Evaluating the Risk–Benefit Profile of Corticosteroid Therapy for COVID-19 Patients: A Scoping Review
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions and Relevance
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Chappell, L.; Horby, P.; Lim, W.S.; Emberson, J.R.; Mafham, M.; Bell, J.L.; Linsell, L.; Staplin, N.; Brightling, C.; Ustianowski, A.; et al. Dexamethasone in hospitalized patients with COVID-19. N. Engl. J. Med. 2021, 384, 693–704. [Google Scholar]
- Tomazini, B.M.; Maia, I.S.; Cavalcanti, A.B.; Berwanger, O.; Rosa, R.G.; Veiga, V.C.; Avezum, A.; Lopes, R.D.; Bueno, F.R.; Silva, M.V.A. Effect of dexamethasone on days alive and ventilator-free in patients with moderate or severe acute respiratory distress syndrome and COVID-19: The CoDEX randomized clinical trial. JAMA 2020, 324, 1307–1316. [Google Scholar] [CrossRef] [PubMed]
- Acter, T.; Uddin, N.; Das, J.; Akhter, A.; Choudhury, T.R.; Kim, S. Evolution of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) as coronavirus disease 2019 (COVID-19) pandemic: A global health emergency. Sci. Total Environ. 2020, 730, 138996. [Google Scholar] [CrossRef] [PubMed]
- Edalatifard, M.; Akhtari, M.; Salehi, M.; Naderi, Z.; Jamshidi, A.; Mostafaei, S.; Najafizadeh, S.R.; Farhadi, E.; Jalili, N.; Esfahani, M. Intravenous methylprednisolone pulse as a treatment for hospitalised severe COVID-19 patients: Results from a randomised controlled clinical trial. Eur. Respir. J. 2020, 56, 2002808. [Google Scholar] [CrossRef] [PubMed]
- Xu, Z.; Shi, L.; Wang, Y.; Zhang, J.; Huang, L.; Zhang, C.; Liu, S.; Zhao, P.; Liu, H.; Zhu, L. Pathological findings of COVID-19 associated with acute respiratory distress syndrome. Lancet Respir. Med. 2020, 8, 420–422. [Google Scholar] [CrossRef]
- Ho, K.S.; Narasimhan, B.; Difabrizio, L.; Rogers, L.; Bose, S.; Li, L.; Chen, R.; Sheehan, J.; El-Halabi, M.A.; Sarosky, K. Impact of corticosteroids in hospitalised COVID-19 patients. BMJ Open Respir. Res. 2021, 8, e000766. [Google Scholar] [CrossRef]
- Soliman, O.; Moeen, S.; Abbas, Y.A.; Kamel, E.Z. The impact of dexamethasone versus methylprednisolone upon neutrophil/lymphocyte ratio in COVID-19 patients admitted to ICU and its implication upon mortality. Egypt. J. Anaesth. 2022, 38, 78–84. [Google Scholar] [CrossRef]
- Cui, X.; Chen, W.; Zhou, H.; Gong, Y.; Zhu, B.; Lv, X.; Guo, H.; Duan, J.; Zhou, J.; Marcon, E.; et al. Pulmonary Edema in COVID-19 Patients: Mechanisms and Treatment Potential. Front. Pharmacol. 2021, 12, 664349. [Google Scholar] [CrossRef]
- Toroghi, N.; Abbasian, L.; Nourian, A.; Davoudi-Monfared, E.; Khalili, H.; Hasannezhad, M.; Ghiasvand, F.; Jafari, S.; Emadi-Kouchak, H.; Yekaninejad, M.S. Comparing efficacy and safety of different doses of dexamethasone in the treatment of COVID-19: A three-arm randomized clinical trial. Pharmacol. Rep. 2022, 74, 229–240. [Google Scholar] [CrossRef]
- Mehta, P.; McAuley, D.F.; Brown, M.; Sanchez, E.; Tattersall, R.S.; Manson, J.J. COVID-19: Consider cytokine storm syndromes and immunosuppression. Lancet 2020, 395, 1033–1034. [Google Scholar] [CrossRef]
