Cannabidiol Supplements in Romania: Bridging the Gap Between Marketed Claims and Clinical Reality
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. CBD-Based Products Available in Romania
- Chronic and neuropathic pain;
- Epilepsy and psychosis;
- Stress and anxiety (including post-traumatic stress);
- Anxiety and depression;
- Insomnia;
- Oncological diseases (cancer)/nausea and vomiting during chemotherapy;
- Oxidative stress in radiation and oral mucositis;
- Diabetes and metabolic syndrome;
- High blood pressure;
- Burnout syndrome;
- Neuropathy;
- Low immunity.
3.2. Anxiety and Related Behavior
3.3. Autism Spectrum and Behavioral Disorders
3.4. Pain
3.5. Sleep Disorders
3.6. Psychosis
3.7. Substance Addiction
3.8. Immunity
3.9. Cancer
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- García-Gutiérrez, M.S.; Navarrete, F.; Gasparyan, A.; Austrich-Olivares, A.; Sala, F.; Manzanares, J. Cannabidiol: A Potential New Alternative for the Treatment of Anxiety, Depression, and Psychotic Disorders. Biomolecules 2020, 10, 1575. [Google Scholar] [CrossRef] [PubMed]
- Soria-Gomez, E.; Metna, M.; Bellocchio, L.; Busquets-Garcia, A.; Marsicano, G. The Endocannabinoid System in the Control of Behavior. In Handbook of Neurobehavioral Genetics and Phenotyping; Wiley: Hoboken, NJ, USA, 2017; pp. 323–355. [Google Scholar]
- Sales, A.J.; Fogaça, M.V.; Sartim, A.G.; Pereira, V.S.; Wegener, G.; Guimarães, F.S.; Joca, S.R.L. Cannabidiol Induces Rapid and Sustained Antidepressant-Like Effects Through Increased BDNF Signaling and Synaptogenesis in the Prefrontal Cortex. Mol. Neurobiol. 2019, 56, 1070–1081. [Google Scholar] [CrossRef]
- Sunda, F.; Arowolo, A. A Molecular Basis for the Anti-Inflammatory and Anti-Fibrosis Properties of Cannabidiol. FASEB J. 2020, 34, 14083–14092. [Google Scholar] [CrossRef] [PubMed]
- Anand, U.; Jones, B.; Korchev, Y.; Bloom, S.R.; Pacchetti, B.; Anand, P.; Sodergren, M.H. CBD Effects on TRPV1 Signaling Pathways in Cultured DRG Neurons. J. Pain Res. 2020, 13, 2269–2278. [Google Scholar] [CrossRef] [PubMed]
- Khosropoor, S.; Alavi, M.S.; Etemad, L.; Roohbakhsh, A. Cannabidiol Goes Nuclear: The Role of PPARγ. Phytomedicine 2023, 114, 154771. [Google Scholar] [CrossRef]
- Brindisi, M.; Maramai, S.; Gemma, S.; Brogi, S.; Grillo, A.; Mannelli, L.D.C.; Gabellieri, E.; Lamponi, S.; Saponara, S.; Gorelli, B.; et al. Development and Pharmacological Characterization of Selective Blockers of 2-Arachidonoyl Glycerol Degradation with Efficacy in Rodent Models of Multiple Sclerosis and Pain. J. Med. Chem. 2016, 59, 2612–2632. [Google Scholar] [CrossRef]
- Abdel-Salam, O.M.E.; Mózsik, G. Capsaicin, The Vanilloid Receptor TRPV1 Agonist in Neuroprotection: Mechanisms Involved and Significance. Neurochem. Res. 2023, 48, 3296–3315. [Google Scholar] [CrossRef]
- Bordet, R.; Ouk, T.; Petrault, O.; Gelé, P.; Gautier, S.; Laprais, M.; Deplanque, D.; Duriez, P.; Staels, B.; Fruchart, J.C.; et al. PPAR: A New Pharmacological Target for Neuroprotection in Stroke and Neurodegenerative Diseases. Biochem. Soc. Trans. 2006, 34, 1341–1346. [Google Scholar] [CrossRef]
- Pedrazzi, J.F.C.; Hassib, L.; Ferreira, F.R.; Hallak, J.C.; Del-Bel, E.; Crippa, J.A. Therapeutic Potential of CBD in Autism Spectrum Disorder. Int. Rev. Neurobiol. 2024, 177, 149–203. [Google Scholar]
- Suraev, A.S.; Marshall, N.S.; Vandrey, R.; McCartney, D.; Benson, M.J.; McGregor, I.S.; Grunstein, R.R.; Hoyos, C.M. Cannabinoid Therapies in the Management of Sleep Disorders: A Systematic Review of Preclinical and Clinical Studies. Sleep Med. Rev. 2020, 53, 101339. [Google Scholar] [CrossRef]
- Chesney, E.; Oliver, D.; McGuire, P. Cannabidiol (CBD) as a Novel Treatment in the Early Phases of Psychosis. Psychopharmacology 2022, 239, 1179–1190. [Google Scholar] [CrossRef] [PubMed]
- Prud’homme, M.; Cata, R.; Jutras-Aswad, D. Cannabidiol as an Intervention for Addictive Behaviors: A Systematic Review of the Evidence. Subst. Abus. Res. Treat. 2015, 9, 33–38. [Google Scholar] [CrossRef] [PubMed]
- Seltzer, E.S.; Watters, A.K.; MacKenzie, D.; Granat, L.M.; Zhang, D. Cannabidiol (CBD) as a Promising Anti-Cancer Drug. Cancers 2020, 12, 3203. [Google Scholar] [CrossRef]
- Martini, S.; Gemma, A.; Ferrari, M.; Cosentino, M.; Marino, F. Effects of Cannabidiol on Innate Immunity: Experimental Evidence and Clinical Relevance. Int. J. Mol. Sci. 2023, 24, 3125. [Google Scholar] [CrossRef]
- McGregor, I.S.; Cairns, E.A.; Abelev, S.; Cohen, R.; Henderson, M.; Couch, D.; Arnold, J.C.; Gauld, N. Access to Cannabidiol Without a Prescription: A Cross-Country Comparison and Analysis. Int. J. Drug Policy 2020, 85, 102935. [Google Scholar] [CrossRef]
- Li, J.; Carvajal, R.; Bruner, L.; Kaminski, N.E. The Current Understanding of the Benefits, Safety, and Regulation of Cannabidiol in Consumer Products. Food Chem. Toxicol. 2021, 157, 112600. [Google Scholar] [CrossRef]
- Abu-Sawwa, R.; Scutt, B.; Park, Y. Emerging Use of Epidiolex (Cannabidiol) in Epilepsy. J. Pediatr. Pharmacol. Ther. 2020, 25, 485–499. [Google Scholar] [CrossRef]
