Rationale and Logistics of Continuous Infusion Cephalosporin Antibiotics
Abstract
:1. Introduction
2. Materials and Methods
2.1. Literature Search
2.2. Study Selection
3. Results
3.1. Cephalosporins
3.1.1. Cefazolin
3.1.2. Cefuroxime
3.1.3. Ceftriaxone
3.1.4. Ceftazidime
3.1.5. Ceftazidime/Avibactam
3.1.6. Cefotaxime
3.1.7. Cefepime
3.1.8. Ceftaroline
3.1.9. Ceftobiprole
3.1.10. Ceftolozane/Tazobactam
3.1.11. Cefiderocol
3.2. Cephamycins
Cefoxitin
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Bauer, K.A.; West, J.E.; O’Brien, J.M.; Goff, D.A. Extended-infusion cefepime reduces mortality in patients with Pseudomonas aeruginosa infections. Antimicrob. Agents Chemother. 2013, 57, 2907–2912. [Google Scholar] [CrossRef] [PubMed]
- Roos, J.F.; Bulitta, J.; Lipman, J.; Kirkpatrick, C.M.J. Pharmacokinetic-pharmacodynamic rationale for cefepime dosing regimens in intensive care units. J. Antimicrob. Chemother. 2006, 58, 987–993. [Google Scholar] [CrossRef] [PubMed]
- Marshall, W.F.; Blair, J.E. The cephalosporins. Mayo Clin. Proc. 1999, 74, 187–195. [Google Scholar] [CrossRef] [PubMed]
- Abdul-Aziz, M.H.; Hammond, N.E.; Brett, S.J.; Cotta, M.O.; De Waele, J.J.; Devaux, A.; Di Tanna, G.L.; Dulhunty, J.M.; Elkady, H.; Eriksson, L.; et al. Prolonged vs Intermittent Infusions of β-Lactam Antibiotics in Adults with Sepsis or Septic Shock A Systematic Review and Meta-Analysis. JAMA 2024, 332, 638–648. [Google Scholar] [CrossRef] [PubMed]
- Hong, L.T.; Downes, K.J.; FakhriRavari, A.; Abdul-Mutakabbir, J.C.; Kuti, J.L.; Jorgensen, S.; Young, D.C.; Alshaer, M.H.; Bassetti, M.; Bonomo, R.A.; et al. International consensus recommendations for the use of prolonged-infusion beta-lactam antibiotics: Endorsed by the American College of Clinical Pharmacy, British Society for Antimicrobial Chemotherapy, Cystic Fibrosis Foundation, European Society of Clinical Microbiology and Infectious Diseases, Infectious Diseases Society of America, Society of Critical Care Medicine, and Society of Infectious Diseases Pharmacists. Pharmacotherapy 2023, 43, 740–777. [Google Scholar]
- Dulhunty, J.M.; Brett, S.J.; De Waele, J.J.; Rajbhandari, D.; Billot, L.; Cotta, M.O.; Davis, J.S.; Finfer, S.; Hammond, N.E.; Knowles, S.; et al. Continuous vs Intermittent β-Lactam Antibiotic Infusions in Critically Ill Patients with Sepsis: The BLING III Randomized Clinical Trial. JAMA 2024, 332, 629–637. [Google Scholar] [CrossRef]
- Murray, P.R.; Jones, R.N.; Allen, S.D.; Erwin, M.E.; Fuchs, P.C.; Gerlach, E.H. Multilaboratory evaluation of the in vitro activity of 13 beta-lactam antibiotics against 1474 clinical isolates of aerobic and anaerobic bacteria. Diagn. Microbiol. Infect. Dis. 1993, 16, 191–203. [Google Scholar] [CrossRef]
- Howard, G.W. Free and total cefazolin plasma and interstitial fluid concentrations at steady state during continuous infusion. J. Antimicrob. Chemother. 2002, 50, 429–432. [Google Scholar] [CrossRef]
- Zeller, V.; Durand, F.; Kitzis, M.D.; Lhotellier, L.; Ziza, J.M.; Mamoudy, P.; Desplaces, N. Continuous Cefazolin Infusion to Treat Bone and Joint Infections: Clinical Efficacy, Feasibility, Safety, and Serum and Bone Concentrations. Antimicrob. Agents Chemother. 2009, 53, 883–887. [Google Scholar] [CrossRef]
- Castanheira, M.; Jones, R.N.; Sader, H.S. Activity of ceftaroline and comparator agents tested against contemporary Gram-positive and -negative (2011) isolates collected in Europe, Turkey, and Israel. J. Chemother. Florence Italy 2014, 26, 202–210. [Google Scholar] [CrossRef]
- Cuevas, O.; Cercenado, E.; Gimeno, M.; Marín, M.; Coronel, P.; Bouza, E. Comparative in vitro activity of cefditoren and other antimicrobials against Enterobacteriaceae causing community-acquired uncomplicated urinary tract infections in women: A Spanish nationwide multicenter study. Diagn. Microbiol. Infect. Dis. 2010, 67, 251–260. [Google Scholar] [CrossRef] [PubMed]
- Jones, R.N.; Mendes, R.E.; Sader, H.S. Ceftaroline activity against pathogens associated with complicated skin and skin structure infections: Results from an international surveillance study. J. Antimicrob. Chemother. 2010, 65 (Suppl. S4), iv17–iv31. [Google Scholar] [CrossRef] [PubMed]
- Fluit, A.C.; Jones, M.E.; Schmitz, F.J.; Acar, J.; Gupta, R.; Verhoef, J. Antimicrobial susceptibility and frequency of occurrence of clinical blood isolates in Europe from the SENTRY antimicrobial surveillance program, 1997 and 1998. Clin. Infect. Dis. 2000, 30, 454–460. [Google Scholar] [CrossRef] [PubMed]
