giovenco, D.P.; Spillane, T.E.; Mauro, C.M.; Hernández, D. Evaluating the impact and equity of a tobacco-free pharmacy law on retailer density in New York City neighbourhoods. Tob. Control 2019, 28, 548–554. [Google Scholar] [CrossRef]
- Jin, Y.; Berman, M.; Klein, E.G.; Foraker, R.E.; Lu, B.; Ferketich, A.K. Ending tobacco sales in pharmacies: A qualitative study. J. Am. Pharm. Assoc. 2017, 57, 670–676.e671. [Google Scholar] [CrossRef]
- Andreyeva, T.; Marple, K.; Marinello, S.; Moore, T.E.; Powell, L.M. Outcomes Following Taxation of Sugar-Sweetened Beverages: A Systematic Review and Meta-analysis. JAMA Netw. Open 2022, 5, e2215276. [Google Scholar] [CrossRef]
- Silver, L.D.; Ng, S.W.; Ryan-Ibarra, S.; Taillie, L.S.; Induni, M.; Miles, D.R.; Poti, J.M.; Popkin, B.M. Changes in prices, sales, consumer spending, and beverage consumption one year after a tax on sugar-sweetened beverages in Berkeley, California, US: A before-and-after study. PLoS Med. 2017, 14, e1002283. [Google Scholar] [CrossRef]
- Kaplan, S.; White, J.S.; Madsen, K.A.; Basu, S.; Villas-Boas, S.B.; Schillinger, D. Evaluation of Changes in Prices and Purchases Following Implementation of Sugar-Sweetened Beverage Taxes Across the US. JAMA Health Forum 2024, 5, e234737. [Google Scholar] [CrossRef] [PubMed]
- Jin, Y.; Lu, B.; Berman, M.; Klein, E.G.; Foraker, R.E.; Ferketich, A.K. The impact of tobacco-free pharmacy policies on smoking prevalence. J. Am. Pharm. Assoc. 2016, 56, 627–632. [Google Scholar] [CrossRef]
- Phillips, A.Z.; Ahern, J.A.; Kerr, W.C.; Rodriguez, H.P. Cigarettes smoked among daily and non-daily smokers following CVS Health’s tobacco-free pharmacy policy. Tob. Control 2022, 31, 25–31. [Google Scholar] [CrossRef]
- Polinski, J.M.; Howell, B.; Gagnon, M.A.; Kymes, S.M.; Brennan, T.A.; Shrank, W.H. Impact of CVS Pharmacy’s Discontinuance of Tobacco Sales on Cigarette Purchasing (2012–2014). Am. J. Public Health 2017, 107, 556–562. [Google Scholar] [CrossRef]
- MobiHealthNews. Walgreens adds Abbott, BetterHelp, Hinge Health to Virtual Marketplace. 2021. Available online: https://www.mobihealthnews.com/news/walgreens-adds-abbott-betterhelp-hinge-health-virtual-marketplace (accessed on 8 July 2024).
- Pathak, S.; Blanchard, C.M.; Moreton, E.; Urick, B.Y. A systematic review of the effect of telepharmacy services in the community pharmacy setting on care quality and patient safety. J. Health Care Poor Underserved 2021, 32, 737–750. [Google Scholar] [CrossRef]
- Le, T.; Toscani, M.; Colaizzi, J. Telepharmacy: A New Paradigm for Our Profession. J. Pharm. Pract. 2020, 33, 176–182. [Google Scholar] [CrossRef]
- Imam, S.N.; Braun, U.K.; Garcia, M.A.; Jackson, L.K. Evolution of Telehealth—Its Impact on Palliative Care and Medication Management. Pharmacy 2024, 12, 61. [Google Scholar] [CrossRef]
- Kehrer, J.P.; James, D.E. The Role of Pharmacists and Pharmacy Education in Point-of-Care Testing. Am. J. Pharm. Educ. 2016, 80, 129. [Google Scholar] [CrossRef]
- Buss, V.H.; Deeks, L.S.; Shield, A.; Kosari, S.; Naunton, M. Analytical quality and effectiveness of point-of-care testing in community pharmacies: A systematic literature review. Res. Soc. Adm. Pharm. 2019, 15, 483–495. [Google Scholar] [CrossRef]
- Steltenpohl, E.A.; Barry, B.K.; Coley, K.C.; McGivney, M.S.; Olenak, J.L.; Berenbrok, L.A. Point-of-care testing in community pharmacies: Keys to success from Pennsylvania pharmacists. J. Pharm. Pract. 2018, 31, 629–635. [Google Scholar] [CrossRef]
- Ward, C.B.; Roy, D.P.; Edmondson, D.R. Is CVS Just ‘Blowing Smoke?’: Evaluating the CVS Decision to Ban Tobacco Products. Case Stud. Strateg. Commun. 2016, 5, 249–264. [Google Scholar]
- Fortune Business Insights, The U.S. Digital Health Market Size. Available online: https://www.fortunebusinessinsights.com/u-s-digital-health-market-108744 (accessed on 8 July 2024).
