Assessment of Potential Drug–Drug Interactions of Psycholeptics and Antidepressants in Outpatient Settings †
Abstract
:1. Introduction
2. Materials and Methods
- younger than 65 years;
- 65 years and older.
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Mental Disorders. Available online: https://www.who.int/news-room/fact-sheets/detail/mental-disorders (accessed on 11 October 2024).
- Brauer, R.; Alfageh, B.; Blais, J.E.; Chan, E.W.; Chui, C.S.L.; Hayes, J.F.; Man, K.K.C.; Lau, W.C.Y.; Yan, V.K.C.; Beykloo, M.Y.; et al. Psychotropic Medicine Consumption in 65 Countries and Regions, 2008–2019: A Longitudinal Study. Lancet Psychiatry 2021, 8, 1071–1082. [Google Scholar] [CrossRef] [PubMed]
- Annual Report on Drug Utilisation for 2023—Croatian Document. Available online: https://halmed.hr/Novosti-i-edukacije/Publikacije-i-izvjesca/Izvjesca-o-potrosnji-lijekova/Izvjesce-o-potrosnji-lijekova-u-Republici-Hrvatskoj-u-2023/ (accessed on 11 October 2024).
- Liu, Q.; He, H.; Yang, J.; Feng, X.; Zhao, F.; Lyu, J. Changes in the Global Burden of Depression from 1990 to 2017: Findings from the Global Burden of Disease Study. J. Psychiatr. Res. 2020, 126, 134–140. [Google Scholar] [CrossRef] [PubMed]
- Tannenbaum, C.; Martin, P.; Tamblyn, R.; Benedetti, A.; Ahmed, S. Reduction of inappropriate benzodiazepine prescriptions among older adults through direct patient education: The EMPOWER cluster randomized trial. JAMA Intern. Med. 2014, 174, 890–898. [Google Scholar] [CrossRef] [PubMed]
- Stuhec, M.; Lah, L. Clinical Pharmacist Interventions in Elderly Patients with Mental Disorders in Primary Care Focused on Psychotropics: A Retrospective Pre-Post Observational Study. Ther. Adv. Psychopharmacol. 2021, 11, 20451253211011007. [Google Scholar] [CrossRef] [PubMed]
- Stuhec, M.; Zorjan, K. Clinical Pharmacist Interventions in Ambulatory Psychogeriatric Patients with Excessive Polypharmacy. Sci. Rep. 2022, 12, 11387. [Google Scholar] [CrossRef] [PubMed]
- Kibsdal, K.P.; Andersen, S.; Gazerani, P.; Plet, H. Rates and correlates of pharmacotherapy-related problems among psychiatric inpatients: A representative Danish study. Ther. Adv. Psychopharmacol. 2020, 10, 2045125320957120. [Google Scholar] [CrossRef]
- Becker, M.L.; Kallewaard, M.; Caspers, P.W.; Schalekamp, T.; Stricker, B.H. Potential determinants of drug-drug interaction associated dispensing in community pharmacies. Drug Saf. 2005, 28, 371–378. [Google Scholar] [CrossRef]
- Palleria, C.; Di Paolo, A.; Giofrè, C.; Caglioti, C.; Leuzzi, G.; Siniscalchi, A.; De Sarro, G.; Gallelli, L. Pharmacokinetic drug-drug interaction and their implication in clinical management. J. Res. Med. Sci. 2013, 18, 601–610. [Google Scholar]
- Magro, L.; Arzenton, E.; Leone, R.; Stano, M.G.; Vezzaro, M.; Rudolph, A.; Castagna, I.; Moretti, U. Identifying and Characterizing Serious Adverse Drug Reactions Associated with Drug-Drug Interactions in a Spontaneous Reporting Database. Front. Pharmacol. 2021, 11, 622862. [Google Scholar] [CrossRef]
- Ćurković, M.; Dodig-Ćurković, K.; Erić, A.P.; Kralik, K.; Pivac, N. Psychotropic medications in older adults: A review. Psychiatr. Danub. 2016, 28, 13–24. [Google Scholar]