- Saurer, T.B.; Dixon-Salazar, T.; Berg, A.T.; Meskis, M.A.; Danese, S.R.; Le, N.M.D.; Perry, M.S. Seizure Outcomes with Cannabidiol (CBD) in Pediatric Versus Adult Patients with Lennox-Gastaut Syndrome (LGS) or Dravet Syndrome (DS): Subgroup Analysis of Become, a Caregiver Survey. J. Neurol. Sci. 2023, 455, 121575. [Google Scholar] [CrossRef]
- Boivin, M. Nabiximols (Sativex®). In Cannabinoids and Pain; Springer International Publishing: Cham, Germany, 2021; pp. 119–126. [Google Scholar]
- Melas, P.A.; Scherma, M.; Fratta, W.; Cifani, C.; Fadda, P. Cannabidiol as a Potential Treatment for Anxiety and Mood Disorders: Molecular Targets and Epigenetic Insights from Preclinical Research. Int. J. Mol. Sci. 2021, 22, 1863. [Google Scholar] [CrossRef]
- Maldonado, R.; Cabañero, D.; Martín-García, E. The Endocannabinoid System in Modulating Fear, Anxiety, and Stress. Dialogues Clin. Neurosci. 2020, 22, 229–239. [Google Scholar] [CrossRef]
- Russo, E.B.; Burnett, A.; Hall, B.; Parker, K.K. Agonistic Properties of Cannabidiol at 5-HT1a Receptors. Neurochem. Res. 2005, 30, 1037–1043. [Google Scholar] [CrossRef] [PubMed]
- Shannon, S.; Lewis, N.; Lee, H.; Hughes, S. Cannabidiol in Anxiety and Sleep: A Large Case Series. Perm. J. 2019, 23, 18-041. [Google Scholar] [CrossRef] [PubMed]
- Berger, M.; Li, E.; Rice, S.; Davey, C.G.; Ratheesh, A.; Adams, S.; Jackson, H.; Hetrick, S.; Parker, A.; Spelman, T.; et al. Cannabidiol for Treatment-Resistant Anxiety Disorders in Young People. J. Clin. Psychiatry 2022, 83, 21m14130. [Google Scholar] [CrossRef] [PubMed]
- Zuardi, A.W.; Rodrigues, N.P.; Silva, A.L.; Bernardo, S.A.; Hallak, J.E.C.; Guimarães, F.S.; Crippa, J.A.S. Inverted U-Shaped Dose-Response Curve of the Anxiolytic Effect of Cannabidiol during Public Speaking in Real Life. Front. Pharmacol. 2017, 8, 259. [Google Scholar] [CrossRef]
- Stanley, T.B.; Ferretti, M.L.; Bonn-Miller, M.O.; Irons, J.G. A Double-Blind, Randomized, Placebo-Controlled Test of the Effects of Cannabidiol on Experiences of Test Anxiety Among College Students. Cannabis Cannabinoid Res. 2023, 8, 1090–1099. [Google Scholar] [CrossRef]
- Bergamaschi, M.M.; Queiroz, R.H.C.; Chagas, M.H.N.; de Oliveira, D.C.G.; De Martinis, B.S.; Kapczinski, F.; Quevedo, J.; Roesler, R.; Schröder, N.; Nardi, A.E.; et al. Cannabidiol Reduces the Anxiety Induced by Simulated Public Speaking in Treatment-Naïve Social Phobia Patients. Neuropsychopharmacology 2011, 36, 1219–1226. [Google Scholar] [CrossRef]
- Crippa, J.A.S.; Derenusson, G.N.; Ferrari, T.B.; Wichert-Ana, L.; Duran, F.L.; Martin-Santos, R.; Simões, M.V.; Bhattacharyya, S.; Fusar-Poli, P.; Atakan, Z.; et al. Neural Basis of Anxiolytic Effects of Cannabidiol (CBD) in Generalized Social Anxiety Disorder: A Preliminary Report. J. Psychopharmacol. 2011, 25, 121–130. [Google Scholar] [CrossRef]
- Masataka, N. Anxiolytic Effects of Repeated Cannabidiol Treatment in Teenagers with Social Anxiety Disorders. Front. Psychol. 2019, 10, 2466. [Google Scholar] [CrossRef] [PubMed]
- Gournay, L.R.; Ferretti, M.L.; Bilsky, S.; Vance, E.; Nguyen, A.M.; Mann, E.; Williams, P.; Leen-Feldner, E.W. The Effects of Cannabidiol on Worry and Anxiety Among High Trait Worriers: A Double-Blind, Randomized Placebo Controlled Trial. Psychopharmacology 2023, 240, 2147–2161. [Google Scholar] [CrossRef]
- de Faria, S.M.; Fabrício, D.d.M.; Tumas, V.; Castro, P.C.; Ponti, M.A.; Hallak, J.E.; Zuardi, A.W.; Crippa, J.A.S.; Chagas, M.H.N. Effects of Acute Cannabidiol Administration on Anxiety and Tremors Induced by a Simulated Public Speaking Test in Patients with Parkinson’s Disease. J. Psychopharmacol. 2020, 34, 189–196. [Google Scholar] [CrossRef]
- Parrella, N.-F.; Hill, A.T.; Enticott, P.G.; Botha, T.; Catchlove, S.; Downey, L.; Ford, T.C. Effects of Cannabidiol on Social Relating, Anxiety, and Parental Stress in Autistic Children: A Randomised Controlled Crossover Trial. medRxiv 2024. [Google Scholar] [CrossRef]
- Bolsoni, L.M.; Crippa, J.A.S.; Hallak, J.E.C.; Guimarães, F.S.; Zuardi, A.W. Effects of Cannabidiol on Symptoms Induced by the Recall of Traumatic Events in Patients with Posttraumatic Stress Disorder. Psychopharmacology 2022, 239, 1499–1507. [Google Scholar] [CrossRef] [PubMed]
- Bolsoni, L.M.; Crippa, J.A.S.; Hallak, J.E.C.; Guimarães, F.S.; Zuardi, A.W. The Anxiolytic Effect of Cannabidiol Depends on the Nature of the Trauma When Patients with Post-Traumatic Stress Disorder Recall Their Trigger Event. Braz. J. Psychiatry 2022, 44, 298–307. [Google Scholar] [CrossRef]
- Telch, M.J.; Fischer, C.M.; Zaizar, E.D.; Rubin, M.; Papini, S. Use of Cannabidiol (CBD) Oil in the Treatment of PTSD: Study Design and Rationale for a Placebo-Controlled Randomized Clinical Trial. Contemp. Clin. Trials 2022, 122, 106933. [Google Scholar] [CrossRef] [PubMed]
- Viveros, M.-P.; Marco, E.-M.; Llorente, R.; López-Gallardo, M. Endocannabinoid System and Synaptic Plasticity: Implications for Emotional Responses. Neural Plast. 2007, 2007, 052908. [Google Scholar] [CrossRef]
- Fogaça, M.V.; Campos, A.C.; Guimarães, F.S. Cannabidiol and 5-HT1A Receptors. In Neuropathology of Drug Addictions and Substance Misuse; Elsevier: Amsterdam, The Netherlands, 2016; pp. 749–759. [Google Scholar]
- Zhao, F.; Zhang, H.; Wang, P.; Cui, W.; Xu, K.; Chen, D.; Hu, M.; Li, Z.; Geng, X.; Wei, S. Oxytocin and Serotonin in the Modulation of Neural Function: Neurobiological Underpinnings of Autism-Related Behavior. Front. Neurosci. 2022, 16, 919890. [Google Scholar] [CrossRef]
