Medication Reconciliation of Patients by Pharmacist at the Time of Admission and Discharge from Adult Nephrology Wards
Abstract
:1. Introduction
2. Material and Method
2.1. Study Design, Setting, Duration
2.2. Patients Selection and Medication History Obtaining
2.3. Medication Discrepancies Assessment and Reporting
2.4. Potential Drug–Drug Interaction Evaluations
2.5. Patient Consultation at the Time of Ward Discharge
2.6. Study Endpoints
2.7. Statistical Analyses
3. Results
3.1. Patients’ Characteristics
3.2. Medication Discrepancies and Medication Reconciliation
3.3. Potential Drug–Drug Interactions
3.4. Medication Consultation at Ward Discharge and Acceptance Rate of Pharmacist Interventions
4. Discussion
4.1. General Concepts and Findings
4.2. Medication Discrepancies and Medication Reconciliation
4.3. Potential Drug-Drug Interactions
4.4. Acceptance Rate of the Pharmacist Interventions
4.5. Study Limitations
5. Conclusions
6. Clinical Implications and Future Perspectives
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
References
- Atanasov, A.G.; Yeung, A.W.K.; Klager, E.; Eibensteiner, F.; Schaden, E.; Kletecka-Pulker, M.; Willschke, H. First, Do No Harm (Gone Wrong): Total-Scale Analysis of Medical Errors Scientific Literature. Front. Public Health 2020, 8, 558913. [Google Scholar] [CrossRef] [PubMed]
- Wittich, C.M.; Burkle, C.M.; Lanier, W.L. Medication errors: An overview for clinicians. Mayo Clin. Proc. 2014, 89, 1116–1125. [Google Scholar] [CrossRef] [PubMed]
- Al Hamid, A.; Ghaleb, M.; Aljadhey, H.; Aslanpour, Z. A systematic review of hospitalization resulting from medicine-related problems in adult patients. Br. J. Clin. Pharmacol. 2014, 78, 202–217. [Google Scholar] [CrossRef] [PubMed]
- Hodkinson, A.; Tyler, N.; Ashcroft, D.M.; Keers, R.N.; Khan, K.; Phipps, D.; Abuzour, A.; Bower, P.; Avery, A.; Campbell, S.; et al. Preventable medication harm across health care settings: A systematic review and meta-analysis. BMC Med. 2020, 18, 313. [Google Scholar] [CrossRef] [PubMed]
- Miller, M.R.; Robinson, K.A.; Lubomski, L.H.; Rinke, M.L.; Pronovost, P.J. Medication errors in paediatric care: A systematic review of epidemiology and an evaluation of evidence supporting reduction strategy recommendations. BMJ Qual. Saf. 2007, 16, 116–126. [Google Scholar] [CrossRef] [PubMed]
- Mansouri, A.; Ahmadvand, A.; Hadjibabaie, M.; Kargar, M.; Javadi, M.; Gholami, K. Types and severity of medication errors in Iran; a review of the current literature. DARU J. Pharm. Sci. 2013, 21, 49. [Google Scholar] [CrossRef]
- Vaziri, S.; Fakouri, F.; Mirzaei, M.; Afsharian, M.; Azizi, M.; Arab-Zozani, M. Prevalence of medical errors in Iran: A systematic review and meta-analysis. BMC Health Serv. Res. 2019, 19, 622. [Google Scholar] [CrossRef]
- Weingart, N.S.; Wilson, R.M.; Gibberd, R.W.; Harrison, B. Epidemiology of medical error. BMJ 2000, 320, 774–777. [Google Scholar] [CrossRef]
- Pronovost, P.; Weast, B.; Schwarz, M.; Wyskiel, R.M.; Prow, D.; Milanovich, S.N.; Berenholtz, S.; Dorman, T.; Lipsett, P. Medication reconciliation: A practical tool to reduce the risk of medication errors. J. Crit. Care 2003, 18, 201–205. [Google Scholar] [CrossRef]
- Manley, H.J.; Drayer, D.K.; McClaran, M.; Bender, W.; Muther, R.S. Drug record discrepancies in an outpatient electronic medical record: Frequency, type, and potential impact on patient care at a hemodialysis center. Pharmacotherapy 2003, 23, 231–239. [Google Scholar] [CrossRef]
- Herges, J.R.; Garrison, G.M.; Mara, K.C.; Angstman, K.B. Using medication containers during pharmacist transitional care visits and impact on medication discrepancies identified and hospital readmission risk. J. Am. Pharm. Assoc. 2021, 61, 68–73. [Google Scholar] [CrossRef] [PubMed]