- Olfson, M.; Blanco, C.; Wang, S.; Laje, G.; Correll, C.U. National Trends in the Mental Health Care of Children, Adolescents, and Adults by Office-Based Physicians. JAMA Psychiatry 2014, 71, 81–90. [Google Scholar] [CrossRef] [PubMed]
- Luo, Y.; Kataoka, Y.; Ostinelli, E.G.; Cipriani, A.; Furukawa, T.A. National prescription patterns of antidepressants in the treatment of adults with major depression in the US between 1996 and 2015: A population representative survey based analysis. Front. Psychiatr. 2020, 11, 35. [Google Scholar] [CrossRef]
- Toivo, T.M.; Mikkola, J.A.; Laine, K.; Airaksinen, M. Identifying high risk medications causing potential drug-drug interactions in outpatients: A prescription database study based on an online surveillance system. Res. Social. Adm. Pharm. 2016, 12, 559–568. [Google Scholar] [CrossRef] [PubMed]
- Létinier, L.; Cossin, S.; Mansiaux, Y.; Arnaud, M.; Salvo, F.; Bezin, J.; Thiessard, F.; Pariente, A. Risk of Drug-Drug Interactions in Out-Hospital Drug Dispensings in France: Results From the DRUG-Drug Interaction Prevalence Study. Front. Pharmacol. 2019, 10, 265. [Google Scholar] [CrossRef]
- Barrons, R. Evaluation of Personal Digital Assistant Software for Drug Interactions. Am. J. Health-Syst. Pharm. AJHP Off. J. Am. Soc. Health-Syst. Pharm. 2004, 61, 380–385. [Google Scholar] [CrossRef] [PubMed]
- Moura, C.; Prado, N.; Acurcio, F. Potential Drug-Drug Interactions Associated with Prolonged Stays in the Intensive Care Unit: A Retrospective Cohort Study. Clin. Drug Investig. 2011, 31, 309–316. [Google Scholar] [CrossRef]
- Arnold, R.J.G.; Tang, J.; Schrecker, J.; Hild, C. Impact of Definitive Drug–Drug Interaction Testing on Medication Management and Patient Care. Drugs—Real World Outcomes 2018, 5, 217–224. [Google Scholar] [CrossRef]
- Wastesson, J.W.; Morin, L.; Tan, E.C.K.; Johnell, K. An update on the clinical consequences of polypharmacy in older adults: A narrative review. Expert Opin. Drug Saf. 2018, 17, 1185–1196. [Google Scholar] [CrossRef]
- Kukreja, S.; Kalra, G.; Shah, N.; Shrivastava, A. Polypharmacy in psychiatry: A review. Mens. Sana Monogr. 2013, 11, 82–99. [Google Scholar] [CrossRef]
- Taylor, A.W.; Price, K.; Gill, T.K.; Adams, R.; Pilkington, R.; Carrangis, N.; Shi, Z.; Wilson, D. Multimorbidity—Not just an older person’s issue. Results from an Australian biomedical study. BMC Public Health 2010, 10, 718. [Google Scholar] [CrossRef]
- Barnett, K.; Mercer, S.W.; Norbury, M.; Watt, G.; Wyke, S.; Guthrie, B. Epidemiology of multimorbidity and implications for health care, research, and medical education: A cross-sectional study. Lancet 2012, 380, 37–43. [Google Scholar] [CrossRef] [PubMed]
- Chowdhury, S.R.; Chandra Das, D.; Sunna, T.C.; Beyene, J.; Hossain, A. Global and regional prevalence of multimorbidity in the adult population in community settings: A systematic review and meta-analysis. EClinicalMedicine 2023, 57, 101860. [Google Scholar] [CrossRef] [PubMed]
- Elderly Population. Available online: https://www.oecd.org/en/data/indicators/elderly-population.html (accessed on 11 October 2024).
- Population Structure and Ageing. Available online: https://ec.europa.eu/eurostat/statistics-explained/index.php?title=Population_structure_and_ageing (accessed on 11 October 2024).