- Carbone, E.; Manduca, A.; Cacchione, C.; Vicari, S.; Trezza, V. Healing Autism Spectrum Disorder with Cannabinoids: A Neuroinflammatory Story. Neurosci. Biobehav. Rev. 2021, 121, 128–143. [Google Scholar] [CrossRef]
- Barchel, D.; Stolar, O.; De-Haan, T.; Ziv-Baran, T.; Saban, N.; Fuchs, D.O.; Koren, G.; Berkovitch, M. Oral Cannabidiol Use in Children with Autism Spectrum Disorder to Treat Related Symptoms and Co-Morbidities. Front. Pharmacol. 2019, 9, 1521. [Google Scholar] [CrossRef]
- Ponton, J.A.; Smyth, K.; Soumbasis, E.; Llanos, S.A.; Lewis, M.; Meerholz, W.A.; Tanguay, R.L. A Pediatric Patient with Autism Spectrum Disorder and Epilepsy Using Cannabinoid Extracts as Complementary Therapy: A Case Report. J. Med. Case Rep. 2020, 14, 162. [Google Scholar] [CrossRef]
- Bilge, S.; Ekici, B. CBD-Enriched Cannabis for Autism Spectrum Disorder: An Experience of a Single Center in Turkey and Reviews of the Literature. J. Cannabis Res. 2021, 3, 53. [Google Scholar] [CrossRef]
- Fleury-Teixeira, P.; Caixeta, F.V.; da Silva, L.C.R.; Brasil-Neto, J.P.; Malcher-Lopes, R. Effects of CBD-Enriched Cannabis Sativa Extract on Autism Spectrum Disorder Symptoms: An Observational Study of 18 Participants Undergoing Compassionate Use. Front. Neurol. 2019, 10, 1145. [Google Scholar] [CrossRef] [PubMed]
- Batalla, A.; Crippa, J.A.; Busatto, G.F.; Guimaraes, F.S.; Zuardi, A.W.; Valverde, O.; Atakan, Z.; McGuire, P.K.; Bhattacharyya, S.; Martín-Santos, R. Neuroimaging Studies of Acute Effects of THC and CBD in Humans and Animals: A Systematic Review. Curr. Pharm. Des. 2014, 20, 2168–2185. [Google Scholar] [CrossRef] [PubMed]
- Pretzsch, C.M.; Freyberg, J.; Voinescu, B.; Lythgoe, D.; Horder, J.; Mendez, M.A.; Wichers, R.; Ajram, L.; Ivin, G.; Heasman, M.; et al. Effects of Cannabidiol on Brain Excitation and Inhibition Systems; a Randomised Placebo-Controlled Single Dose Trial During Magnetic Resonance Spectroscopy in Adults with and Without Autism Spectrum Disorder. Neuropsychopharmacology 2019, 44, 1398–1405. [Google Scholar] [CrossRef] [PubMed]
- Pretzsch, C.M.; Voinescu, B.; Mendez, M.A.; Wichers, R.; Ajram, L.; Ivin, G.; Heasman, M.; Williams, S.; Murphy, D.G.; Daly, E.; et al. The Effect of Cannabidiol (CBD) on Low-Frequency Activity and Functional Connectivity in the Brain of Adults with and Without Autism Spectrum Disorder (ASD). J. Psychopharmacol. 2019, 33, 1141–1148. [Google Scholar] [CrossRef]
- Efron, D.; Freeman, J.L.; Cranswick, N.; Payne, J.M.; Mulraney, M.; Prakash, C.; Lee, K.J.; Taylor, K.; Williams, K. A Pilot Randomised Placebo-controlled Trial of Cannabidiol to Reduce Severe Behavioural Problems in Children and Adolescents with Intellectual Disability. Br. J. Clin. Pharmacol. 2021, 87, 436–446. [Google Scholar] [CrossRef]
- Mlost, J.; Bryk, M.; Starowicz, K. Cannabidiol for Pain Treatment: Focus on Pharmacology and Mechanism of Action. Int. J. Mol. Sci. 2020, 21, 8870. [Google Scholar] [CrossRef]
- Wright, N.J.D. A Review of the Direct Targets of the Cannabinoids Cannabidiol, Δ9-Tetrahydrocannabinol, N-Arachidonoylethanolamine and 2-Arachidonoylglycerol. AIMS Neurosci. 2024, 11, 144–165. [Google Scholar] [CrossRef]
- Mangnus, T.J.P.; Bharwani, K.D.; Dirckx, M.; Huygen, F.J.P.M. From a Symptom-Based to a Mechanism-Based Pharmacotherapeutic Treatment in Complex Regional Pain Syndrome. Drugs 2022, 82, 511–531. [Google Scholar] [CrossRef] [PubMed]
- Tadei, V.C. Cannabidiol for the Treatment of Cervical Spondyloarthritis-Related Pain: A Case Report. Cureus 2024, 16, e67224. [Google Scholar] [CrossRef]
- Tanganeli, J.P.C.; Tanganeli, M.D.S.; Oliveira, D.F.L.M.; Fernandes, E.E.; Rode, S.d.M. Full-Spectrum Cannabidiol for Treating Chronic Temporomandibular Arthralgia: A Case Report. Integr. Med. Rep. 2023, 2, 60–64. [Google Scholar] [CrossRef]
- Alaia, M.J.; Li, Z.I.; Chalem, I.; Hurley, E.T.; Vasavada, K.; Gonzalez-Lomas, G.; Rokito, A.S.; Jazrawi, L.M.; Kaplan, K. Cannabidiol for Postoperative Pain Control After Arthroscopic Rotator Cuff Repair Demonstrates No Deficits in Patient-Reported Outcomes Versus Placebo: 1-Year Follow-Up of a Randomized Controlled Trial. Orthop. J. Sports Med. 2024, 12, 23259671231222265. [Google Scholar] [CrossRef] [PubMed]
- Notcutt, W.; Price, M.; Miller, R.; Newport, S.; Phillips, C.; Simmons, S.; Sansom, C. Initial Experiences with Medicinal Extracts of Cannabis for Chronic Pain: Results from 34 ‘N of 1′ Studies. Anaesthesia 2004, 59, 440–452. [Google Scholar] [CrossRef] [PubMed]
- Vela, J.; Dreyer, L.; Petersen, K.K.; Arendt-Nielsen, L.; Duch, K.S.; Kristensen, S. Cannabidiol Treatment in Hand Osteoarthritis and Psoriatic Arthritis: A Randomized, Double-Blind, Placebo-Controlled Trial. Pain 2022, 163, 1206–1214. [Google Scholar] [CrossRef]
- Bebee, B.; Taylor, D.M.; Bourke, E.; Pollack, K.; Foster, L.; Ching, M.; Wong, A. The CANBACK Trial: A Randomised, Controlled Clinical Trial of Oral Cannabidiol for People Presenting to the Emergency Department with Acute Low Back Pain. Med. J. Aust. 2021, 214, 370–375. [Google Scholar] [CrossRef]