- Zhanel, G.G.; Adam, H.J.; Baxter, M.R.; Fuller, J.; Nichol, K.A.; Denisuik, A.J.; Lagacé-Wiens, P.R.; Walkty, A.; Karlowsky, J.A.; Schweizer, F.; et al. Antimicrobial susceptibility of 22746 pathogens from Canadian hospitals: Results of the CANWARD 2007-11 study. J. Antimicrob. Chemother. 2013, 68 (Suppl. S1), i7–i22. [Google Scholar] [CrossRef]
- Flamm, R.K.; Sader, H.S.; Farrell, D.J.; Jones, R.N. Antimicrobial activity of ceftaroline tested against drug-resistant subsets of Streptococcus pneumoniae from U.S. medical centers. Antimicrob. Agents Chemother. 2014, 58, 2468–2471. [Google Scholar] [CrossRef]
- Thornsberry, C.; Karlowsky, J.A.; Kelly, L.J.; Draghi, D.C.; Critchley, I.A.; Jones, M.E.; Sahm, D.F. Comparative activity of cefditoren and other oral beta-lactams against nonpneumococcal streptococci. Chemotherapy 2001, 47, 332–343. [Google Scholar] [CrossRef]
- Carlier, M.; Noe, M.; Roberts, J.A.; Stove, V.; Verstraete, A.G.; Lipman, J.; De Waele, J.J. Population pharmacokinetics and dosing simulations of cefuroxime in critically ill patients: Non-standard dosing approaches are required to achieve therapeutic exposures. J. Antimicrob. Chemother. 2014, 69, 2797–2803. [Google Scholar] [CrossRef]
- Sader, H.S.; Farrell, D.J.; Flamm, R.K.; Jones, R.N. Activity of ceftaroline and comparator agents tested against Staphylococcus aureus from patients with bloodstream infections in US medical centres (2009-13). J. Antimicrob. Chemother. 2015, 70, 2053–2056. [Google Scholar] [CrossRef]
- Pfaller, M.A.; Flamm, R.K.; Sader, H.S.; Jones, R.N. Ceftaroline activity against bacterial organisms isolated from acute bacterial skin and skin structure infections in United States medical centers (2009–2011). Diagn. Microbiol. Infect. Dis. 2014, 78, 422–428. [Google Scholar] [CrossRef]
- Farrell, D.J.; Flamm, R.K.; Sader, H.S.; Jones, R.N. Ceftobiprole activity against over 60,000 clinical bacterial pathogens isolated in Europe, Turkey, and Israel from 2005 to 2010. Antimicrob. Agents Chemother. 2014, 58, 3882–3888. [Google Scholar] [CrossRef]
- Flamm, R.K.; Sader, H.S.; Farrell, D.J.; Jones, R.N. Summary of ceftaroline activity against pathogens in the United States, 2010: Report from the Assessing Worldwide Antimicrobial Resistance Evaluation (AWARE) surveillance program. Antimicrob. Agents Chemother. 2012, 56, 2933–2940. [Google Scholar] [CrossRef] [PubMed]
- Hedberg, S.T.; Fredlund, H.; Nicolas, P.; Caugant, D.A.; Olcén, P.; Unemo, M. Antibiotic susceptibility and characteristics of Neisseria meningitidis isolates from the African meningitis belt, 2000 to 2006: Phenotypic and genotypic perspectives. Antimicrob. Agents Chemother. 2009, 53, 1561–1566. [Google Scholar] [CrossRef] [PubMed]
- Salvador, P.; Smith, R.G.; Weinfeld, R.E.; Ellis, D.H.; Bodey, G.P. Clinical Pharmacology of Ceftriaxone in Patients with Neoplastic Disease. Antimicrob. Agents Chemother. 1983, 23, 583–588. [Google Scholar] [CrossRef] [PubMed]
- Roberts, J.A.; Boots, R.; Rickard, C.M.; Thomas, P.; Quinn, J.; Roberts, D.M.; Richards, B.; Lipman, J. Is continuous infusion ceftriaxone better than once-a-day dosing in intensive care? A randomized controlled pilot study. J. Antimicrob. Chemother. 2006, 59, 285–291. [Google Scholar] [CrossRef]
- Jones, R.N.; Sader, H.S.; Fritsche, T.R.; Pottumarthy, S. Comparisons of parenteral broad-spectrum cephalosporins tested against bacterial isolates from pediatric patients: Report from the SENTRY Antimicrobial Surveillance Program (1998–2004). Diagn. Microbiol. Infect Dis. 2007, 57, 109–116. [Google Scholar] [CrossRef]
- Rhomberg, P.R.; Jones, R.N. Contemporary activity of meropenem and comparator broad-spectrum agents: MYSTIC program report from the United States component (2005). Diagn. Microbiol. Infect. Dis. 2007, 57, 207–215. [Google Scholar] [CrossRef]
- Sader, H.S.; Fritsche, T.R.; Jones, R.N. Potency and spectrum trends for cefepime tested against 65,746 clinical bacterial isolates collected in North American medical centers: Results from the SENTRY Antimicrobial Surveillance Program (1998–2003). Diagn. Microbiol. Infect. Dis. 2005, 52, 265–273. [Google Scholar] [CrossRef]
- El Haj, C.; Agustí, E.; Benavent, E.; Soldevila-Boixader, L.; Rigo-Bonnin, R.; Tubau, F.; Torrejón, B.; Esteban, J.; Murillo, O. Comparative Efficacy of Continuous Ceftazidime Infusion vs. Intermittent Bolus against In Vitro Ceftazidime-Susceptible and -Resistant Pseudomonas aeruginosa Biofilm. Antibiot. Basel Switz. 2024, 13, 344. [Google Scholar] [CrossRef]