- Jamaati, H.; Hashemian, S.M.; Farzanegan, B.; Malekmohammad, M.; Tabarsi, P.; Marjani, M.; Moniri, A.; Abtahian, Z.; Haseli, S.; Mortaz, E. No clinical benefit of high dose corticosteroid administration in patients with COVID-19: A preliminary report of a randomized clinical trial. Eur. J. Pharmacol. 2021, 897, 173947. [Google Scholar] [CrossRef]
- Wagner, C.; Griesel, M.; Mikolajewska, A.; Mueller, A.; Nothacker, M.; Kley, K.; Metzendorf, M.-I.; Fischer, A.-L.; Kopp, M.; Stegemann, M. Systemic corticosteroids for the treatment of COVID-19. Cochrane Database Syst. Rev. 2021, 8, CD014963. [Google Scholar] [CrossRef] [PubMed]
- Salvarani, C.; Massari, M.; Costantini, M.; Merlo, D.F.; Mariani, G.L.; Viale, P.; Nava, S.; Guaraldi, G.; Dolci, G.; Boni, L. Intravenous methylprednisolone pulses in hospitalised patients with severe COVID-19 pneumonia, A double-blind, randomised, placebo-controlled trial. Eur. Respir. J. 2022, 60, 2200025. [Google Scholar] [CrossRef] [PubMed]
- Brindisi, G.; De Vittori, V.; De Castro, G.; Duse, M.; Zicari, A.M. Pills to think about in allergic rhinitis children during COVID-19 era. Acta Paediatr. 2020, 109, 2149–2150. [Google Scholar] [CrossRef] [PubMed]
- van Paassen, J.; Vos, J.S.; Hoekstra, E.M.; Neumann, K.M.I.; Boot, P.C.; Arbous, S.M. Corticosteroid use in COVID-19 patients: A systematic review and meta-analysis on clinical outcomes. Crit. Care 2020, 24, 696. [Google Scholar] [CrossRef] [PubMed]
- Lu, S.; Zhou, Q.; Huang, L.; Shi, Q.; Zhao, S.; Wang, Z.; Li, W.; Tang, Y.; Ma, Y.; Luo, X.; et al. Effectiveness and safety of glucocorticoids to treat COVID-19: A rapid review and meta-analysis. Ann. Transl. Med. 2020, 8, 627. [Google Scholar] [CrossRef]
- Sterne, J.A.; Murthy, S.; Diaz, J.V.; Slutsky, A.S.; Villar, J.; Angus, D.C.; Annane, D.; Azevedo, L.C.P.; Berwanger, O.; Cavalcanti, A.B.; et al. Association between Administration of Systemic Corticosteroids and Mortality among Critically Ill Patients with COVID-19: A Meta-analysis. JAMA 2020, 324, 1330–1341. [Google Scholar] [CrossRef]
- Zhou, W.; Liu, Y.; Tian, D.; Wang, C.; Wang, S.; Cheng, J.; Hu, M.; Fang, M.; Gao, Y. Potential benefits of precise corticosteroids therapy for severe 2019-nCoV pneumonia. Signal Transduct. Target. Ther. 2020, 5, 18. [Google Scholar] [CrossRef]
- Angus, D.C.; Derde, L.; Al-Beidh, F.; Annane, D.; Arabi, Y.; Beane, A.; van Bentum-Puijk, W.; Berry, L.; Bhimani, Z.; Bonten, M. Effect of hydrocortisone on mortality and organ support in patients with severe COVID-19: The REMAP-CAP COVID-19 corticosteroid domain randomized clinical trial. JAMA 2020, 324, 1317–1329. [Google Scholar]
- Barros, C.M.S.S.; Freire, R.S.; Frota, E.; Rezende Santos, A.G.; Farias, M.E.L.; Rodrigues, M.G.A.; Silva, B.M.; Prado Jeronimo, C.M.; Netto, R.L.A.; Silva Borba, M.G. Short-Course of Methylprednisolone Improves Respiratory Functional Parameters after 120 Days in Hospitalized COVID-19 Patients (Metcovid Trial): A Randomized Clinical Trial. Front. Med. 2021, 8, 758405. [Google Scholar] [CrossRef]