- Pramhas, S.; Thalhammer, T.; Terner, S.; Pickelsberger, D.; Gleiss, A.; Sator, S.; Kress, H.G. Oral Cannabidiol (CBD) as Add-On to Paracetamol for Painful Chronic Osteoarthritis of the Knee: A Randomized, Double-Blind, Placebo-Controlled Clinical Trial. Lancet Reg. Health 2023, 35, 100777. [Google Scholar] [CrossRef]
- Zubcevic, K.; Petersen, M.; Bach, F.W.; Heinesen, A.; Enggaard, T.P.; Almdal, T.P.; Holbech, J.V.; Vase, L.; Jensen, T.S.; Hansen, C.S.; et al. Oral Capsules of Tetra-Hydro-Cannabinol (THC), Cannabidiol (CBD) and Their Combination in Peripheral Neuropathic Pain Treatment. Eur. J. Pain 2023, 27, 492–506. [Google Scholar] [CrossRef]
- Anderson, C.L.; Evans, V.; Gorham, L.; Liu, Z.; Johnson, C.R.; Carney, P.R. Seizure Frequency, Quality of Life, Behavior, Cognition, and Sleep in Pediatric Patients Enrolled in a Prospective, Open-Label Clinical Study with Cannabidiol. Epilepsy Behav. 2021, 124, 108325. [Google Scholar] [CrossRef] [PubMed]
- Elms, L.; Shannon, S.; Hughes, S.; Lewis, N. Cannabidiol in the Treatment of Post-Traumatic Stress Disorder: A Case Series. J. Altern. Complement. Med. 2019, 25, 392–397. [Google Scholar] [CrossRef]
- Saleska, J.L.; Bryant, C.; Kolobaric, A.; D’Adamo, C.R.; Colwell, C.S.; Loewy, D.; Chen, J.; Pauli, E.K. The Safety and Comparative Effectiveness of Non-Psychoactive Cannabinoid Formulations for the Improvement of Sleep: A Double-Blinded, Randomized Controlled Trial. J. Am. Nutr. Assoc. 2024, 43, 1–11. [Google Scholar] [CrossRef]
- Wang, M.; Faust, M.; Abbott, S.; Patel, V.; Chang, E.; Clark, J.I.; Stella, N.; Muchowski, P.J. Effects of a Cannabidiol/Terpene Formulation on Sleep in Individuals with Insomnia: A Double-Blind, Placebo-Controlled, Randomized, Crossover Study. J. Clin. Sleep Med. 2024. [Google Scholar] [CrossRef]
- Narayan, A.J.; Downey, L.A.; Rose, S.; Di Natale, L.; Hayley, A.C. Cannabidiol for Moderate–Severe Insomnia: A Randomized Controlled Pilot Trial of 150 Mg of Nightly Dosing. J. Clin. Sleep Med. 2024, 20, 753–763. [Google Scholar] [CrossRef] [PubMed]
- Leweke, F.M.; Piomelli, D.; Pahlisch, F.; Muhl, D.; Gerth, C.W.; Hoyer, C.; Klosterkötter, J.; Hellmich, M.; Koethe, D. Cannabidiol Enhances Anandamide Signaling and Alleviates Psychotic Symptoms of Schizophrenia. Transl. Psychiatry 2012, 2, e94. [Google Scholar] [CrossRef] [PubMed]
- Bhattacharyya, S.; Wilson, R.; Appiah-Kusi, E.; O’Neill, A.; Brammer, M.; Perez, J.; Murray, R.; Allen, P.; Bossong, M.G.; McGuire, P. Effect of Cannabidiol on Medial Temporal, Midbrain, and Striatal Dysfunction in People at Clinical High Risk of Psychosis. JAMA Psychiatry 2018, 75, 1107–1117. [Google Scholar] [CrossRef]
- Schubart, C.D.; Sommer, I.E.C.; Fusar-Poli, P.; de Witte, L.; Kahn, R.S.; Boks, M.P.M. Cannabidiol as a Potential Treatment for Psychosis. Eur. Neuropsychopharmacol. 2014, 24, 51–64. [Google Scholar] [CrossRef]
- Batalla, A.; Janssen, H.; Gangadin, S.S.; Bossong, M.G. The Potential of Cannabidiol as a Treatment for Psychosis and Addiction: Who Benefits Most? A Systematic Review. J. Clin. Med. 2019, 8, 1058. [Google Scholar] [CrossRef] [PubMed]
- Hallak, J.E.C.; Machado-de-Sousa, J.P.; Crippa, J.A.S.; Sanches, R.F.; Trzesniak, C.; Chaves, C.; Bernardo, S.A.; Regalo, S.C.; Zuardi, A.W. Performance of Schizophrenic Patients in the Stroop Color Word Test and Electrodermal Responsiveness After Acute Administration of Cannabidiol (CBD). Rev. Bras. Psiquiatr. 2010, 32, 56–61. [Google Scholar] [CrossRef]
- Hundal, H.; Lister, R.; Evans, N.; Antley, A.; Englund, A.; Murray, R.M.; Freeman, D.; Morrison, P.D. The Effects of Cannabidiol on Persecutory Ideation and Anxiety in a High Trait Paranoid Group. J. Psychopharmacol. 2018, 32, 276–282. [Google Scholar] [CrossRef]
- Boggs, D.L.; Surti, T.; Gupta, A.; Gupta, S.; Niciu, M.; Pittman, B.; Martin, A.M.S.; Thurnauer, H.; Davies, A.; D’Souza, D.C.; et al. The Effects of Cannabidiol (CBD) on Cognition and Symptoms in Outpatients with Chronic Schizophrenia a Randomized Placebo Controlled Trial. Psychopharmacology 2018, 235, 1923–1932. [Google Scholar] [CrossRef]
- McGuire, P.; Robson, P.; Cubala, W.J.; Vasile, D.; Morrison, P.D.; Barron, R.; Taylor, A.; Wright, S. Cannabidiol (CBD) as an Adjunctive Therapy in Schizophrenia: A Multicenter Randomized Controlled Trial. Am. J. Psychiatry 2018, 175, 225–231. [Google Scholar] [CrossRef]
- Gardner, E.L. Endocannabinoid Signaling System and Brain Reward: Emphasis on Dopamine. Pharmacol. Biochem. Behav. 2005, 81, 263–284. [Google Scholar] [CrossRef]
- Kathmann, M.; Flau, K.; Redmer, A.; Tränkle, C.; Schlicker, E. Cannabidiol Is an Allosteric Modulator at Mu- and Delta-Opioid Receptors. Naunyn Schmiedebergs Arch. Pharmacol. 2006, 372, 354–361. [Google Scholar] [CrossRef] [PubMed]
- Karimi-Haghighi, S.; Dargahi, L.; Haghparast, A. Cannabidiol Modulates the Expression of Neuroinflammatory Factors in Stress- and Drug-Induced Reinstatement of Methamphetamine in Extinguished Rats. Addict. Biol. 2020, 25, e12740. [Google Scholar] [CrossRef] [PubMed]
- Hassanlou, A.A.; Jamali, S.; RayatSanati, K.; Mousavi, Z.; Haghparast, A. Cannabidiol Modulates the METH-Induced Conditioned Place Preference Through D2-Like Dopamine Receptors in the Hippocampal CA1 Region. Brain Res. Bull. 2021, 172, 43–51. [Google Scholar] [CrossRef] [PubMed]