- Boyd, A.; Van de Velde, S.; Pivette, M.; Ten Have, M.; Florescu, S.; O’Neill, S.; Caldas-de-Almeida, J.M.; Vilagut, G.; Haro, J.M.; Alonso, J.; et al. Gender Differences in Psychotropic Use across Europe: Results from a Large Cross-Sectional, Population-Based Study. Eur. Psychiatry J. Assoc. Eur. Psychiatr. 2015, 30, 778–788. [Google Scholar] [CrossRef] [PubMed]
- Bandelow, B.; Michaelis, S.; Wedekind, D. Treatment of Anxiety Disorders. Dialogues Clin. Neurosci. 2017, 19, 93–107. [Google Scholar] [CrossRef]
- Alonso, J.; Angermeyer, M.C.; Bernert, S.; Bruffaerts, R.; Brugha, T.S.; Bryson, H.; de Girolamo, G.; Graaf, R.; Demyttenaere, K.; Gasquet, I.; et al. 12-Month Comorbidity Patterns and Associated Factors in Europe: Results from the European Study of the Epidemiology of Mental Disorders (ESEMeD) Project. Acta Psychiatr. Scand. Suppl. 2004, 109, 28–37. [Google Scholar] [CrossRef]
- Kessler, R.C.; Berglund, P.; Demler, O.; Jin, R.; Merikangas, K.R.; Walters, E.E. Lifetime Prevalence and Age-of-Onset Distributions of DSM-IV Disorders in the National Comorbidity Survey Replication. Arch. Gen. Psychiatry 2005, 62, 593–602. [Google Scholar] [CrossRef]
- Alonso, J.; Lépine, J.-P.; ESEMeD/MHEDEA 2000 Scientific Committee. Overview of Key Data from the European Study of the Epidemiology of Mental Disorders (ESEMeD). J. Clin. Psychiatry 2007, 68, 3–9. [Google Scholar]
- Mental Health Treatment Among Adults Aged 18–44: United States, 2019–2021. Available online: https://stacks.cdc.gov/view/cdc/120293 (accessed on 11 November 2024).
- Roche Products Limited. Valium 5 mg Tablets: Summary of Product Characteristics. Available online: https://www.hpra.ie/img/uploaded/swedocuments/LicenseSPC_PA0050-017-002_22072015110144.pdf (accessed on 11 October 2024).
- van der Hooft, C.S.; Schoofs, M.W.; Ziere, G.; Hofman, A.; Pols, H.A.; Sturkenboom, M.C.; Stricker, B.H. Inappropriate benzodiazepine use in older adults and the risk of fracture. Br. J. Clin. Pharmacol. 2008, 66, 276–282. [Google Scholar] [CrossRef]
- FDA Drug Safety Communication: FDA Warns About Serious Risks and Death When Combining Opioid Pain or Cough Medicines with Benzodiazepines; Requires Its Strongest Warning. Available online: https://www.fda.gov/drugs/drug-safety-and-availability/fda-drug-safety-communication-fda-warns-about-serious-risks-and-death-when-combining-opioid-pain-or (accessed on 11 October 2024).
- Worthley, L.I.G. Clinical Toxicology: Part I. Diagnosis and Management of Common Drug Overdosage. Crit. Care Resusc. J. Australas. Acad. Crit. Care Med. 2002, 4, 192–215. [Google Scholar] [CrossRef]
- A Guide to Deprescribing Benzodiazepines. Available online: https://www.primaryhealthtas.com.au/wp-content/uploads/2023/03/A-guide-to-deprescribing-benzodiazepines.pdf (accessed on 11 October 2024).
- Benzodiazepines & Z-Drug (BZRA) Deprescribing Algorithm. Available online: https://deprescribing.org/wp-content/uploads/2019/03/deprescribing_algorithms2019_BZRA_vf-locked.pdf (accessed on 11 October 2024).