- Bulitta, J.B.; Landersdorfer, C.B.; Hüttner, S.J.; Drusano, G.L.; Kinzig, M.; Holzgrabe, U.; Stephan, U.; Sörgel, F. Population pharmacokinetic comparison and pharmacodynamic breakpoints of ceftazidime in cystic fibrosis patients and healthy volunteers. Antimicrob. Agents Chemother. 2010, 54, 1275–1282. [Google Scholar] [CrossRef]
- Lipman, J.; Gomersall, C.D.; Gin, T.; Joynt, G.M.; Young, R.J. Continuous infusion ceftazidime in intensive care: A randomized controlled trial. J. Antimicrob. Chemother. 1999, 43, 309–311. [Google Scholar] [CrossRef]
- Sader, H.S.; Castanheira, M.; Flamm, R.K.; Farrell, D.J.; Jones, R.N. Antimicrobial activity of ceftazidime-avibactam against Gram-negative organisms collected from U.S. medical centers in 2012. Antimicrob. Agents Chemother. 2014, 58, 1684–1692. [Google Scholar] [CrossRef] [PubMed]
- Flamm, R.K.; Farrell, D.J.; Sader, H.S.; Jones, R.N. Ceftazidime/avibactam activity tested against Gram-negative bacteria isolated from bloodstream, pneumonia, intra-abdominal and urinary tract infections in US medical centres (2012). J. Antimicrob. Chemother. 2014, 69, 1589–1598. [Google Scholar] [CrossRef] [PubMed]
- Castanheira, M.; Mills, J.C.; Costello, S.E.; Jones, R.N.; Sader, H.S. Ceftazidime-avibactam activity tested against Enterobacteriaceae isolates from U.S. hospitals (2011 to 2013) and characterization of β-lactamase-producing strains. Antimicrob. Agents Chemother. 2015, 59, 3509–3517. [Google Scholar] [CrossRef]
- Lodise, T.P.; Smith, N.M.; O’Donnell, N.; Eakin, A.E.; Holden, P.N.; Boissonneault, K.R.; Zhou, J.; Tao, X.; Bulitta, J.B.; Fowler, V.G., Jr.; et al. Determining the optimal dosing of a novel combination regimen of ceftazidime/avibactam with aztreonam against NDM-1-producing Enterobacteriaceae using a hollow-fibre infection model. J. Antimicrob. Chemother. 2020, 75, 2622–2632. [Google Scholar] [CrossRef]
- Goncette, V.; Layios, N.; Descy, J.; Frippiat, F. Continuous infusion, therapeutic drug monitoring and outpatient parenteral antimicrobial therapy with ceftazidime/avibactam: A retrospective cohort study. J. Glob. Antimicrob. Resist. 2021, 26, 15–19. [Google Scholar] [CrossRef]
- Tempera, G.; Furneri, P.M.; Carlone, N.A.; Cocuzza, C.; Rigoli, R.; Musumeci, R.; Pilloni, A.; Prenna, M.; Tufano, M.; Tullio, V.; et al. Antibiotic susceptibility of respiratory pathogens recently isolated in Italy: Focus on cefditoren. J. Chemother. Florence Italy 2010, 22, 153–159. [Google Scholar] [CrossRef]
- Tajima, T.; Sato, Y.; Toyonaga, Y.; Hanaki, H.; Sunakawa, K. Nationwide survey of the development of drug-resistant pathogens in the pediatric field in 2007 and 2010: Drug sensitivity of Streptococcus pneumoniae in Japan (second report). J. Infect. Chemother. 2013, 19, 510–516. [Google Scholar] [CrossRef]
- Lyytikäinen, O.; Rautio, M.; Carlson, P.; Anttila, V.J.; Vuento, R.; Sarkkinen, H.; Kostiala, A.; Väisänen, M.L.; Kanervo, A.; Ruutu, P. Nosocomial bloodstream infections due to viridans streptococci in haematological and non-haematological patients: Species distribution and antimicrobial resistance. J. Antimicrob. Chemother. 2004, 53, 631–634. [Google Scholar] [CrossRef]
- Wang, H.; Chen, M.; Ni, Y.; Liu, Y.; Sun, H.; Yu, Y.; Yu, X.; Mei, Y.; Liu, M.; Sun, Z.; et al. Antimicrobial resistance among clinical isolates from the Chinese Meropenem Surveillance Study (CMSS), 2003–2008. Int. J. Antimicrob. Agents 2010, 35, 227–234. [Google Scholar] [CrossRef]
- Jorgensen, J.H.; Crawford, S.A.; Fiebelkorn, K.R. Susceptibility of Neisseria meningitidis to 16 antimicrobial agents and characterization of resistance mechanisms affecting some agents. J. Clin. Microbiol. 2005, 43, 3162–3171. [Google Scholar] [CrossRef]
- Pérez-Trallero, E.; Martín-Herrero, J.E.; Mazón, A.; García-Delafuente, C.; Robles, P.; Iriarte, V.; Dal-Ré, R.; García-De-Lomas, J. Antimicrobial resistance among respiratory pathogens in Spain: Latest data and changes over 11 years (1996–1997 to 2006–2007). Antimicrob. Agents Chemother. 2010, 54, 2953–2959. [Google Scholar] [CrossRef] [PubMed]
- Zhanel, G.G.; Adam, H.J.; Low, D.E.; Blondeau, J.; Decorby, M.; Karlowsky, J.A.; Weshnoweski, B.; Vashisht, R.; Wierzbowski, A.; Hoban, D.J.; et al. Antimicrobial susceptibility of 15,644 pathogens from Canadian hospitals: Results of the CANWARD 2007–2009 study. Diagn. Microbiol. Infect. Dis. 2011, 69, 291–306. [Google Scholar] [CrossRef] [PubMed]