- Haney, M.; Malcolm, R.J.; Babalonis, S.; Nuzzo, P.A.; Cooper, Z.D.; Bedi, G.; Gray, K.M.; McRae-Clark, A.; Lofwall, M.R.; Sparenborg, S.; et al. Oral Cannabidiol Does Not Alter the Subjective, Reinforcing or Cardiovascular Effects of Smoked Cannabis. Neuropsychopharmacology 2016, 41, 1974–1982. [Google Scholar] [CrossRef]
- Freeman, T.P.; Hindocha, C.; Baio, G.; Shaban, N.D.C.; Thomas, E.M.; Astbury, D.; Freeman, A.M.; Lees, R.; Craft, S.; Morrison, P.D.; et al. Cannabidiol for the Treatment of Cannabis Use Disorder: A Phase 2a, Double-Blind, Placebo-Controlled, Randomised, Adaptive Bayesian Trial. Lancet Psychiatry 2020, 7, 865–874. [Google Scholar] [CrossRef]
- de Meneses-Gaya, C.; Crippa, J.A.; Hallak, J.E.; Miguel, A.Q.; Laranjeira, R.; Bressan, R.A.; Zuardi, A.W.; Lacerda, A.L. Cannabidiol for the Treatment of Crack-Cocaine Craving: An Exploratory Double-Blind Study. Braz. J. Psychiatry 2021, 43, 467–476. [Google Scholar] [CrossRef]
- Morgan, C.J.A.; Das, R.K.; Joye, A.; Curran, H.V.; Kamboj, S.K. Cannabidiol Reduces Cigarette Consumption in Tobacco Smokers: Preliminary Findings. Addict. Behav. 2013, 38, 2433–2436. [Google Scholar] [CrossRef]
- Lees, R.; Hines, L.A.; Hindocha, C.; Baio, G.; Shaban, N.D.C.; Stothart, G.; Mofeez, A.; Morgan, C.J.A.; Curran, H.V.; Freeman, T.P. Effect of Four-Week Cannabidiol Treatment on Cognitive Function: Secondary Outcomes from a Randomised Clinical Trial for the Treatment of Cannabis Use Disorder. Psychopharmacology 2023, 240, 337–346. [Google Scholar] [CrossRef]
- Hurd, Y.L.; Spriggs, S.; Alishayev, J.; Winkel, G.; Gurgov, K.; Kudrich, C.; Oprescu, A.M.; Salsitz, E. Cannabidiol for the Reduction of Cue-Induced Craving and Anxiety in Drug-Abstinent Individuals with Heroin Use Disorder: A Double-Blind Randomized Placebo-Controlled Trial. Am. J. Psychiatry 2019, 176, 911–922. [Google Scholar] [CrossRef]
- Hurzeler, T.P.; Logge, W.; Watt, J.; DeMayo, M.M.; Suraev, A.; McGregor, I.S.; Haber, P.S.; Morley, K.C. The Neurobehavioural Effects of Cannabidiol in Alcohol Use Disorder: Study Protocol for a Double-Blind, Randomised, Cross Over, Placebo-Controlled Trial. Contemp. Clin. Trials Commun. 2024, 41, 101341. [Google Scholar] [CrossRef]
- Mongeau-Pérusse, V.; Rizkallah, E.; Morissette, F.; Brissette, S.; Bruneau, J.; Dubreucq, S.; Gazil, G.; Trépanier, A.; Jutras-Aswad, D. Cannabidiol Effect on Anxiety Symptoms and Stress Response in Individuals with Cocaine Use Disorder: Exploratory Results from a Randomized Controlled Trial. J. Addict. Med. 2022, 16, 521–526. [Google Scholar] [CrossRef] [PubMed]
- Hindocha, C.; Freeman, T.P.; Grabski, M.; Stroud, J.B.; Crudgington, H.; Davies, A.C.; Das, R.K.; Lawn, W.; Morgan, C.J.A.; Curran, H.V. Cannabidiol Reverses Attentional Bias to Cigarette Cues in a Human Experimental Model of Tobacco Withdrawal. Addiction 2018, 113, 1696–1705. [Google Scholar] [CrossRef]
- Lombard, C.; Nagarkatti, M.; Nagarkatti, P. CB2 Cannabinoid Receptor Agonist, JWH-015, Triggers Apoptosis in Immune Cells: Potential Role for CB2-Selective Ligands as Immunosuppressive Agents. Clin. Immunol. 2007, 122, 259–270. [Google Scholar] [CrossRef]
- Dhital, S.; Stokes, J.V.; Park, N.; Seo, K.S.; Kaplan, B.L.F. Cannabidiol (CBD) Induces Functional Tregs in Response to Low-Level T Cell Activation. Cell. Immunol. 2017, 312, 25–34. [Google Scholar] [CrossRef] [PubMed]
- Kaplan, B.L.F.; Springs, A.E.B.; Kaminski, N.E. The Profile of Immune Modulation by Cannabidiol (CBD) Involves Deregulation of Nuclear Factor of Activated T Cells (NFAT). Biochem. Pharmacol. 2008, 76, 726–737. [Google Scholar] [CrossRef]
- Hall, S.; Faridi, S.; Trivedi, P.; Castonguay, M.; Kelly, M.; Zhou, J.; Lehmann, C. Cannabidiol Reduces Systemic Immune Activation in Experimental Acute Lung Injury. Cannabis Cannabinoid Res. 2023, 9, 1301–1311. [Google Scholar] [CrossRef] [PubMed]
- Naftali, T.; Mechulam, R.; Marii, A.; Gabay, G.; Stein, A.; Bronshtain, M.; Laish, I.; Benjaminov, F.; Konikoff, F.M. Low-Dose Cannabidiol Is Safe but Not Effective in the Treatment for Crohn’s Disease, a Randomized Controlled Trial. Dig. Dis. Sci. 2017, 62, 1615–1620. [Google Scholar] [CrossRef]
- Irving, P.M.; Iqbal, T.; Nwokolo, C.; Subramanian, S.; Bloom, S.; Prasad, N.; Hart, A.; Murray, C.; Lindsay, J.O.; Taylor, A.; et al. A Randomized, Double-Blind, Placebo-Controlled, Parallel-Group, Pilot Study of Cannabidiol-Rich Botanical Extract in the Symptomatic Treatment of Ulcerative Colitis. Inflamm. Bowel Dis. 2018, 24, 714–724. [Google Scholar] [CrossRef]
- Heider, C.G.; Itenberg, S.A.; Rao, J.; Ma, H.; Wu, X. Mechanisms of Cannabidiol (CBD) in Cancer Treatment: A Review. Biology 2022, 11, 817. [Google Scholar] [CrossRef]
- Peng, J.; Fan, M.; An, C.; Ni, F.; Huang, W.; Luo, J. A Narrative Review of Molecular Mechanism and Therapeutic Effect of Cannabidiol (CBD). Basic Clin. Pharmacol. Toxicol. 2022, 130, 439–456. [Google Scholar] [CrossRef]
- Kenyon, J.; Liu, W.; Dalgleish, A. Report of Objective Clinical Responses of Cancer Patients to Pharmaceutical-Grade Synthetic Cannabidiol. Anticancer Res. 2018, 38, 5831–5835. [Google Scholar] [CrossRef] [PubMed]