- Moghli, M.A.; Farha, R.A.; Hammour, K.A. Medication discrepancies in hospitalized cancer patients: Do we need medication reconciliation? J. Oncol. Pharm. Pract. 2021, 27, 1139–1146. [Google Scholar] [CrossRef]
- Neumiller, J.J.; Setter, S.M.; White, A.M.; Corbett, C.F.; Weeks, D.L.; Daratha, K.B.; Collins, J.B. Medication Discrepancies and Potential Adverse Drug Events During Transfer of Care from Hospital to Home. In Advances in Patient Safety and Medical Liability; Battles, J., Azam, I., Reback, K., Grady, M., Eds.; Agency for Healthcare Research and Quality (US): Rockville, MD, USA, 2017. Available online: https://www.ncbi.nlm.nih.gov/books/NBK508082/ (accessed on 4 July 2024).
- Kanninen, L. Evaluating Predictors for Medication Discrepancies on Admission-Identification of High-Risk Patients during Hospitalization Using a Belgian Predictive Model in a Swedish Patient Population: A MedBridge Sub-Study. Master’s Thesis, Umeå Universitet, Umeå, Sweden, 2020. [Google Scholar]
- Mueller, S.K.; Sponsler, K.C.; Kripalani, S.; Schnipper, J.L. Hospital-based medication reconciliation practices: A systematic review. Arch. Intern. Med. 2012, 172, 1057–1069. [Google Scholar] [CrossRef] [PubMed]
- Alqenae, F.A.; Steinke, D.; Keers, R.N. Prevalence and Nature of Medication Errors and Medication-Related Harm Following Discharge from Hospital to Community Settings: A Systematic Review. Drug Saf. 2020, 43, 517–537. [Google Scholar] [CrossRef] [PubMed]
- Barnsteiner, J.H. Medication Reconciliation. In Patient Safety and Quality: An Evidence-Based Handbook for Nurses; Hughes, R.G., Ed.; Agency for Healthcare Research and Quality (US): Rockville, MD, USA, 2008; Chapter 38. Available online: https://www.ncbi.nlm.nih.gov/books/NBK2648/ (accessed on 5 July 2024).
- Chiewchantanakit, D.; Meakchai, A.; Pituchaturont, N.; Dilokthornsakul, P.; Dhippayom, T. The effectiveness of medication reconciliation to prevent medication error: A systematic review and meta-analysis. Res. Social. Adm. Pharm. 2020, 16, 886–894. [Google Scholar] [CrossRef]
- Lesselroth, B.; Adams, K.; Tallett, S.; Ong, L.; Bliss, S.; Ragland, S.; Tran, H.; Church, V. Naturalistic Usability Testing of Inpatient Medication Reconciliation Software. In Building Capacity for Health Informatics in the Future; IOS Press: Amsterdam, The Netherlands, 2017. [Google Scholar]
- Eidelwein, C.R.; Sanches, A.C.; Caldeira, L.F. Medication reconciliation in orthopedic and neurological patients in a public hospital. Rev. Bras. Farmácia Hosp. Serviços Saúde 2020, 11, 354. [Google Scholar] [CrossRef]
- Huynh, C.; Wong, I.C.; Tomlin, S.; Terry, D.; Sinclair, A.; Wilson, K.; Jani, Y. Medication discrepancies at transitions in pediatrics: A review of the literature. Paediatr. Drugs 2013, 15, 203–215. [Google Scholar] [CrossRef]
- Levey, A.S.; Stevens, L.A.; Schmid, C.H.; Zhang, Y.L.; Castro, A.F., 3rd; Feldman, H.I.; Kusek, J.W.; Eggers, P.; Van Lente, F.; Greene, T.; et al. A new equation to estimate glomerular filtration rate. Ann. Intern. Med. 2009, 150, 604–612. [Google Scholar] [CrossRef]
- Inker, L.A.; Astor, B.C.; Fox, C.H.; Isakova, T.; Lash, J.P.; Peralta, C.A.; Kurella Tamura, M.; Feldman, H.I. KDOQI US commentary on the 2012 KDIGO clinical practice guideline for the evaluation and management of CKD. Am. J. Kidney Dis. 2014, 63, 713–735. [Google Scholar] [CrossRef]
- Anatomical Therapeutic Chemical (ATC). 2020. Available online: https://www.whocc.no/atc_ddd_index (accessed on 27 August 2021).