- Batırel, A.; Demirhan, R.; Eser, N.; Körlü, E.; Tezcan, M.E. Pulse steroid treatment for hospitalized adults with COVID-19. Turk. J. Med. Sci. 2021, 51, 2248–2255. [Google Scholar] [CrossRef] [PubMed]
- Bouadma, L.; Mekontso-Dessap, A.; Burdet, C.; Merdji, H.; Poissy, J.; Dupuis, C.; Guitton, C.; Schwebel, C.; Cohen, Y.; Bruel, C. High-dose dexamethasone and oxygen support strategies in intensive care unit patients with severe COVID-19 acute hypoxemic respiratory failure: The COVIDICUS randomized clinical trial. JAMA Intern. Med. 2022, 182, 906–916. [Google Scholar] [CrossRef] [PubMed]
- Corral-Gudino, L.; Bahamonde, A.; Arnaiz-Revillas, F.; Gómez-Barquero, J.; Abadía-Otero, J.; García-Ibarbia, C.; Mora, V.; Cerezo-Hernández, A.; Hernández, J.L.; López-Muñíz, G. Methylprednisolone in adults hospitalized with COVID-19 pneumonia. Wien. Klin. Wochenschr. 2021, 133, 303–311. [Google Scholar] [CrossRef]
- Corral-Gudino, L.; Cusacovich, I.; Martín-González, J.I.; Muela-Molinero, A.; Abadía-Otero, J.; González-Fuentes, R.; Ruíz-de-Temiño, Á.; Tapia-Moral, E.; Cuadrado-Medina, F.; Martín-Asenjo, M. Effect of intravenous pulses of methylprednisolone 250 mg versus dexamethasone 6 mg in hospitalised adults with severe COVID-19 pneumonia: An open-label randomised trial. Eur. J. Clin. Investig. 2023, 53, e13881. [Google Scholar] [CrossRef] [PubMed]
- Dastenae, Z.H.; Bahadori, A.; Dehghani, M.; Asadi-Samani, M.; Izadi, I.; Shahraki, H.R. Comparison of the effect of intravenous dexamethasone and methylprednisolone on the treatment of hospitalized patients with COVID-19: A randomized clinical trial. Int. J. Infect. Dis. 2022, 122, 659–664. [Google Scholar] [CrossRef]
- Dequin, P.-F.; Heming, N.; Meziani, F.; Plantefève, G.; Voiriot, G.; Badié, J.; François, B.; Aubron, C.; Ricard, J.-D.; Ehrmann, S. Effect of hydrocortisone on 21-day mortality or respiratory support among critically ill patients with COVID-19: A randomized clinical trial. JAMA 2020, 324, 1298–1306. [Google Scholar] [CrossRef]
- Ghanei, M.; Solaymani-Dodaran, M.; Qazvini, A.; Ghazale, A.H.; Setarehdan, S.A.; Saadat, S.H.; Ghobadi, H.; Hoseininia, S.; Elahikhah, M.; Samadi, A.H. The efficacy of corticosteroids therapy in patients with moderate to severe SARS-CoV-2 infection: A multicenter, randomized, open-label trial. Respir. Res. 2021, 22, 245. [Google Scholar] [CrossRef]
- Jeronimo, C.M.P.; Farias, M.E.L.; Val, F.F.A.; Sampaio, V.S.; Alexandre, M.A.A.; Melo, G.C.; Safe, I.P.; Borba, M.G.S.; Abreu-Netto, R.L.; Maciel, A.B.S. Methylprednisolone as adjunctive therapy for patients hospitalized with COVID-19 (Metcovid): A randomised, double-blind, phase IIb, placebo-controlled trial. Clin. Infect. Dis. 2020, 1–35. [Google Scholar] [CrossRef]
- Maskin, L.P.; Bonelli, I.; Olarte, G.L.; Palizas, F., Jr.; Velo, A.E.; Lurbet, M.F.; Lovazzano, P.; Kotsias, S.; Attie, S.; Lopez Saubidet, I. High-versus low-dose dexamethasone for the treatment of COVID-19-related acute respiratory distress syndrome: A multicenter, randomized open-label clinical trial. J. Intensive Care Med. 2022, 37, 491–499. [Google Scholar] [CrossRef]