- Karlowsky, J.A.; Adam, H.J.; Baxter, M.R.; Lagacé-Wiens, P.R.S.; Walkty, A.J.; Hoban, D.J.; Zhanel, G.G. In vitro activity of ceftaroline-avibactam against gram-negative and gram-positive pathogens isolated from patients in Canadian hospitals from 2010 to 2012: Results from the CANWARD surveillance study. Antimicrob. Agents Chemother. 2013, 57, 5600–5611. [Google Scholar] [CrossRef]
- Buijk, S.E. Perioperative pharmacokinetics of cefotaxime in serum and bile during continuous and intermittent infusion in liver transplant patients. J. Antimicrob. Chemother. 2004, 54, 199–205. [Google Scholar] [CrossRef]
- van Zanten, A.R.H.; Oudijk, M.; Nohlmans-Paulssen, M.K.E.; van der Meer, Y.G.; Girbes, A.R.J.; Polderman, K.H. Continuous vs. intermittent cefotaxime administration in patients with chronic obstructive pulmonary disease and respiratory tract infections: Pharmacokinetics/pharmacodynamics, bacterial susceptibility and clinical efficacy. Br. J. Clin. Pharmacol. 2007, 63, 100–109. [Google Scholar] [CrossRef]
- Seguin, P.; Verdier, M.C.; Chanavaz, C.; Engrand, C.; Laviolle, B.; Donnio, P.Y.; Mallédant, Y. Plasma and peritoneal concentration following continuous infusion of cefotaxime in patients with secondary peritonitis. J. Antimicrob. Chemother. 2009, 63, 564–567. [Google Scholar] [CrossRef]
- Al-Shaer, M.H.; Neely, M.N.; Liu, J.; Cherabuddi, K.; Venugopalan, V.; Rhodes, N.J.; Klinker, K.; Scheetz, M.H.; Peloquin, C.A. Population Pharmacokinetics and Target Attainment of Cefepime in Critically Ill Patients and Guidance for Initial Dosing. Antimicrob. Agents Chemother. 2020, 64, e00745-20. [Google Scholar] [CrossRef]
- Álvarez, J.C.; Cuervo, S.I.; Silva, E.; Díaz, J.A.; Jiménez, L.L.; Parra, D.S.; Gómez, J.C.; Sánchez, R.; Cortés, J.A. Pharmacokinetics and Pharmacodynamics of Cefepime in Adults with Hematological Malignancies and Febrile Neutropenia after Chemotherapy. Antibiotics 2021, 10, 504. [Google Scholar] [CrossRef]
- Justo, J.A.; Mayer, S.M.; Pai, M.P.; Soriano, M.M.; Danziger, L.H.; Novak, R.M.; Rodvold, K.A. Pharmacokinetics of ceftaroline in normal body weight and obese (classes I, II, and III) healthy adult subjects. Antimicrob. Agents Chemother. 2015, 59, 3956–3965. [Google Scholar] [CrossRef]
- Fresán, D.; Luque, S.; Benítez-Cano, A.; Sorlí, L.; Montero, M.M.; De-Antonio, M.; Vega, V.; Roberts, J.A.; Horcajada, J.P.; Grau, S. Real-world experience of therapeutic drug monitoring and PK/PD achievement of ceftaroline administered by different infusion regimens in patients with confirmed infections caused by Gram-positive bacteria. J. Antimicrob. Chemother. 2023, 78, 2810–2815. [Google Scholar] [CrossRef]
- Fritsche, T.R.; Sader, H.S.; Jones, R.N. Antimicrobial activity of ceftobiprole, a novel anti-methicillin-resistant Staphylococcus aureus cephalosporin, tested against contemporary pathogens: Results from the SENTRY Antimicrobial Surveillance Program (2005–2006). Diagn. Microbiol. Infect. Dis. 2008, 61, 86–95. [Google Scholar] [CrossRef] [PubMed]
- Jones, R.N.; Deshpande, L.M.; Mutnick, A.H.; Biedenbach, D.J. In vitro evaluation of BAL9141, a novel parenteral cephalosporin active against oxacillin-resistant staphylococci. J. Antimicrob. Chemother. 2002, 50, 915–932. [Google Scholar] [CrossRef] [PubMed]
- Pillar, C.M.; Aranza, M.K.; Shah, D.; Sahm, D.F. In vitro activity profile of ceftobiprole, an anti-MRSA cephalosporin, against recent gram-positive and gram-negative isolates of European origin. J. Antimicrob. Chemother. 2008, 61, 595–602. [Google Scholar] [CrossRef] [PubMed]
- Cojutti, P.G.; Giuliano, S.; Pascale, R.; Angelini, J.; Tascini, C.; Viale, P.; Pea, F. Population Pharmacokinetic and Pharmacodynamic Analysis for Maximizing the Effectiveness of Ceftobiprole in the Treatment of Severe Methicillin-Resistant Staphylococcal Infections. Microorganisms 2023, 11, 2964. [Google Scholar] [CrossRef]
- Zhanel, G.G.; Chung, P.; Adam, H.; Zelenitsky, S.; Denisuik, A.; Schweizer, F.; Lagacé-Wiens, P.R.; Rubinstein, E.; Gin, A.S.; Walkty, A.; et al. Ceftolozane/tazobactam: A novel cephalosporin/β-lactamase inhibitor combination with activity against multidrug-resistant gram-negative bacilli. Drugs 2014, 74, 31–51. [Google Scholar] [CrossRef]
- Lepak, A.J.; Reda, A.; Marchillo, K.; Van Hecker, J.; Craig, W.A.; Andes, D. Impact of MIC range for Pseudomonas aeruginosa and Streptococcus pneumoniae on the ceftolozane in vivo pharmacokinetic/pharmacodynamic target. Antimicrob. Agents Chemother. 2014, 58, 6311–6314. [Google Scholar] [CrossRef]