- Insights10. US Digital Health Market Analysis. Available online: https://www.insights10.com/report/us-digital-health-market-analysis/ (accessed on 8 July 2024).
- Rummo, P.E.; Pho, N.; Bragg, M.A.; Roberto, C.A.; Elbel, B. Trends in Store-Level Sales of Sugary Beverages and Water in the U.S., 2006–2015. Am. J. Prev. Med. 2020, 59, 522–529. [Google Scholar] [CrossRef]
- Callaghan, S.; Lösch, M.; Pione, A.; Teichner, W. Feeling Good: The Future of the $1.5 Trillion Wellness Market; McKinsey Co.: Chicago, IL, USA, 2021; Volume 8. [Google Scholar]
- Lumbreras, A.G.; Hurwitz, J.T.; Liang, X.; Schippers, S.; Phillip, K.; Bhattacharjee, S.; Waters, H.C.; Malone, D.C. Insights into insurance coverage for digital therapeutics: A qualitative study of US payer perspectives. J. Manag. Care Spec. Pharm. 2024, 30, 313–325. [Google Scholar] [CrossRef]
- Smith, B.; Magnani, J.W. New technologies, new disparities: The intersection of electronic health and digital health literacy. Int. J. Cardiol. 2019, 292, 280–282. [Google Scholar] [CrossRef]
- Rodriguez, J.A.; Clark, C.R.; Bates, D.W. Digital health equity as a necessity in the 21st century cures act era. JAMA 2020, 323, 2381–2382. [Google Scholar] [CrossRef]
- Richardson, S.; Lawrence, K.; Schoenthaler, A.M.; Mann, D. A framework for digital health equity. Npj Digit. Med. 2022, 5, 119. [Google Scholar] [CrossRef]
- Bottacin, W.E.; de Souza, T.T.; Melchiors, A.C.; Reis, W.C.T. Preparing Pharmacists for the Digital Age: How Pharmacy Courses are Adapting to Challenges and Opportunities. Am. J. Pharm. Educ. 2024, 88, 100700. [Google Scholar] [CrossRef]
- Aungst, T.D. Integrating mHealth and mobile technology education into the pharmacy curriculum. Am. J. Pharm. Educ. 2014, 78, 19. [Google Scholar] [CrossRef]
- Rooney, J. Diving Into Digital Health. Available online: https://www.aacp.org/article/diving-digital-health (accessed on 8 July 2024).
- Grummon, A.H.; Ruggles, P.R.; Greenfield, T.K.; Hall, M.G. Designing Effective Alcohol Warnings: Consumer Reactions to Icons and Health Topics. Am. J. Prev. Med. 2023, 64, 157–166. [Google Scholar] [CrossRef]
- An, R.; Liu, J.; Liu, R.; Barker, A.R.; Figueroa, R.B.; McBride, T.D. Impact of Sugar-Sweetened Beverage Warning Labels on Consumer Behaviors: A Systematic Review and Meta-Analysis. Am. J. Prev. Med. 2021, 60, 115–126. [Google Scholar] [CrossRef]
- Popova, L.; Massey, Z.B.; Giordano, N.A. Warning Labels as a Public Health Intervention: Effects and Challenges for Tobacco, Cannabis, and Opioid Medications. Annu. Rev. Public Health 2024, 45, 425–442. [Google Scholar] [CrossRef]
- Clarke, N.; Pechey, E.; Kosīte, D.; König, L.M.; Mantzari, E.; Blackwell, A.K.M.; Marteau, T.M.; Hollands, G.J. Impact of health warning labels on selection and consumption of food and alcohol products: Systematic review with meta-analysis. Health Psychol. Rev. 2021, 15, 430–453. [Google Scholar] [CrossRef]
- Ireland, D. Public Health (Alcohol) (Labelling) Regulations 2023 Signed into Law. Drugnet Ireland. 2023. Available online: https://www.drugsandalcohol.ie/39492/ (accessed on 8 July 2024).