- Munch, M.W.; Meyhoff, T.S.; Helleberg, M.; Kjær, M.B.N.; Granholm, A.; Hjortsø, C.J.S.; Jensen, T.S.; Møller, M.H.; Hjortrup, P.B.; Wetterslev, M. Low-dose hydrocortisone in patients with COVID-19 and severe hypoxia: The COVID STEROID randomised, placebo-controlled trial. Acta Anaesthesiol. Scand. 2021, 65, 1421–1430. [Google Scholar] [CrossRef]
- Pinzón, M.A.; Ortiz, S.; Holguín, H.; Betancur, J.F.; Cardona Arango, D.; Laniado, H.; Arias Arias, C.; Muñoz, B.; Quiceno, J.; Jaramillo, D. Dexamethasone vs. methylprednisolone high dose for COVID-19 pneumonia. PLoS ONE 2021, 16, e0252057. [Google Scholar] [CrossRef] [PubMed]
- Ramakrishnan, S.; Nicolau, D.V., Jr.; Langford, B.; Mahdi, M.; Jeffers, H.; Mwasuku, C.; Krassowska, K.; Fox, R.; Binnian, I.; Glover, V. Inhaled budesonide in the treatment of early COVID-19 (STOIC): A phase 2, open-label, randomised controlled trial. Lancet Respir. Med. 2021, 9, 763–772. [Google Scholar] [CrossRef] [PubMed]
- Ranjbar, K.; Moghadami, M.; Mirahmadizadeh, A.; Fallahi, M.J.; Khaloo, V.; Shahriarirad, R.; Erfani, A.; Khodamoradi, Z.; Gholampoor Saadi, M.H. Methylprednisolone or dexamethasone, which one is superior corticosteroid in the treatment of hospitalized COVID-19 patients: A triple-blinded randomized controlled trial. BMC Infect. Dis. 2021, 21, 337. [Google Scholar] [CrossRef] [PubMed]
- Salton, F.; Confalonieri, P.; Centanni, S.; Mondoni, M.; Petrosillo, N.; Bonfanti, P.; Lapadula, G.; Lacedonia, D.; Voza, A.; Carpenè, N. Prolonged higher dose methylprednisolone vs. conventional dexamethasone in COVID-19 pneumonia: A randomised controlled trial (MEDEAS). Eur. Respir. J. 2022, 61, 2201514. [Google Scholar] [CrossRef]
- Tang, X.; Feng, Y.-M.; Ni, J.-X.; Zhang, J.-Y.; Liu, L.-M.; Hu, K.; Wu, X.-Z.; Zhang, J.-X.; Chen, J.-W.; Zhang, J.-C. Early use of corticosteroid may prolong SARS-CoV-2 shedding in non-intensive care unit patients with COVID-19 pneumonia: A multicenter, single-blind, randomized control trial. Respiration 2021, 100, 116–126. [Google Scholar] [CrossRef]
- Russell, C.D.; Millar, J.E.; Baillie, J.K. Clinical evidence does not support corticosteroid treatment for 2019-nCoV lung injury. Lancet 2020, 395, 473–475. [Google Scholar] [CrossRef]
- Corral-Gudino, L.; Bahamonde, A.; Arnaiz-Revillas, F.; Gómez-Barquero, J.; Abadía-Otero, J.; García-Ibarbia, C.; Mora, V.; Cerezo-Hernández, A.; Hernández, J.L.; López-Muñíz, G. GLUCOCOVID: A controlled trial of methylprednisolone in adults hospitalized with COVID-19 pneumonia. MedRxiv 2020. [Google Scholar]
- Agarwal, A.; Rochwerg, B.; Lamontagne, F.; Siemieniuk, R.A.; Agoritsas, T.; Askie, L.; Lytvyn, L.; Leo, Y.-S.; Macdonald, H.; Zeng, L. A living WHO guideline on drugs for COVID-19. BMJ 2020, 370, m3379. [Google Scholar] [CrossRef]
- Health NIO. COVID-19 Treatment Guidelines: Corticosteroids. 2020. Available online: https://www.covid19treatmentguidelines.nih.gov/dexamethasone/ (accessed on 29 April 2023).