- Farrell, D.J.; Flamm, R.K.; Sader, H.S.; Jones, R.N. Antimicrobial activity of ceftolozane-tazobactam tested against Enterobacteriaceae and Pseudomonas aeruginosa with various resistance patterns isolated in U.S. Hospitals (2011–2012). Antimicrob. Agents Chemother. 2013, 57, 6305–6310. [Google Scholar] [CrossRef]
- Sheffield, M.; Nelson, D.; O’Neal, M.; Gould, A.P.; Bouchard, J.; Nicolau, D.; Justo, J.A.; Hucks, J.; Bookstaver, P.B. Use of continuous-infusion ceftolozane/tazobactam for resistant Gram-negative bacterial infections: A retrospective analysis and brief review of the literature. Int. J. Antimicrob. Agents 2020, 56, 106158. [Google Scholar] [CrossRef]
- Alvarez Otero, J.; Lamas Ferreiro, J.L.; Sanjurjo Rivo, A.; de la Fuente Aguado, J. Outpatient Parenteral Antimicrobial Therapy with Ceftolozane/Tazobactam via Continuous Infusion for Multidrug-Resistant Pseudomonas aeruginosa Osteomyelitis. Open Forum Infect. Dis. 2020, 7, ofaa409. [Google Scholar] [CrossRef]
- Lagacé-Wiens, P.R.; Simner, P.J.; Forward, K.R.; Tailor, F.; Adam, H.J.; Decorby, M.; Karlowsky, J.; Hoban, D.J.; Zhanel, G.G.; Canadian Antimicrobial Resistance Alliance (CARA). Analysis of 3789 in- and outpatient Escherichia coli isolates from across Canada--results of the CANWARD 2007-2009 study. Diagn. Microbiol. Infect. Dis. 2011, 69, 314–319. [Google Scholar] [CrossRef]
- Karlowsky, J.A.; Walkty, A.J.; Adam, H.J.; Baxter, M.R.; Hoban, D.J.; Zhanel, G.G. Prevalence of antimicrobial resistance among clinical isolates of Bacteroides fragilis group in Canada in 2010-2011: CANWARD surveillance study. Antimicrob Agents Chemother. 2012, 56, 1247–1252. [Google Scholar] [CrossRef] [PubMed]
- Mercer-Jones, M.A.; Hadjiminas, D.J.; Heinzelmann, M.; Peyton, J.; Cook, M.; Cheadle, W.G. Continuous antibiotic treatment for experimental abdominal sepsis: Effects on organ inflammatory cytokine expression and neutrophil sequestration. Br. J. Surg. 1998, 85, 385–389. [Google Scholar] [CrossRef] [PubMed]
- Czaja, C.A.; Levin, A.; Moridani, M.; Krank, J.L.; Curran-Everett, D.; Anderson, P.L. Cefoxitin Continuous Infusion for Lung Infection Caused by the Mycobacterium abscessus Group. Antimicrob. Agents Chemother. 2014, 58, 3570–3571. [Google Scholar] [CrossRef] [PubMed]
- Adembri, C.; Ristori, R.; Chelazzi, C.; Arrigucci, S.; Cassetta, M.I.; De Gaudio, A.R.; Novelli, A.; Leone, O.; Pacini, D.; Foà, A.; et al. Cefazolin bolus and continuous administration for elective cardiac surgery: Improved pharmacokinetic and pharmacodynamic parameters. J. Thorac. Cardiovasc. Surg. 2010, 140, 471–475. [Google Scholar] [CrossRef] [PubMed]
- Anlicoara, R.; Ferraz, A.B.; Coelho, K.d.P.; Filho, J.L.d.L.; Siqueira, L.T.; de Araújo, J.G.C.; Campos, J.M.; Ferraz, E.M. Antibiotic Prophylaxis in Bariatric Surgery with Continuous Infusion of Cefazolin: Determination of Concentration in Adipose Tissue. Obes. Surg. 2014, 24, 1487–1491. [Google Scholar] [CrossRef] [PubMed]
- Shoulders, B.R.; Crow, J.R.; Davis, S.L.; Whitman, G.J.; Gavin, M.; Lester, L.; Barodka, V.; Dzintars, K. Impact of Intraoperative Continuous-Infusion Versus Intermittent Dosing of Cefazolin Therapy on the Incidence of Surgical Site Infections After Coronary Artery Bypass Grafting. Pharmacother. J. Hum. Pharmacol. Drug Ther. 2016, 36, 166–173. [Google Scholar] [CrossRef]
- Broekhuysen, J.; Deger, F.; Douchamps, J.; Freschi, E.; Mal, N.; Neve, P.; Parfait, R.; Siska, G.; Winand, M. Pharmacokinetic study of cefuroxime in the elderly. Br. J. Clin. Pharmacol. 1981, 12, 801–805. [Google Scholar] [CrossRef]
- Pass, S.E.; Miyagawa, C.I.; Healy, D.P.; Ivey, T.D. Serum Concentrations of Cefuroxime After Continuous Infusion in Coronary Bypass Graft Patients. Ann. Pharmacother. 2001, 35, 1295–1296. [Google Scholar] [CrossRef]
- Tøttrup, M.; Bibby, B.M.; Hardlei, T.F.; Bue, M.; Kerrn-Jespersen, S.; Fuursted, K.; Søballe, K.; Birke-Sørensen, H. Continuous versus Short-Term Infusion of Cefuroxime: Assessment of Concept Based on Plasma, Subcutaneous Tissue, and Bone Pharmacokinetics in an Animal Model. Antimicrob. Agents Chemother. 2015, 59, 67–75. [Google Scholar] [CrossRef]
- Benko, A.S.; Cappelletty, D.M.; Kruse, J.A.; Rybak, M.J. Continuous infusion versus intermittent administration of ceftazidime in critically ill patients with suspected gram-negative infections. Antimicrob. Agents Chemother. 1996, 40, 691–695. [Google Scholar] [CrossRef]
- Nicolau, D.P.; Nightingale, C.H.; Banevicius, M.A.; Fu, Q.; Quintiliani, R. Serum bactericidal activity of ceftazidime: Continuous infusion versus intermittent injections. Antimicrob. Agents Chemother. 1996, 40, 61–64. [Google Scholar] [CrossRef] [PubMed]