- Burki, T. World’s first alcohol health labelling policy to be introduced in Ireland. Lancet Oncol. 2023, 24, 722. [Google Scholar] [CrossRef]
- Tselengidis, A.; Östergren, P.-O. Lobbying against sugar taxation in the European Union: Analysing the lobbying arguments and tactics of stakeholders in the food and drink industries. Scand. J. Public Health 2019, 47, 565–575. [Google Scholar] [CrossRef]
- Lauber, K.; Rippin, H.; Wickramasinghe, K.; Gilmore, A.B. Corporate political activity in the context of sugar-sweetened beverage tax policy in the WHO European Region. Eur. J. Public Health 2022, 32, 786–793. [Google Scholar] [CrossRef]
- Fooks, G.J.; Williams, S.; Box, G.; Sacks, G. Corporations’ use and misuse of evidence to influence health policy: A case study of sugar-sweetened beverage taxation. Glob. Health 2019, 15, 56. [Google Scholar] [CrossRef]
- Simon, M. Can Food Companies Be Trusted to Self-Regulate-An Analysis of Corporate Lobbying and Deception to Undermine Children’s Health. Loy. LAL Rev. 2006, 39, 169. [Google Scholar]
- Bauer, M.S.; Damschroder, L.; Hagedorn, H.; Smith, J.; Kilbourne, A.M. An introduction to implementation science for the non-specialist. BMC Psychol. 2015, 3, 32. [Google Scholar] [CrossRef]
- Babu, M.; Snyder, M. Multi-Omics Profiling for Health. Mol. Cell. Proteom. 2023, 22, 100561. [Google Scholar] [CrossRef]
- Canfell, O.J.; Littlewood, R.; Burton-Jones, A.; Sullivan, C. Digital health and precision prevention: Shifting from disease-centred care to consumer-centred health. Aust. Health Rev. 2021, 46, 279–283. [Google Scholar] [CrossRef]
- Tung, J.Y.; Shaw, R.J.; Hagenkord, J.M.; Hackmann, M.; Muller, M.; Beachy, S.H.; Pratt, V.M.; Terry, S.F.; Cashion, A.K.; Ginsburg, G.S. Accelerating precision health by applying the lessons learned from direct-to-consumer genomics to digital health technologies. NAM Perspect. 2018. Available online: https://nam.edu/accelerating-precision-health-by-applying-the-lessons-learned-from-direct-to-consumer-genomics-to-digital-health-technologies/ (accessed on 8 July 2024).
- Cancela, J.; Charlafti, I.; Colloud, S.; Wu, C. Chapter 2—Digital health in the era of personalized healthcare: Opportunities and challenges for bringing research and patient care to a new level. In Digital Health; Syed-Abdul, S., Zhu, X., Fernandez-Luque, L., Eds.; Elsevier: Amsterdam, The Netherlands, 2021; pp. 7–31. [Google Scholar]
Studies | Main Findings |
---|---|
Malik et al. [156] | A positive association between consumption of SSBs and breast cancer mortality. Women who consume more than two servings of SSBs/day are at higher risk of death |
Mullee et al. [157] | Higher mortality was found among participants who consumed more than two servings of SSBs/day. A positive association between consumption of SSBs and death from circulatory diseases |
Alcaraz et al. [158] | More than 184,000 deaths per year worldwide are attributed to SSB consumption |
Yuan et al. [159] | Higher SSB consumption positively correlated to proximal colon cancer mortality. SSB consumption enhances colorectal tumorigenesis |
Liu et al. [173] Chen et al. [174] | Higher SSB consumption associated with increased risk of developing Alzheimer’s disease |
McCullough et al. [160] | SSB consumption was positively associated with the risk of colorectal cancer |
Cordova et al. [175] | Ultraprocessed food consumption is associated with a higher incidence of multimorbidity. Type 2 diabetes and cardiovascular diseases are more prevalent among consumers of ultraprocessed foods |
Malik et al. [165] | Consumption of SSBs promotes obesity in children and adults |
Wang et al. [168], Li et al. [176] | Higher consumption of SSBs is associated with higher risks for type 2 diabetes |
Jiantao et al. [177] | Consumption of SSBs is associated with a higher risk of developing prediabetes and insulin resistance |
Wang et al. [170], Danqing et al. [169] | Dose-dependent consumption of SSBs increases risks for depression |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bulaj, G.; Coleman, M.; Johansen, B.; Kraft, S.; Lam, W.; Phillips, K.; Rohaj, A. Redesigning Pharmacy to Improve Public Health Outcomes: Expanding Retail Spaces for Digital Therapeutics to Replace Consumer Products That Increase Mortality and Morbidity Risks. Pharmacy 2024, 12, 107. https://doi.org/10.3390/pharmacy12040107
Bulaj G, Coleman M, Johansen B, Kraft S, Lam W, Phillips K, Rohaj A. Redesigning Pharmacy to Improve Public Health Outcomes: Expanding Retail Spaces for Digital Therapeutics to Replace Consumer Products That Increase Mortality and Morbidity Risks. Pharmacy. 2024; 12(4):107. https://doi.org/10.3390/pharmacy12040107
Chicago/Turabian StyleBulaj, Grzegorz, Melissa Coleman, Blake Johansen, Sarah Kraft, Wayne Lam, Katie Phillips, and Aarushi Rohaj. 2024. "Redesigning Pharmacy to Improve Public Health Outcomes: Expanding Retail Spaces for Digital Therapeutics to Replace Consumer Products That Increase Mortality and Morbidity Risks" Pharmacy 12, no. 4: 107. https://doi.org/10.3390/pharmacy12040107
APA StyleBulaj, G., Coleman, M., Johansen, B., Kraft, S., Lam, W., Phillips, K., & Rohaj, A. (2024). Redesigning Pharmacy to Improve Public Health Outcomes: Expanding Retail Spaces for Digital Therapeutics to Replace Consumer Products That Increase Mortality and Morbidity Risks. Pharmacy, 12(4), 107. https://doi.org/10.3390/pharmacy12040107