- Lexi-Interact Online. Available online: https://www.uptodate.com/drug-interactions/ (accessed on 23 August 2021).
- Steurbaut, S.; Leemans, L.; Leysen, T.; De Baere, E.; Cornu, P.; Mets, T.; Dupont, A.G. Medication history reconciliation by clinical pharmacists in elderly inpatients admitted from home or a nursing home. Ann. Pharmacother. 2010, 44, 1596–1603. [Google Scholar] [CrossRef]
- Cornish, P.L.; Knowles, S.R.; Marchesano, R.; Tam, V.; Shadowitz, S.; Juurlink, D.N.; Etchells, E.E. Unintended medication discrepancies at the time of hospital admission. Arch. Intern. Med. 2005, 165, 424–429. [Google Scholar] [CrossRef] [PubMed]
- Haji Aghajani, M.; Ghazaeian, M.; Mehrazin, H.R.; Sistanizad, M.; Miri, M. Errors Related to Medication Reconciliation: A Prospective Study in Patients Admitted to the Post CCU. Iran. J. Pharm. Res. 2016, 15, 599–604. [Google Scholar] [PubMed]
- Karimzadeh, I.; Mirjalili, M.; Mirzaei, E.; Mottaghi, S.; Vazin, A. Medication reconciliation at admission by pharmacists in a teaching referral hospital in Iran. Trends Pharm. Sci. 2019, 5, 65–72. [Google Scholar] [CrossRef]
- Vazin, A.; Zamani, Z.; Hatam, N. Frequency of medication errors in an emergency department of a large teaching hospital in southern Iran. Drug Healthc. Patient Saf. 2014, 6, 179–184. [Google Scholar] [CrossRef]
- Gharekhani, A.; Kanani, N.; Khalili, H.; Dashti-Khavidaki, S. Frequency, types, and direct related costs of medication errors in an academic nephrology ward in Iran. Ren. Fail. 2014, 36, 1268–1272. [Google Scholar] [CrossRef]
- Mehrpooya, M.; Khorami, M.-R.; Mohammadi, M.; Mohammadi, Y.; Ahmadimoghaddam, D. Clinical Pharmacists’ Contribution to Medication Reconciliation in Outpatient Specialty Clinics in Iran. Curr. Drug Saf. 2022, 17, 259–268. [Google Scholar] [CrossRef] [PubMed]
- Ataei, S.; Makki, B.; Ayubi, E.; Emami, S. Medication discrepancies identified by medication reconciliation among patients with acute coronary syndrome. Naunyn Schmiedebergs Arch. Pharmacol. 2024, 397, 7649–7657. [Google Scholar] [CrossRef] [PubMed]
- Prins, M.C.; Drenth-van Maanen, A.; Kok, R.M.; Jansen, P.A. Use of a structured medication history to establish medication use at admission to an old age psychiatric clinic: A prospective observational study. CNS Drugs 2013, 27, 963–969. [Google Scholar] [CrossRef]
- Chan, W.W.; Mahalingam, G.; Richardson, R.M.; Fernandes, O.A.; Battistella, M. A formal medication reconciliation programme in a haemodialysis unit can identify medication discrepancies and potentially prevent adverse drug events. J. Ren. Care 2015, 41, 104–109. [Google Scholar] [CrossRef]
- Unroe, K.T.; Pfeiffenberger, T.; Riegelhaupt, S.; Jastrzembski, J.; Lokhnygina, Y.; Colón-Emeric, C. Inpatient medication reconciliation at admission and discharge: A retrospective cohort study of age and other risk factors for medication discrepancies. Am. J. Geriatr. Pharmacother. 2010, 8, 115–126. [Google Scholar] [CrossRef]