- Pottie, K.; Thompson, W.; Davies, S.; Grenier, J.; Sadowski, C.A.; Welch, V.; Holbrook, A.; Boyd, C.; Swenson, R.; Ma, A.; et al. Deprescribing benzodiazepine receptor agonists: Evidence-based clinical practice guideline. Can. Fam. Physician. 2018, 64, 339–351. [Google Scholar]
- Bužančić, I.; Kummer, I.; Držaić, M.; Ortner Hadžiabdić, M. Community-based pharmacists’ role in deprescribing: A systematic review. Br. J. Clin. Pharmacol. 2022, 88, 452–463. [Google Scholar] [CrossRef] [PubMed]
- Rehni, A.K.; Singh, I.; Kumar, M. Tramadol-induced seizurogenic effect: A possible role of opioid-dependent gamma-aminobutyric acid inhibitory pathway. Basic Clin. Pharmacol. Toxicol. 2008, 103, 262–266. [Google Scholar] [CrossRef] [PubMed]
- Boyer, E.W.; Shannon, M. The serotonin syndrome. N. Engl. J. Med. 2005, 352, 1112–1120. [Google Scholar] [CrossRef] [PubMed]
- Birmes, P.; Coppin, D.; Schmitt, L.; Lauque, D. Serotonin syndrome: A brief review. CMAJ 2003, 168, 1439–1442. [Google Scholar] [PubMed]
- Bodner, R.A.; Lynch, T.; Lewis, L.; Kahn, D. Serotonin syndrome. Neurology 1995, 45, 219–223. [Google Scholar] [CrossRef]
- Ramasubbu, S.K.; Mishra, A.; Mandal, S. Prevalence of QT-Prolonging Drug-Drug Interactions in Psychiatry: A Systematic Review and Meta Analysis. J. Pharm. Pract. 2024, 37, 162–168. [Google Scholar] [CrossRef]
- Nachimuthu, S.; Assar, M.D.; Schussler, J.M. Drug-Induced QT Interval Prolongation: Mechanisms and Clinical Management. Ther. Adv. Drug Saf. 2012, 3, 241–253. [Google Scholar] [CrossRef]
- Tisdale, J.E. Drug-Induced QT Interval Prolongation and Torsades de Pointes: Role of the Pharmacist in Risk Assessment, Prevention and Management. Can. Pharm. J. CPJ Rev. Pharm. Can. RPC 2016, 149, 139–152. [Google Scholar] [CrossRef] [PubMed]
- Heemskerk, C.P.M.; Pereboom, M.; van Stralen, K.; Berger, F.A.; van den Bemt, P.M.L.A.; Kuijper, A.F.M.; van der Hoeven, R.T.M.; Mantel-Teeuwisse, A.K.; Becker, M.L. Risk factors for QTc interval prolongation. Eur. J. Clin. Pharmacol. 2018, 74, 183–191. [Google Scholar] [CrossRef]
- Nosè, M.; Bighelli, I.; Castellazzi, M.; Martinotti, G.; Carrà, G.; Lucii, C.; Ostuzzi, G.; Sozzi, F.; Barbui, C.; Star Network Group. Prevalence and correlates of QTc prolongation in Italian psychiatric care: Cross-sectional multicentre study. Epidemiol. Psychiatr. Sci. 2016, 25, 532–540. [Google Scholar] [CrossRef]
- Zemrak, W.R.; Kenna, G.A. Association of antipsychotic and antidepressant drugs with Q-T interval prolongation. Am. J. Health Syst. Pharm. 2008, 65, 1029–1038. [Google Scholar] [CrossRef] [PubMed]
- Khatib, R.; Sabir, F.R.N.; Omari, C.; Pepper, C.; Tayebjee, M.H. Managing drug-induced QT prolongation in clinical practice. Postgrad. Med. J. 2021, 97, 452–458. [Google Scholar] [CrossRef] [PubMed]
- Su, X.; Hu, P.; You, Z.-H.; Yu, P.S.; Hu, L. Dual-Channel Learning Framework for Drug-Drug Interaction Prediction via Relation-Aware Heterogeneous Graph Transformer. Proc. AAAI Conf. Artif. Intell. 2024, 38, 249–256. [Google Scholar] [CrossRef]
- Lin, X.; Quan, Z.; Wang, Z.J.; Ma, T.; Zeng, X. KGNN: Knowledge Graph Neural Network for drug-drug interaction prediction. In Proceedings of the Twenty-Ninth International Joint Conference on Artificial Intelligence (IJCAI-20), Yokohama, Japan, 7–15 January 2021; pp. 2739–2745. [Google Scholar]