- Meduri, G.U.; Bridges, L.; Shih, M.-C.; Marik, P.E.; Siemieniuk, R.A.; Kocak, M. Prolonged glucocorticoid treatment is associated with improved ARDS outcomes: Randomized controlled trial. Intensive Care Med. 2021, 42, 829–840. [Google Scholar] [CrossRef]
- Meduri, G.U.; Siemieniuk, R.A.C.; Ness, R.A.; Seyler, S.J. Prolonged low-dose methylprednisolone treatment is highly effective in reducing duration of mechanical ventilation and mortality in patients with ARDS. J. Intensive Care 2018, 6, 53. [Google Scholar] [CrossRef]
- Beran, A.; Ayesh, H.; Mhanna, M.; Srour, O.; Musallam, R.; Sayeh, W.; Khokher, W.; Altorok, N.; Noori, Z.; Assaly, R. Methylprednisolone May Be Superior to Dexamethasone in COVID-19: A Meta-Analysis of Randomized Controlled Trials. Am. J. Ther. 2022, 29, e351–e354. [Google Scholar] [CrossRef] [PubMed]
- Goel, N.; Goyal, N.; Nagaraja, R.; Kumar, R. Systemic corticosteroids for management of ‘long-COVID’: An evaluation after 3 months of treatment. Monaldi Arch. Chest Dis. 2021, 92, 2. [Google Scholar] [CrossRef]
- Maláska, J.; Stašek, J.; Duška, F.; Balík, M.; Máca, J.; Hruda, J.; Vymazal, T.; Klementová, O.; Zatloukal, J.; Gabrhelík, T. Effect of dexamethasone in patients with ARDS and COVID-19–prospective, multi-centre, open-label, parallel-group, randomised controlled trial (REMED trial): A structured summary of a study protocol for a randomised controlled trial. Trials 2021, 22, 172. [Google Scholar] [CrossRef]
- Närhi, F.; Moonesinghe, S.R.; Shenkin, S.D.; Drake, T.M.; Mulholland, R.H.; Donegan, C.; Dunning, J.; Fairfield, C.J.; Girvan, M.; Hardwick, H.E.; et al. Implementation of corticosteroids in treatment of COVID-19 in the ISARIC WHO Clinical Characterisation Protocol UK: Prospective, cohort study. Lancet Digit. Health 2022, 4, e220–e234. [Google Scholar] [CrossRef]
Author (Year) | Country | No. of Participants | Dose | Duration | Outcomes | Results |
---|---|---|---|---|---|---|
Angus (2020) [19] | Australia, Belgium, Canada, Croatia, Finland, France, Germany, Hungary, Ireland, Netherlands, New Zealand, Portugal, Romania, Saudi Arabia, Spain, United Kingdom, United States | 576 |
|
| Organ-support-free days within 21 days |
|
Barros (2021) [20] | Brazil | 118 | IV MP 0.5 mg/kg was given twice daily | 5 days | Pulmonary function testing at day 120 follow-up visit | FEV1 and FVC were significantly higher in patients in the MP arm |
Batirel (2021) [21] | Turkey | 450 |
| 10 days | ICU stay |
|
Bouadma (2022) [22] | France | 546 |
| 10 days | 60-day mortality | HR: 0.96 [95% CI, 0.69–1.33] |
Corral-Gudino (2021) [23] | Spain | 64 | MP (40 mg twice daily for 3 days followed by 20 mg bid for 3 days) | 6 days | A composite of death, admission to the intensive care unit, or requirement for non-invasive ventilation |
|
Corral-Gudino (2023) [24] | Spain | 125 |
| MP: 3 days DEXA: 10 days | 28-day mortality |
|
Dastenae (2022) [25] | Iran | 143 |
| Maximum of 10 days | Length of hospital stay |
|
Dequin (2020) [26] | France | 149 | HC 200 mg/day until day 7 and then decreased to 100 mg/d for 4 days and 50 mg/day for 3 days | 14 days | 21-day mortality or respiratory support |
|
Edalatifard (2020) [4] | Iran | 68 | MP pulse 250 mg/day | 3 days | Time of clinical improvement or death | The percentage of improved patients was higher in the MP group compared to the standard care group (94.1% versus 57.1%), and the mortality rate was significantly lower in the MP group (5.9% versus 42.9%; p < 0.001) |