- Dyer, S.A.; Nguyen, V.; Rafie, S.; Awdishu, L. Impact of Medication Reconciliation by a Dialysis Pharmacist. Kidney360 2022, 3, 922–925. [Google Scholar] [CrossRef] [PubMed]
- Clapper, T.C.; Ching, K. Debunking the myth that the majority of medical errors are attributed to communication. Med. Educ. 2020, 54, 74–81. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.C.; Hsiao, F.Y.; Shen, L.J.; Wu, C.C. The cost-saving effect and prevention of medication errors by clinical pharmacist intervention in a nephrology unit. Medicine 2017, 96, e7883. [Google Scholar] [CrossRef] [PubMed]
- Ebbens, M.M.; Errami, H.; Moes, D.J.A.R.; van den Bemt, P.M.L.A.; van der Boog, P.J.M.; Gombert-Handoko, K.B. Prevalence of medication transfer errors in nephrology patients and potential risk factors. Eur. J. Intern. Med. 2019, 70, 50–53. [Google Scholar] [CrossRef]
- Garba, A. Chronic kidney disease. In Applied Therapeutics: The Clinical Use of Drugs, 12th ed.; Zeind, C.S., Carvalho, M.G., Cheng, J.W.M., Zaiken, K., Lapointe, T., Eds.; Wolters Kluwer: Hong Kong, 2023; p. 1092. [Google Scholar]
- Geurts, M.M.; van der Flier, M.; de Vries-Bots, A.M.; Brink-van der Wal, T.I.; de Gier, J.J. Medication reconciliation to solve discrepancies in discharge documents after discharge from the hospital. Int. J. Clin. Pharm. 2013, 35, 600–607. [Google Scholar] [CrossRef]
- Mazhar, F.; Akram, S.; Al-Osaimi, Y.A.; Haider, N. Medication reconciliation errors in a tertiary care hospital in Saudi Arabia: Admission discrepancies and risk factors. Pharm. Pract. 2017, 15, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Breuker, C.; Macioce, V.; Mura, T.; Castet-Nicolas, A.; Audurier, Y.; Boegner, C.; Jalabert, A.; Villiet, M.; Avignon, A.; Sultan, A. Medication Errors at Hospital Admission and Discharge: Risk Factors and Impact of Medication Reconciliation Process to Improve Healthcare. J. Patient Saf. 2021, 17, e645–e652. [Google Scholar] [CrossRef]
- Taber, D.J.; Dupuis, R.E.; Pilch, N.A.; Szempruch, K. Kidney Liver Transplantation In Applied Therapeutics: The Clinical Use of Drugs, 12th ed.; Zeind, C.S., Carvalho, M.G., Cheng, J.W.M., Zaiken, K., Lapointe, T., Eds.; Wolters Kluwer: Hong Kong, 2023. [Google Scholar]
- van Gelder, T.; Klupp, J.; Barten, M.J.; Christians, U.; Morris, R.E. Comparison of the effects of tacrolimus and cyclosporine on the pharmacokinetics of mycophenolic acid. Ther. Drug Monit. 2001, 23, 119–128. [Google Scholar] [CrossRef]
- Kagaya, H.; Miura, M.; Satoh, S.; Inoue, K.; Saito, M.; Inoue, T.; Habuchi, T.; Suzuki, T. No pharmacokinetic interactions between mycophenolic acid and tacrolimus in renal transplant recipients. J. Clin. Pharm. Ther. 2008, 33, 193–201. [Google Scholar] [CrossRef]