Characteristics | Sample (n = 492) |
---|---|
Age, years, average (range) | 67.7 (20–95) |
Gender, women, n (%) | 350 (71.1) |
Total number of drugs | 3097 |
Average number of drugs (range) | 6.3 (2–18) |
Total number of psycholeptics and antidepressants | 809 |
Average number of psycholeptics and antidepressants (range) | 1.6 (1–6) |
Total number of diagnoses | 1996 |
Average number of diagnoses (range) | 4.1 (1–11) |
Total number of pDDIs | 2285 |
Average number of pDDIs (range) | 4.6 (0–30) |
Total number of pDDIs of psycholeptics and antidepressants | 1088 |
Average number of pDDIs of psycholeptics and antidepressants (range) | 2.2 (0–21) |
Medication | n (%) |
---|---|
Antipsychotics | 119 (14.7) |
Promazine (N05AA03) | 30 (3.7) |
Quetiapine (N05AH04) | 18 (2.2) |
Sulpiride (N05AL01) | 18 (2.2) |
Haloperidol (N05AD01) | 10 (1.2) |
Risperidone (N05AX08) | 9 (1.1) |
Olanzapine (N05AH03) | 9 (1.1) |
Aripiprazole (N05AX12) | 8 (1.0) |
Anxiolytics | 406 (50.2) |
Diazepam (N05BA01) | 150 (18.5) |
Alprazolam (N05BA12) | 140 (17.3) |
Oxazepam (N05BA04) | 79 (9.8) |
Lorazepam (N05BA06) | 31 (3.8) |
Bromazepam (N05BA08) | 6 (0.7) |
Hypnotics and sedatives | 121 (15.0) |
Zolpidem (N05CF02) | 87 (10.8) |
Nitrazepam (N05CD02) | 34 (4.2) |
Antidepressants | 163 (20.1) |
Escitalopram (N06AB10) | 37 (4.6) |
Sertraline (N06AB06) | 24 (3.0) |
Mirtazapine (N06AX11) | 20 (2.5) |
Paroxetine (N06AB05) | 18 (2.2) |
Tianeptine (N06AX14) | 13 (1.6) |
ICD-10-CM Diagnosis Code | n (%) | |
---|---|---|
F41 | Other anxiety disorders | 82 (16.7) |
F51 | Sleep disorders not due to a substance or known physiological condition | 74 (15.0) |
F41.2 | Mixed anxiety and depressive disorder | 64 (13.0) |
F32 | Depressive episode | 58 (11.8) |
F06 | Other mental disorders due to known physiological condition | 44 (8.9) |
F20 | Schizophrenia | 32 (6.5) |
F06.3 | Mood disorder due to known physiological condition | 24 (4.9) |
F43.1 | Post-traumatic stress disorder (PTSD) | 16 (3.3) |
F43.2 | Adjustment disorders | 15 (3.0) |
F06.2 | Psychotic disorder with delusions due to known physiological condition | 13 (2.6) |
≥65 Years | <65 Years | p | |
---|---|---|---|
Patients, n | 302 | 190 | |
Total number of drugs, n | 2099 | 998 | <0.0001 |
average ± SD | 7.0 ± 2.9 | 5.3 ± 2.3 | |
range | 2–18 | 2–11 | |
Number of psycholeptics and antidepressants, n | 474 | 335 | 0.0275 |
average ± SD | 1.6 ± 0.9 | 1.8 ± 1.0 | |
range | 1–5 | 1–6 | |
Number of other drugs, n | 1625 | 663 | <0.0001 |
average ± SD | 5.4 ± 2.8 | 3.5 ± 2.2 | |
range | 0–14 | 0–9 | |
Number of diagnoses, n | 1348 | 648 | <0.0001 |
average ± SD | 4.5 ± 1.9 | 3.4 ± 1.7 | |
range | 1–11 | 1–9 |
≥65 Years | <65 Years | p | |
---|---|---|---|
Patients, n | 302 | 190 | |
pDDIs, n (median) | 1553 (4.0) | 732 (2.5) | 0.0095 |
average rank | 259.6 | 225.7 | |
range | 0–30 | 0–24 | |
Category C pDDIs, n (median) | 1207 (3.0) | 540 (2.0) | 0.0031 |
average rank | 261.4 | 222.9 | |
range | 0–23 | 0–19 | |
Category D pDDIs, n (median) | 319 (1.0) | 167 (0.0) | 0.0143 |
average rank | 258.1 | 228.1 | |