- Riethmueller, J.; Junge, S.; Schroeter, T.W.; Kuemmerer, K.; Franke, P.; Ballmann, M.; Claass, A.; Broemme, S.; Jeschke, R.; Hebestreit, A.; et al. Continuous vs thrice-daily ceftazidime for elective intravenous antipseudomonal therapy in cystic fibrosis. Infection 2009, 37, 418–423. [Google Scholar] [CrossRef] [PubMed]
- Vinks, A.A.; Brimicombe, R.W.; Hijerman, H.G.; Bakker, W. Continuous infusion of ceftazidime in cystic fibrosis patients during home treatment: Clinical outcome, microbiology, and pharmacokinetics. J. Antimicrob. Chemother. 1997, 40, 125–133. [Google Scholar] [CrossRef]
- Rappaz, I.; Decosterd, L.A.; Bille, J.; Pilet, M.; Bélaz, N.; Roulet, M. Continuous infusion of ceftazidime with a portable pump is as effective as thrice-a-day bolus in cystic fibrosis children. Eur. J. Pediatr. 2000, 159, 919–925. [Google Scholar] [CrossRef]
- Bosso, J.A.; Bonapace, C.R.; Flume, P.A.; White, R.L. A pilot study of the efficacy of constant-infusion ceftazidime in the treatment of endobronchial infections in adults with cystic fibrosis. Pharmacotherapy 1999, 19, 620–626. [Google Scholar] [CrossRef]
- Burgess, D.S.; Hastings, R.W.; Hardin, T.C. Pharmacokinetics and pharmacodynamics of cefepime administered by intermittent and continuous infusion. Clin. Ther. 2000, 22, 66–75. [Google Scholar] [CrossRef]
- Boselli, E.; Breilh, D.; Duflo, F.; Saux, M.C.; Debon, R.; Chassard, D.; Allaouchiche, B. Steady-state plasma and intrapulmonary concentrations of cefepime administered in continuous infusion in critically ill patients with severe nosocomial pneumonia. Crit. Care Med. 2003, 31, 2102–2106. [Google Scholar] [CrossRef]
- Reese, A.M.; Frei, C.R.; Burgess, D.S. Pharmacodynamics of intermittent and continuous infusion piperacillin/tazobactam and cefepime against extended-spectrum β-lactamase-producing organisms. Int. J. Antimicrob. Agents 2005, 26, 114–119. [Google Scholar] [CrossRef]
- Jones, B.M.; Smith, B.; Bland, C.M. Use of Continuous-Infusion Ceftolozane/Tazobactam in a Multidrug-Resistant Pseudomonas aeruginosa Urinary Tract Infection in the Outpatient Setting. Ann. Pharmacother. 2017, 51, 715–716. [Google Scholar] [CrossRef]
- Stewart, A.; Roberts, J.A.; Wallis, S.C.; Allworth, A.M.; Legg, A.; McCarthy, K.L. Evidence of clinical response and stability of Ceftolozane/Tazobactam used to treat a carbapenem-resistant Pseudomonas aeruginosa lung abscess on an outpatient antimicrobial program. Int. J. Antimicrob. Agents 2018, 51, 941–942. [Google Scholar] [CrossRef]
- Davis, S.E.; Ham, J.; Hucks, J.; Gould, A.; Foster, R.; Ann Justo, J.; Nicolau, D.P.; Bookstaver, P.B. Use of continuous infusion ceftolozane–tazobactam with therapeutic drug monitoring in a patient with cystic fibrosis. Am. J. Health Syst. Pharm. 2019, 76, 501–504. [Google Scholar] [CrossRef] [PubMed]
- Pilmis, B.; Petitjean, G.; Lesprit, P.; Lafaurie, M.; El Helali, N.; Le Monnier, A.; ATB PK/PD study group Aurelien Dinh Marine de Laroche François Parquin Dominique Grenet Eric Farfour Antoine Roux Sandra de Miranda Gauthier Péan de Ponfilly Matthieu Legrand François Dépret Mourad Benyamina. Continuous infusion of ceftolozane/tazobactam is associated with a higher probability of target attainment in patients infected with Pseudomonas aeruginosa. Eur. J. Clin. Microbiol. Infect. Dis. 2019, 38, 1457–1461. [Google Scholar] [CrossRef] [PubMed]
- Sime, F.B.; Lassig-Smith, M.; Starr, T.; Stuart, J.; Pandey, S.; Parker, S.L.; Wallis, S.C.; Lipman, J.; Roberts, J.A. Population Pharmacokinetics of Unbound Ceftolozane and Tazobactam in Critically Ill Patients without Renal Dysfunction. Antimicrob. Agents Chemother. 2019, 63, e01265-19. [Google Scholar] [CrossRef] [PubMed]
- Jones, B.M.; Huelfer, K.; Bland, C.M. Clinical and Safety Evaluation of Continuously Infused Ceftolozane/Tazobactam in the Outpatient Setting. Open Forum Infect. Dis. 2020, 7, ofaa014. [Google Scholar] [CrossRef]
- Winans, S.A.; Guerrero-Wooley, R.L.; Park, S.H.; Hino, G.; Forland, S.C. Continuous infusion of ceftolozane-tazobactam resulted in high cerebrospinal fluid concentrations of ceftolozane in a patient with multidrug-resistant Pseudomonas aeruginosa meningitis. Infection 2021, 49, 355–359. [Google Scholar] [CrossRef]
- Bratzler, D.W.; Dellinger, E.P.; Olsen, K.M.; Perl, T.M.; Auwaerter, P.G.; Bolon, M.K.; Fish, D.N.; Napolitano, L.M.; Sawyer, R.G.; Slain, D.; et al. Clinical practice guidelines for antimicrobial prophylaxis in surgery. Am. J. Health-Syst. Pharm. 2013, 70, 195–283. [Google Scholar] [CrossRef]