- Moradi, O.; Karimzadeh, I.; Davani-Davari, D.; Shafiekhani, M.; Sagheb, M.; Raees-Jalali, G. Drug-Drug Interactions among Kidney Transplant Recipients in The Outpatient Setting. Int. J. Organ Transplant. Med. 2020, 11, 185. [Google Scholar] [PubMed]
- Noormandi, A.; Karimzadeh, I.; Mirjalili, M.; Khalili, H. Clinical and economic impacts of clinical pharmacists’ interventions in Iran: A systematic review. DARU J. Pharm. Sci. 2019, 27, 361–378. [Google Scholar] [CrossRef] [PubMed]
- Parenica, J.; Spinar, J.; Vitovec, J.; Widimsky, P.; Linhart, A.; Fedorco, M.; Vaclavik, J.; Miklik, R.; Felsoci, M.; Horakova, K.; et al. Long-term survival following acute heart failure: The Acute Heart Failure Database Main registry (AHEAD Main). Eur. J. Intern. Med. 2013, 24, 151–160. [Google Scholar] [CrossRef]
- Frament, J.; Hall, R.K.; Manley, H.J. Medication Reconciliation: The Foundation of Medication Safety for Patients Requiring Dialysis. Am. J. Kidney Dis. 2020, 76, 868–876. [Google Scholar] [CrossRef] [PubMed]
- Calleja, L.; Glass, B.D.; Cairns, A.; Taylor, S. Pharmacist-Led Interventions for Medication Adherence in Patients with Chronic Kidney Disease: A Scoping Review. Pharmacy 2023, 11, 185. [Google Scholar] [CrossRef] [PubMed]
- Ahmadimoghaddam, D.; Akbari, P.; Mehrpooya, M.; Entezari-Maleki, T.; Rangchian, M.; Zamanirafe, M.; Parvaneh, E.; Mohammadi, Y. Comparison between proactive and retroactive models of medication reconciliation in patients hospitalized for acute decompensated heart failure. Int. J. Risk Saf. Med. 2024, 35, 143–158. [Google Scholar] [CrossRef] [PubMed]
Variables | Median | Interquartile Range | Minimum | Maximum |
---|---|---|---|---|
Age (year) | 58.00 | 29.00 | 18 | 97 |
Body mass index (kg/m2) | 22.92 | 5.42 | 2.00 | 68.00 |
Length of hospital stay (Day) | 9.00 | 7.00 | 2.00 | 53.00 |
Glomerular filtration rate for non-AKI patients | 14.005 | 25.10 | 2.90 | 97.28 |
Primary diagnosis | Number | Percent | ||
Acute kidney injury | 61 | 34.27 | ||
End-stage kidney disease complications | 27 | 15.17 | ||
Nephrotic syndrome | 23 | 12.92 | ||
Urinary tract infection/sepsis/catheter site infection | 21 | 11.8 | ||
Kidney transplant rejection | 12 | 6.74 | ||
Post-transplant complications other than transplant rejection | 12 | 6.74 | ||
Other | 9 | 5.06 | ||
Lupus nephritis | 7 | 3.93 | ||
Diabetic nephropathy in chronic kidney disease (stage 1 to 4) | 5 | 2.81 |
Types of Unintentional Medication Discrepancies | Ward Admission | Ward Discharge | p-Value | ||
---|---|---|---|---|---|
Median | Interquartile Range | Median | Interquartile Range | ||
Total number of medication discrepancies | 9.58 | 5.61 | 5.01 | 3.13 | <0.0001 |
Number of unintentional medication discrepancies | 5.91 | 3.79 | 1 | 3 | <0.0001 |
Omission error | 1.75 | 1.63 | 1 | 2 | <0.0001 |