Ghanei (2021) [27] | Iran | 336 | Prednisolone 25 mg | 5 days | ICU admission | No difference between treatment and placebo groups |
Horby (2021) [1] | United Kingdom | 6425 | DEXA 6 mg once daily | Up to 10 days | 28-day mortality | RR: 0.64 [95% CI, 0.51 to 0.81] |
Jamaati (2021) [11] | Iran | 50 | DEXA 20 mg/day, days 1–5 and then 10 mg/day, days 6–10 | 10 days | Mortality |
|
Jeronimo (2020) [28] | Brazil | 393 | MP 0.5 mg/kg twice daily | 5 days | 28-day mortality | No difference between groups |
Maskin (2022) [29] | Argentina | 98 |
| 10 days | Ventilator-free days during the first 28 days | No difference between groups |
Munch (2021) [30] | Denmark, Sweden, Switzerland, India | 30 | HC 200 mg/day | Up to 7 days | Number of days alive without life support on day 28 |
|
Pinzón (2021) [31] | Colombia | 216 |
|
| Recovery time |
|
Ramakrishnan (2021) [32] | UK | 146 | Budesonide turbuhaler 400 μg per actuation, two puffs to be taken twice per day | Median at 7 days (4–10) | COVID-19-related urgent care visits, including emergency department assessment or hospitalisation |
|
Ranjbar (2021) [33] | Iran | 86 |
|
| 28-day mortality rate |
|
Salton (2022) [34] | Italy | 677 |
|
| 28-day mortality rate |
|
Salvarani (2022) [13] | Italy | 301 |
| 3 days | Duration of patient hospitalisation (median days) |
|
Soliman (2022) [7] | Egypt | 67 |
| 7 days | Monitoring of systemic inflammation through follow-up of NLR ratio at days 5, 7 | The NLR was significantly lower in the MP gr than the DEXA gr on the 5th and 7th days (p-values of 0.014 and 0.019, respectively) |
Tang (2021) [35] | China | 86 | MP group 1 mg/kg per day | 7 days | Incidence of clinical deterioration, 14 days | No significant differences between groups (4.8 vs. 4.8%, p = 1.000) |
Tomazini (2020) [2] | Brazil | 299 | DEXA 20 mg once daily, days 1–5, and then 10 mg once, days 6–10 or until ICU discharge | 10 days | Ventilator-free days during the first 28 days of hospital stay |
|
Toroghi (2021) [9] | Iran | 133 |
| Up to 10 days | 60-day survival rate | Longer in the low-dose group than the high-dose group (HR = 0.36, 95% CI = 0.15–0.83) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tsai, D.H.-T.; Harmon, E.; Goelen, J.; Barry, H.E.; Chen, L.-Y.; Hsia, Y. Evaluating the Risk–Benefit Profile of Corticosteroid Therapy for COVID-19 Patients: A Scoping Review. Pharmacy 2024, 12, 129. https://doi.org/10.3390/pharmacy12040129
Tsai DH-T, Harmon E, Goelen J, Barry HE, Chen L-Y, Hsia Y. Evaluating the Risk–Benefit Profile of Corticosteroid Therapy for COVID-19 Patients: A Scoping Review. Pharmacy. 2024; 12(4):129. https://doi.org/10.3390/pharmacy12040129
Chicago/Turabian StyleTsai, Daniel Hsiang-Te, Emma Harmon, Jan Goelen, Heather E. Barry, Li-Yang Chen, and Yingfen Hsia. 2024. "Evaluating the Risk–Benefit Profile of Corticosteroid Therapy for COVID-19 Patients: A Scoping Review" Pharmacy 12, no. 4: 129. https://doi.org/10.3390/pharmacy12040129
APA StyleTsai, D. H. -T., Harmon, E., Goelen, J., Barry, H. E., Chen, L. -Y., & Hsia, Y. (2024). Evaluating the Risk–Benefit Profile of Corticosteroid Therapy for COVID-19 Patients: A Scoping Review. Pharmacy, 12(4), 129. https://doi.org/10.3390/pharmacy12040129