- Chung, E.K.; Cheatham, S.C.; Healy, D.P.; Stock, A.H.; Utley, S.; Campion, M.; Murrey, T.; Gesenhues, A.M.; Jeffery, J.; Kays, M.B. Population pharmacokinetics and pharmacodynamics of cefazolin using total and unbound serum concentrations in patients with high body weight. Int. J. Antimicrob. Agents 2023, 61, 106751. [Google Scholar] [CrossRef]
- Antosz, K.; Battle, S.; Chang, J.; Scheetz, M.H.; Al-Hasan, M.; Bookstaver, P.B. Cefazolin in the treatment of central nervous system infections: A narrative review and recommendation. Pharmacother. J. Hum. Pharmacol. Drug Ther. 2023, 43, 85–95. [Google Scholar] [CrossRef]
- Le Turnier, P.; Grégoire, M.; Deslandes, G.; Lakhal, K.; Deschanvres, C.; Lecomte, R.; Talarmin, J.P.; Dubée, V.; Bellouard, R.; Boutoille, D.; et al. Should we reconsider cefazolin for treating staphylococcal meningitis? A retrospective analysis of cefazolin and cloxacillin cerebrospinal fluid levels in patients treated for staphylococcal meningitis. Clin. Microbiol. Infect. 2020, 26, 1415.e1–1415.e4. [Google Scholar] [CrossRef]
- Scott, L.J.; Ormrod, D.; Goa, K.L. Cefuroxime Axetil: An Updated Review of its Use in the Management of Bacterial Infections. Drugs 2001, 61, 1455–1500. [Google Scholar] [CrossRef] [PubMed]
- Connors, J.E.; DiPiro, J.T.; Hayter, R.G.; Hooker, K.D.; Stanfield, J.A.; Young, T.R. Assessment of cefazolin and cefuroxime tissue penetration by using a continuous intravenous infusion. Antimicrob. Agents Chemother. 1990, 34, 1128–1131. [Google Scholar] [CrossRef] [PubMed]
- Owens, C.A.; Ambrose, P.G.; Quintiliani, R.; Nightingale, C.H.; Nicolau, D.P. Infusion Phlebitis: Relative Incidence Associated with Cefuroxime Administered by Intermittent and Continuous Infusion. Clin. Drug Investig. 1998, 15, 531–535. [Google Scholar] [CrossRef] [PubMed]
- JMI MVP [Internet]. Available online: https://sentry-mvp.jmilabs.com/ (accessed on 24 July 2023).
- Patel, I.H.; Chen, S.; Parsonnet, M.; Hackman, M.R.; Brooks, M.A.; Konikoff, J.; Kaplan, S.A. Pharmacokinetics of ceftriaxone in humans. Antimicrob. Agents Chemother. 1981, 20, 634–641. [Google Scholar] [CrossRef] [PubMed]
- Richards, D.M.; Heel, R.C.; Brogden, R.N.; Speight, T.M.; Avery, G.S. Ceftriaxone. A review of its antibacterial activity, pharmacological properties and therapeutic use. Drugs 1984, 27, 469–527. [Google Scholar] [CrossRef]
- Garot, D.; Respaud, R.; Lanotte, P.; Simon, N.; Mercier, E.; Ehrmann, S.; Perrotin, D.; Dequin, P.F.; Le Guellec, C. Population pharmacokinetics of ceftriaxone in critically ill septic patients: A reappraisal: Pharmacokinetics of ceftriaxone in septic patients. Br. J. Clin. Pharmacol. 2011, 72, 758–767. [Google Scholar] [CrossRef]
- Joynt, G.M. The pharmacokinetics of once-daily dosing of ceftriaxone in critically ill patients. J. Antimicrob. Chemother. 2001, 47, 421–429. [Google Scholar] [CrossRef]
- Steere, E.L.; Eubank, T.A.; Cooper, M.H.; Greenlee, S.B.; Drake, T.C. Impact of Hypoalbuminemia on Ceftriaxone Treatment Failure in Patients With Enterobacterales Bacteremia: A Propensity-Matched, Retrospective Cohort Study. Open Forum Infect. Dis. 2023, 10, ofad102. [Google Scholar] [CrossRef]
- Leegwater, E.; Kraaijenbrink, B.V.C.; Moes, D.J.A.R.; Purmer, I.M.; Wilms, E.B. Population pharmacokinetics of ceftriaxone administered as continuous or intermittent infusion in critically ill patients. J. Antimicrob. Chemother. 2020, 75, 1554–1558. [Google Scholar] [CrossRef]
- Cappelletty, D.M.; Kang, S.L.; Palmer, S.M.; Rybak, M.J. Pharmacodynamics of ceftazidime administered as continuous infusion or intermittent bolus alone and in combination with single daily-dose amikacin against Pseudomonas aeruginosa in an in vitro infection model. Antimicrob. Agents Chemother. 1995, 39, 1797–1801. [Google Scholar] [CrossRef]
- Mariat, C.; Venet, C.; Jehl, F.; Mwewa, S.; Lazarevic, V.; Diconne, E.; Fonsale, N.; Carricajo, A.; Guyomarc’h, S.; Vermesch, R.; et al. Continuous infusion of ceftazidime in critically ill patients underoing continuous venvenous haemodiafiltration: Pharmacokinetic evaluation and dose recommendation. Crit. Care 2006, 10, R26. [Google Scholar] [CrossRef] [PubMed]
- Crass, R.L.; Pai, M.P. Pharmacokinetics and Pharmacodynamics of β-Lactamase Inhibitors. Pharmacother. J. Hum. Pharmacol. Drug Ther. 2019, 39, 182–195. [Google Scholar] [CrossRef] [PubMed]
- Raddatz, J.K.; Ostergaard, B.E.; Rotschafer, J.C. Therapeutic options for cefotaxime in the management of bacterial infections. Diagn. Microbiol. Infect. Dis. 1995, 22, 77–83. [Google Scholar] [CrossRef]