Doubling error | 0.12 | 0.33 | 0.04 | 0.19 | 0.013 |
Documentation error | 3.86 | 2.59 | 0.07 | 0.43 | <0.0001 |
Dosing error | 0.22 | 0.47 | 0.11 | 0.34 | 0.002 |
Commission error | 0.05 | 0.24 | 0.04 | 0.23 | 0.99 |
Substitution error | 0.13 | 0.35 | 0.09 | 0.31 | 0.06 |
Drug Category | Ward Admission | Ward Discharge | p-Value | |||
---|---|---|---|---|---|---|
Mean ± Standard Deviation | Number (Percent) | Mean ± Standard Deviation | Number (Percent) | |||
A | Alimentary Tract and Metabolism | 1.94 ±1.56 | 255 (24.26) | 0.79 ±0.40 | 50 (62.17) | <0.0001 |
B | Blood And Blood Forming Organs | 1.09 ± 0.61 | 110 (10.46) | 0.49 ± 0.23 | 30 (15.7) | <0.0001 |
C | Cardiovascular System | 1.75 ± 1.12 | 205 (19.5) | 0.62 ± 0.28 | 33 (17.8) | <0.0001 |
D | Dermatological | 0.29 ± 0.04 | 8 (0.66) | 0.00 ± 0.00 | 0 | <0.0001 |
G | Genito-Urinary System and Sex Hormones | 0.41 ± 0.11 | 20 (1.9) | 0.12 ± 0.01 | 2 (1.4) | 0.006 |
H | Systemic Hormonal Preparations, Excl. Sex Hormones and Insulins | 0.51 ± 0.22 | 35 (3.33) | 0.21 ± 0.04 | 5 (2.61) | <0.0001 |
J | Anti-infectives For Systemic Use | 0.52 ± 0.16 | 28 (2.66) | 0.28 ± 0.05 | 6 (3.14) | 0.006 |
L | Antineoplastic And Immunomodulating Agents | 0.29 ± 0.08 | 14 (1.33) | 0.19 ± 0.04 | 4 (2.9) | 0.13 |
M | Musculo-Skeletal System | 0.47 ± 0.20 | 38 (2.61) | 0.12 ± 0.01 | 2 (1.4) | <0.0001 |
N | Nervous System | 1.10 ± 0.52 | 100 (9.51) | 0.59 ± 0.21 | 27 (41.13) | <0.0001 |
P | Antiparasitic Products, Insecticides and Repellents | 0.00 ± 0.00 | 0 (0) | 0.00 ± 0.00 | 0 (0) | NA |
R | Respiratory System | 0.79 ± 0.17 | 28 (2.66) | 0.17 ± 0.01 | 2 (1.4) | 0.07 |
S | Sensory Organs | 0.57 ± 0.17 | 28 (2.66) | 0.39 ± 0.04 | 5 (2.61) | 0.002 |
V | Various | 1.17 ± 0.98 | 183 (17.41) | 0.41 ± 0.19 | 24 (21.56) | <0.0001 |
Variable | Number of Medication Discrepancies at Ward Admission | Number of Medication Discrepancies at Ward Discharge | ||
---|---|---|---|---|
Coefficient Correlation (r) | p-Value | Coefficient Correlation (r) | p-Value | |
Age | 0.263 | <0.0001 | 0.084 | 0.350 |
Length of hospital stay | 0.076 | 0.312 | 0.102 | 0.241 |
Body mass index | 0.138 | 0.088 | 0.083 | 0.357 |
Glomerular filtration rate | 0.152 | 0.051 | −0.033 | 0.708 |
Number of underlying diseases | 0.417 | <0.0001 | 0.325 | <0.0001 |
Number of administered medications | 0.358 | <0.0001 | 0.339 | <0.0001 |
Variable | Number of Medication Discrepancies at Admission | Number of Medication Discrepancies at Discharge | ||
---|---|---|---|---|
Regression Coefficient (β) | p-Value | Regression Coefficient (β) | p-Value | |
Age | 0.018 | 0.348 | −0.003 | 0.788 |
Gender | 0.364 | 0.577 | 0.014 | 0.970 |
Length of hospital stay | 0.018 | 0.676 | 0.004 | 0.892 |
Body mass index | 0.051 | 0.313 | 0.022 | 0.422 |
Glomerular filtration rate | −0.012 | 0.762 | 0.005 | 0.815 |