- Good, P.D.; Greer, R.M.; Huggett, G.E.; Hardy, J.R. An Open-Label Pilot Study Testing the Feasibility of Assessing Total Symptom Burden in Trials of Cannabinoid Medications in Palliative Care. J. Palliat. Med. 2020, 23, 650–655. [Google Scholar] [CrossRef] [PubMed]
- Good, P.; Haywood, A.; Gogna, G.; Martin, J.; Yates, P.; Greer, R.; Hardy, J. Oral Medicinal Cannabinoids to Relieve Symptom Burden in the Palliative Care of Patients with Advanced Cancer: A Double-Blind, Placebo Controlled, Randomised Clinical Trial of Efficacy and Safety of Cannabidiol (CBD). BMC Palliat. Care 2019, 18, 110. [Google Scholar] [CrossRef] [PubMed]
- Hardy, J.; Greer, R.; Huggett, G.; Kearney, A.; Gurgenci, T.; Good, P. Phase IIb Randomized, Placebo-Controlled, Dose-Escalating, Double-Blind Study of Cannabidiol Oil for the Relief of Symptoms in Advanced Cancer (MedCan1-CBD). J. Clin. Oncol. 2023, 41, 1444–1452. [Google Scholar] [CrossRef]
- Johnson, J.R.; Burnell-Nugent, M.; Lossignol, D.; Ganae-Motan, E.D.; Potts, R.; Fallon, M.T. Multicenter, Double-Blind, Randomized, Placebo-Controlled, Parallel-Group Study of the Efficacy, Safety, and Tolerability of THC:CBD Extract and THC Extract in Patients with Intractable Cancer-Related Pain. J. Pain. Symptom Manag. 2010, 39, 167–179. [Google Scholar] [CrossRef]
- Grimison, P.; Mersiades, A.; Kirby, A.; Lintzeris, N.; Morton, R.; Haber, P.; Olver, I.; Walsh, A.; McGregor, I.; Cheung, Y.; et al. Oral THC:CBD Cannabis Extract for Refractory Chemotherapy-Induced Nausea and Vomiting: A Randomised, Placebo-Controlled, Phase II Crossover Trial. Ann. Oncol. 2020, 31, 1553–1560. [Google Scholar] [CrossRef]
- Dahlgren, M.K.; Lambros, A.M.; Smith, R.T.; Sagar, K.A.; El-Abboud, C.; Gruber, S.A. Clinical and Cognitive Improvement Following Full-Spectrum, High-Cannabidiol Treatment for Anxiety: Open-Label Data from a Two-Stage, Phase 2 Clinical Trial. Commun. Med. 2022, 2, 139. [Google Scholar] [CrossRef]
Author | Patients | Study Design | Administered Dose | Pharmaceutical Form | Conclusions |
---|---|---|---|---|---|
Bergamaschi M.M. et al., 2011 [28] | Social anxiety disorder (n = 24) | Randomized, parallel-group, double-blind, placebo-controlled trial | 600 mg; single dose | Oral gelatin capsules | CBD significantly reduced anxiety, cognitive impairment, discomfort, and alertness during simulation public speaking test. |
Crippa J.A.S. et al., 2011 [28] | Social anxiety disorder patients (n = 10) | Randomized, double-blind, placebo-controlled trial | 400 mg; single dose | Oral gelatin capsules | Acute administration reduced subjective anxiety. |
Masataka N., 2019 [30] | Social anxiety disorder (n = 37) | Randomized, double-blind, placebo-controlled trial | 300 mg/day; 4 weeks | CBD oil 21.4/mL | CBD significantly decreased anxiety measured by both Fear of Negative Evaluation Questionnaire and Liebowitz Social Anxiety Scale. |
Gournay L.R, et al., 2021 [31] | Individuals with elevated trait worry (n = 63) | Randomized, double-blind, placebo-controlled study design | 300 mg/day; 50 mg/day acute/2 weeks | Soft gel capsules | CBD 50/300 mg did not effectively reduce worry severity in the context of acute or repeated administration. However, repeated 300 mg CBD administration for 2 weeks, but not an acute 300 mg dose, reduced anxiety symptoms compared to placebo. |
Author | Patients | Study Design | Administered Dose | Pharmaceutical Form | Conclusions |
---|---|---|---|---|---|
de Faria S.M. et al., 2020 [32] | Patients with Parkinson’s disease undergoing a simulated public speaking test (n = 24) | Randomized, double-blind, placebo-controlled, crossover clinical trial | 300 mg/day; single dose | Soft gel capsules | Acute CBD administration at a dose of 300 mg decreased anxiety in patients with PD, and there was also decreased tremor amplitude in an anxiogenic situation. |
Parrella N-F et al., 2024 [33] | Autism spectrum disorder (children; n = 29) | Randomized double-blind, placebo-controlled, crossover clinical trial | 10 mg/kg/day; 12 weeks | CBD oil 100 mg/mL | Reduces anxiety symptoms assessed using PROMIS Anxiety and DBC-2 Anxiety scales. |
Bolsoni L.M. et al., 2022 [34] | Post-traumatic stress disorder (n = 33) | Randomized, parallel-group, double-blind, placebo-controlled trial | 300 mg CBD; single dose | Oral capsules | No significant impact on anxiety levels, alertness, or discomfort during trauma recall. CBD did not significantly alter physiological markers of anxiety, such as blood pressure, heart rate, and salivary cortisol levels. CBD significantly reduced cognitive impairments (such as confusion or difficulty in thinking) during the recall of traumatic events. |
Telch M.J., 2022 [36] | Patients with post-traumatic stress disorder (n = 150) | Phase II randomized double-blind placebo-controlled fixed dose clinical trial. | 300 mg synthetic CBD | Oil formulations | PTSD symptom severity, patient-rated depression, overall disability, anxiety, quality of life, and alcohol use—results not reported. |
Author | Patients | Study Design | Administered Dose | Pharmaceutical Form | Conclusions |
---|---|---|---|---|---|