range | 0–13 | 0–7 | |
Category X pDDIs, n (median) | 27 (0.0) | 25 (0.0) | 0.2949 |
average rank | 244.0 | 250.5 | |
range | 0–3 | 0–2 |
≥65 Years | <65 Years | p | |
---|---|---|---|
Patients, n | 302 | 190 | |
pDDIs of psycholeptics and antidepressants, n (median) average rank range | 638 (1.0) 243.2 0–20 | 450 (1.0) 251.7 0–21 | 0.5077 |
Category C pDDIs of psycholeptics and antidepressants, n (median) average rank range | 396 (0.0) 240.2 0–16 | 310 (1.0) 256.2 0–18 | 0.1958 |
Category D pDDIs of psycholeptics and antidepressants, n (median) average rank range | 223 (0.0) 254.6 0–9 | 127 (0.0) 233.7 0–7 | 0.0735 |
Category X pDDIs of psycholeptics and antidepressants, n (median) average rank range | 19 (0.0) 247.4 0–2 | 13 (0.0) 245.0 0–2 | 0.6208 |
Most Common pDDIs of Psychotropic Drugs | n | Potential DDI Consequence |
---|---|---|
C interactions | ||
>65 years | ||
escitalopram–tramadol | 8 | Increased risk for serotonin syndrome and seizures. |
alprazolam–nitrazepam | 8 | Increased risk of CNS depression. |
diazepam–moxonidine | 7 | Increased risk of CNS depression. |
<65 years | ||
diazepam–promazine | 11 | Increased risk of CNS depression. |
diazepam–mirtazapine | 7 | Increased risk of CNS depression. |
diazepam–valproic acid | 7 | Increased risk of CNS depression. |
D interactions | ||
>65 years | ||
alprazolam–tramadol | 25 | Increased risk of CNS depression. |
oxazepam–tramadol | 22 | Increased risk of CNS depression. |
diazepam–tramadol | 20 | Increased risk of CNS depression. |
<65 years | ||
diazepam–tramadol | 20 | Increased risk of CNS depression. |
diazepam–zolpidem | 8 | Increased risk of CNS depression. |
alprazolam–zolpidem | 5 | Increased risk of CNS depression. |
X interactions | ||
>65 years | ||
promazine–furosemide | 8 | Diuretics can potentiate the QTc-prolonging impact of promazine. |
promazine–indapamide | 2 | Diuretics can potentiate the QTc-prolonging impact of promazine. |
<65 years | ||
diazepam–olanzapine | 3 | Benzodiazepines can potentiate the adverse effects of olanzapine. |
alprazolam–olanzapine | 2 | Benzodiazepines can potentiate the adverse effects of olanzapine. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Marović, I.; Marinović, I.; Bačić Vrca, V.; Samardžić, I. Assessment of Potential Drug–Drug Interactions of Psycholeptics and Antidepressants in Outpatient Settings. Pharmacy 2024, 12, 174. https://doi.org/10.3390/pharmacy12060174
Marović I, Marinović I, Bačić Vrca V, Samardžić I. Assessment of Potential Drug–Drug Interactions of Psycholeptics and Antidepressants in Outpatient Settings. Pharmacy. 2024; 12(6):174. https://doi.org/10.3390/pharmacy12060174
Chicago/Turabian StyleMarović, Iva, Ivana Marinović, Vesna Bačić Vrca, and Ivana Samardžić. 2024. "Assessment of Potential Drug–Drug Interactions of Psycholeptics and Antidepressants in Outpatient Settings" Pharmacy 12, no. 6: 174. https://doi.org/10.3390/pharmacy12060174
APA StyleMarović, I., Marinović, I., Bačić Vrca, V., & Samardžić, I. (2024). Assessment of Potential Drug–Drug Interactions of Psycholeptics and Antidepressants in Outpatient Settings. Pharmacy, 12(6), 174. https://doi.org/10.3390/pharmacy12060174