Number of underlying diseases | 0.478 | 0.043 | 0.229 | 0.031 |
Number of administered medications | 0.230 | 0.023 | 0.072 | 0.072 |
DDI | Severity of DDI | Number of Patients (Percent) | Number of DDIs at Admission (Percent) | Number of DDIs at Discharge (Percent) |
---|---|---|---|---|
Type D | ||||
Heparin + Acetylsalicylic acid | Moderate | 30 (33.7) | 30 (33.7) | 0 |
Prednisolone + Calcium carbonate | Moderate | 17 (19.10) | 14 (15.73) | 16 (20.25) |
Mycophenolate + Calcium carbonate | Moderate | 12 (13.48) | 10 (11.23) | 11 (13.92) |
Ciprofloxacin + Calcium carbonate | Moderate | 7 (7.86) | 4 (4.49) | 3 (3.80) |
Mycophenolate + Cyclosporine | Moderate | 7 (7.86) | 6 (6.74) | 6 (7.59) |
Acetylsalicylic acid + Apixaban | Major | 5 (5.62) | 1 (1.12) | 5 (6.33) |
Levothyroxine + Calcium carbonate | Moderate | 5 (5.62) | 5 (5.62) | 4 (5.06) |
Heparin + Piracetam | Moderate | 4 (4.49) | 4 (4.49) | 0 |
Vancomycin + Piperacillin-tazobactam | Major | 4 (4.49) | 4 (4.49) | 0 |
Atorvastatin + Diltiazem | Major | 3 (3.37) | 3 (3.37) | 0 |
Type X | ||||
Atorvastatin + Cyclosporine | Major | 3 (3.37) | 1 (1.12) | 3 (3.80) |
Calcitriol + Vitamin D | Major | 2 (2.25) | 2 (2.25) | 0 |
Apixaban + Heparin | Major | 1 (1.12) | 1 (1.12) | 0 |
Apixaban + Carbamazepine | Major | 1 (1.12) | 1 (1.12) | 0 |
Spironolactone + Triamterene/hydrochlorothiazide | Major | 1 (1.12) | 0 | 1 (1.26) |
Potassium chloride + Fexofenadine | Moderate | 1 (1.12) | 1 (1.12) | 0 |
Potassium chloride + Quetiapine | Moderate | 1 (1.12) | 1 (1.12) | 0 |
Tiotropium bromide + Ipratropium bromide | Major | 1 (1.12) | 1 (1.12) | 0 |
Salbutamol + Carvedilol | Major | 1 (1.12) | 1 (1.12) | 0 |
Salmeterol-fluticasone + Carvedilol | Major | 1 (1.12) | 1 (1.12) | 0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ahmadi, H.; Houshmand, Y.; Raees-Jalali, G.A.; Karimzadeh, I. Medication Reconciliation of Patients by Pharmacist at the Time of Admission and Discharge from Adult Nephrology Wards. Pharmacy 2024, 12, 170. https://doi.org/10.3390/pharmacy12060170
Ahmadi H, Houshmand Y, Raees-Jalali GA, Karimzadeh I. Medication Reconciliation of Patients by Pharmacist at the Time of Admission and Discharge from Adult Nephrology Wards. Pharmacy. 2024; 12(6):170. https://doi.org/10.3390/pharmacy12060170
Chicago/Turabian StyleAhmadi, Hossein, Yalda Houshmand, Ghanbar Ali Raees-Jalali, and Iman Karimzadeh. 2024. "Medication Reconciliation of Patients by Pharmacist at the Time of Admission and Discharge from Adult Nephrology Wards" Pharmacy 12, no. 6: 170. https://doi.org/10.3390/pharmacy12060170
APA StyleAhmadi, H., Houshmand, Y., Raees-Jalali, G. A., & Karimzadeh, I. (2024). Medication Reconciliation of Patients by Pharmacist at the Time of Admission and Discharge from Adult Nephrology Wards. Pharmacy, 12(6), 170. https://doi.org/10.3390/pharmacy12060170