Pretzsch C.M. et al., 2019a [47] | Autism spectrum disorder (adults; n = 34) | Randomized placebo-controlled single dose trial | 600 mg CBD; single dose | “liquid oral dose” (pharmaceutical form not specified) | CBD modulates glutamate–GABA systems, but prefrontal GABA systems respond differently in autism spectrum disorder. In contrast, CBD increased GABA+ levels in the BG and DMPFC voxel in neurotypicals, but decreased GABA+ levels in the BG and (markedly so) in the DMPFC voxel of autistic adults. |
Pretzsch C.M. et al., 2019c [46] | Autism spectrum disorder (adults; n = 34) | Randomized placebo-controlled single dose trial | 600 mg CBD; single dose | “liquid oral dose” (pharmaceutical form not specified) | Especially in ASD, CBD alters regional fALFF and FC in/between regions consistently implicated in ASD. fALFF ‘fractional amplitude of low-frequency fluctuations; FC, functional connectivity. |
Efron D. et al., 2021 [48] | Severe behavioral problems in children and adolescents with intellectual disability (n = 8) | Double-blind, placebo-controlled, two-armed, parallel-design, randomized trial | Up-titration over 9 days to 20 mg/kg/day; maximum dose 1000 mg/day | 98% CBD 100 mg/mL in grapeseed oil or placebo orally | Significant reduction in irritability, social withdrawal, stereotypic behavior, hyperactivity/non-compliance, and inappropriate speech. |
Parrella N.-F. et al., 2024 [33] | Autism spectrum disorder (children; n = 29) | Double-blind, placebo-controlled randomized, crossover design | CBD 10 mg/kg/day; 12 weeks | CBD oil 100 mg/mL | No significant effect observed for the Social Responsiveness Scale-2. Significant improvements were observed in secondary measures of social functioning (PROMIS-Social and DBC-2 Social Relating). Reduction of parental stress. |
Author | Patients | Study Design | Administered Dose | Pharmaceutical Form | Conclusions |
---|---|---|---|---|---|
Notcutt et al., 2004 [55] | Various forms of chronic non-cancer pain (n = 34) | Double-blind, placebo-controlled, randomized crossover trial | 2.5 to 15 mg/day; 12 weeks | Sublingual spray (synthetic CBD) | CBD did not reduce pain compared to placebo. |
Vela et al., 2021 [56] | Patients with hand osteoarthritis and psoriatic arthritis (n = 136) | Randomized, double-blind, placebo-controlled design | 20 to 30 mg; 12 weeks | Capsules (synthetic CBD) | No change vs. placebo in pain intensity during the past 24 h using various scales |
Bebee et al., 2021 [57] | Lower back pain (n = 100) | Randomized, double-blind, placebo-controlled, between-subjects design | 400 mg; single dose | Capsules (synthetic CBD) | Verbal numerical pain scale (range, 0–10) |
Pramhas et al., 2023 [58] | Painful chronic osteoarthritis of the knee (n = 86) | Prospective, randomized, placebo-controlled, double-blind, parallel-group study. | 600 mg/day; 8 weeks | Capsules (synthetic CBD) | In patients with knee osteoarthritis, oral high-dose add-on cannabidiol had no additional analgesic effect compared to adding placebo to continued paracetamol. These results do not support the use of cannabidiol as an analgesic supplement for knee osteoarthritis. |
Zubcevic K. et al., 2023 [59] | Painful polyneuropathy, post-herpetic neuralgia and peripheral nerve injury failing at least one previous evidence-based pharmacological treatment (n = 115) | Placebo-controlled, randomized, double-blind trial | 5–50 mg/day; 8 weeks | Capsules (synthetic CBD) | Did not relieve peripheral neuropathic pain in patients failing at least one previous evidence-based treatment for neuropathic pain. |
Alaia M.J. et al., 2024 [54] | Postoperative pain control after arthroscopic rotator cuff repair (n = 83) | Multicenter, placebo-controlled, randomized, double-blind trial | 75 mg/day for patients < 80 kg; 150 mg/day for patients > 80 kg; 14 days | Capsules (synthetic CBD) | A significant difference in VAS pain score vs. placebo was only observed on day 1. No significant difference vs. placebo was observed after repeated administrations. |
Author | Patients | Study Design | Administered Dose/Dosage Form | Conclusions |
---|---|---|---|---|
Saleska J.L. et al., 2023 [62] | Sleep disturbances (n = 1793) | Randomized, double-blind controlled trial | 15 mg CBD; 4 weeks; oral capsules | CBD significantly reduced sleep issues, with no added benefits from cannabinol or cannabichromene. Formulations with melatonin and CBD improved some sleep aspects, but overall effectiveness was similar to CBD alone. |
Wang M., 2024 [63] | Primary insomnia (n = 125) | Double-blind, placebo-controlled, randomized crossover clinical trial | CBD (300 mg) and terpenes; ≥4 days/week over 4 weeks; oral capsules | CBD increased the mean nightly percentage of time spent in slow-wave sleep plus rapid eye movement sleep compared to placebo, particularly in participants with low baseline slow-wave sleep plus rapid eye movement sleep and day sleepers, without affecting total sleep time, heart rate, or heart rate variability, or causing adverse events. |
Narayan A., 2024 [64] | Primary insomnia (n = 30) | Randomized, placebo-controlled, parallel design | 150 mg CBD/day; 3 weeks; CBD oral solution 100 mg/mL | Insomnia severity, sleep-onset latency, sleep efficiency, and wake after sleep onset were not influenced by CBD treatment. CBD improved well-being, transiently elevated behavior following wakefulness, and had superior objective sleep efficiency compared to placebo. |
Author | Patients | Study Design | Administered Dose | Pharmaceutical Form | Conclusions |
---|---|---|---|---|---|
Hallak J.E. et al., 2010 [69] | Schizophrenia (n = 28) | Placebo-controlled, randomized, double-blind parallel trial | 300 or 600 mg; single dose | Oral capsules | No cognitive improvement was observed. |
Leweke F.M. et al., 2012 [65] | Acute psychosis (n = 32) | Placebo-controlled, randomized, double-blind parallel trial | 200 mg/day up to 800 mg/day; 4 weeks | Oral capsules | CBD is as effective as amisulpride in improving psychotic symptoms, processing speed, visual memory, visuomotor coordination, and sustained attention. |
Boggs D.L. et al., 2018 [71] | Chronic schizophrenia (n = 42) | Placebo-controlled, randomized, double-blind parallel trial | 600 mg/day; 6 weeks | Oral capsules | Psychotic symptoms improved in both groups (CBD and placebo) without significant difference. |
McGuire P. et al., 2018 [72] | Schizophrenia (n = 88) | Placebo-controlled, randomized, double-blind parallel trial | 1000 mg/day; 6 weeks | Oral solution | Treatment with CBD improved positive psychotic symptoms and slightly improved cognitive performance vs. placebo, although the latter did not reach statistical significance. |
Hundal H. et al., 2018 [72] | Paranoia (n = 32) | Placebo-controlled, randomized, double-blind parallel trial | 600 mg; single dose | Oral capsules | CBD did not impact precursory thinking and psychotic symptoms. |
Author | Patients | Study Design | Administered Dose | Pharmaceutical Form | Conclusions |
---|---|---|---|---|---|
Cannabis use disorder | |||||
Haney M. et al., 2016 [77] | Healthy cannabis smokers (n = 32) | Placebo-controlled, randomized, double-blind cross-over trial | 200, 400, and 800 mg; single dose | Oral capsules | CBD did not alter the subjective effects of smoked cannabis. |
Freeman T.P. et al., 2020 [78] | Cannabis use disorder (n = 59) | Randomized, double-blind, placebo-controlled, parallel design | 200 mg/day; 4 weeks | Oral capsules | Doses of 400 mg and 800 mg, but not 200 mg, of CBD were effective in reducing cannabis use. |
Lees R. et al., 2023 [81] | Moderate or severe DSM-5 cannabis use disorder (n = 70) | Phase 2a randomized, double-blind, placebo-controlled, parallel clinical trial | 200 mg, 400 mg, and 800 mg; 4 weeks | Oral capsules | CBD did not influence delayed verbal memory. CBD did not have broad cognitive effects, but 800 mg daily treatment improved working memory manipulation. |
Nicotine addiction | |||||
Morgan et al., 2013 [80] | Tobacco smokers (n = 24) | Randomized, double-blind, placebo-controlled, parallel trial | 400 µg; 1 week | Inhalation/vaporized | CBD reduced the number of cigarettes smoked during treatment and at follow-up. |
Hindocha et al., 2018 [85] | Tobacco smokers (n = 30) | Randomized, double-blind, placebo-controlled, parallel trial | 800 mg; single dose | Oral capsules | CBD reduced the salience and pleasantness of cigarette cues, compared with placebo, but did not influence tobacco craving or withdrawal. |
Other addictions | |||||
Hurd Y.L. et al., 2019 [82] | Heroin use disorder (n = 14) | Randomized, double-blind, placebo-controlled, cross-over design | 400 mg/day; 3 days | CBD oral solution (100 mg/mL; Epidiolex) | CBD reduces cue-induced craving and anxiety. |
de Meneses-Gaya et al., 2020 [79] | Crack-cocaine dependence (n = 31) | Randomized, double-blind, placebo-controlled, parallel design | 300 mg/day; 10 days | Oral capsules | CBD did not reduce craving vs. placebo. It did not improve anxiety, depression, and sleep. |
Mongeau-Pérusse V. et al., 2022 [84] | Individuals with cocaine use disorder (n = 78) | Randomized, double-blind, placebo-controlled trial | Max. 800 mg/day; 12 weeks | CBD 800 mg did not reduce anxiety symptoms and cortisol levels in individuals with cocaine use disorder. | |
Hurzeler et al., 2024 [83] | Non-treatment seekers with alcohol use disorders | Randomized, double-blind, placebo-controlled, cross-over study | 800 mg/day; 3 days | Gel capsules | CBD reduced alcohol craving and seeking. It improved clinical characteristics leading to relapse such as sleep and mood disturbances. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Andrei, C.; Nitulescu, G.M.; Nitulescu, G.; Zanfirescu, A. Cannabidiol Supplements in Romania: Bridging the Gap Between Marketed Claims and Clinical Reality. Pharmacy 2024, 12, 176. https://doi.org/10.3390/pharmacy12060176
Andrei C, Nitulescu GM, Nitulescu G, Zanfirescu A. Cannabidiol Supplements in Romania: Bridging the Gap Between Marketed Claims and Clinical Reality. Pharmacy. 2024; 12(6):176. https://doi.org/10.3390/pharmacy12060176
Chicago/Turabian StyleAndrei, Corina, George Mihai Nitulescu, Georgiana Nitulescu, and Anca Zanfirescu. 2024. "Cannabidiol Supplements in Romania: Bridging the Gap Between Marketed Claims and Clinical Reality" Pharmacy 12, no. 6: 176. https://doi.org/10.3390/pharmacy12060176
APA StyleAndrei, C., Nitulescu, G. M., Nitulescu, G., & Zanfirescu, A. (2024). Cannabidiol Supplements in Romania: Bridging the Gap Between Marketed Claims and Clinical Reality. Pharmacy, 12(6), 176. https://doi.org/10.3390/pharmacy12060176