- Hitt, C.M.; Nightingale, C.H.; Quintiliani, R.; Nicolau, D.P. Cost comparison of single daily i.v. doses of ceftriaxone versus continuous infusion of cefotaxime. Am. J. Health Syst. Pharm. 1997, 54, 1614–1618. [Google Scholar] [CrossRef]
- Walker, M.C.; Lam, W.M.; Manasco, K.B. Continuous and Extended Infusions of β-Lactam Antibiotics in the Pediatric Population. Ann. Pharmacother. 2012, 46, 1537–1546. [Google Scholar] [CrossRef]
- Barbhaiya, R.H.; Forgue, S.T.; Gleason, C.R.; Knupp, C.A.; Pittman, K.A.; Weidler, D.J.; Martin, R.R. Safety, tolerance, and pharmacokinetic evaluation of cefepime after administration of single intravenous doses. Antimicrob. Agents Chemother. 1990, 34, 1118–1122. [Google Scholar] [CrossRef]
- Barbhaiya, R.H.; Knupp, C.A.; Pittman, K.A. Effects of age and gender on pharmacokinetics of cefepime. Antimicrob. Agents Chemother. 1992, 36, 1181–1185. [Google Scholar] [CrossRef]
- Vercheval, C.; Sadzot, B.; Maes, N.; Denooz, R.; Damas, P.; Frippiat, F. Continuous infusion of cefepime and neurotoxicity: A retrospective cohort study. Clin. Microbiol. Infect. 2020, 27, 731–735. [Google Scholar] [CrossRef]
- Hamrick, J.C.; Docquier, J.D.; Uehara, T.; Myers, C.L.; Six, D.A.; Chatwin, C.L.; John, K.J.; Vernacchio, S.F.; Cusick, S.M.; Trout, R.E.; et al. VNRX-5133 (Taniborbactam), a Broad-Spectrum Inhibitor of Serine- and Metallo-β-Lactamases, Restores Activity of Cefepime in Enterobacterales and Pseudomonas aeruginosa. Antimicrob. Agents Chemother. 2020, 64, e01963-19. [Google Scholar] [CrossRef]
- Kaye, K.S.; Belley, A.; Barth, P.; Lahlou, O.; Knechtle, P.; Motta, P.; Velicitat, P. Effect of Cefepime/Enmetazobactam vs. Piperacillin/Tazobactam on Clinical Cure and Microbiological Eradication in Patients with Complicated Urinary Tract Infection or Acute Pyelonephritis: A Randomized Clinical Trial. JAMA 2022, 328, 1304–1314. [Google Scholar] [CrossRef]
- Arya, R.; Goldner, B.S.; Shorr, A.F. Novel agents in development for multidrug-resistant Gram-negative infections: Potential new options facing multiple challenges. Curr. Opin. Infect. Dis. 2022, 35, 589–594. [Google Scholar] [CrossRef] [PubMed]
- Shirley, D.A.T.; Heil, E.L.; Johnson, J.K. Ceftaroline fosamil: A brief clinical review. Infect. Dis. Ther. 2013, 2, 95–110. [Google Scholar] [CrossRef] [PubMed]
- Murthy, B.; Schmitt-Hoffmann, A. Pharmacokinetics and pharmacodynamics of ceftobiprole, an anti-MRSA cephalosporin with broad-spectrum activity. Clin. Pharmacokinet. 2008, 47, 21–33. [Google Scholar] [CrossRef]
- Kollef, M.H.; Nováček, M.; Kivistik, Ü.; Réa-Neto, Á.; Shime, N.; Martin-Loeches, I.; Timsit, J.F.; Wunderink, R.G.; Bruno, C.J.; Huntington, J.A.; et al. Ceftolozane-tazobactam versus meropenem for treatment of nosocomial pneumonia (ASPECT-NP): A randomised, controlled, double-blind, phase 3, non-inferiority trial. Lancet Infect Dis. 2019, 19, 1299–1311. [Google Scholar] [CrossRef]
- McCreary, E.K.; Heil, E.L.; Tamma, P.D. New Perspectives on Antimicrobial Agents: Cefiderocol. Antimicrob Agents Chemother. 2021, 65, e0217120. [Google Scholar] [CrossRef]
- Loeuille, G.; Vigneron, J.; D’Huart, E.; Charmillon, A.; Demoré, B. Physicochemical stability of cefiderocol, a novel siderophore cephalosporin, in syringes at 62.5 mg/mL for continuous administration in intensive care units. Eur. J. Hosp. Pharm. Sci. Pract. 2021, 30, e29–e34. [Google Scholar] [CrossRef]
- Griffith, D.E.; Aksamit, T.; Brown-Elliott, B.A.; Catanzaro, A.; Daley, C.; Gordin, F.; Holland, S.M.; Horsburgh, R.; Huitt, G.; Iademarco, M.F.; et al. An Official ATS/IDSA Statement: Diagnosis, Treatment, and Prevention of Nontuberculous Mycobacterial Diseases. Am. J. Respir. Crit. Care Med. 2007, 175, 367–416. [Google Scholar] [CrossRef]
- Bakker-Woudenberg, I.A.; van den Berg, J.C.; Vree, T.B.; Baars, A.M.; Michel, M.F. Relevance of serum protein binding of cefoxitin and cefazolin to their activities against Klebsiella pneumoniae pneumonia in rats. Antimicrob. Agents Chemother. 1985, 28, 654–659. [Google Scholar] [CrossRef]
- Isla, A.; Trocóniz, I.F.; de Tejada, I.L.; Vázquez, S.; Canut, A.; López, J.M.; Solinís, M.; Gascón, A.R. Population pharmacokinetics of prophylactic cefoxitin in patients undergoing colorectal surgery. Eur. J. Clin. Pharmacol. 2012, 68, 735–745. [Google Scholar] [CrossRef]
- Suffoletta, T.J.; Jennings, H.R.; Oh, J.J.; Stephens, D.; Poe, K.L. Continuous versus Intermittent Infusion of Prophylactic Cefoxitin After Colorectal Surgery: A Pilot Study. Pharmacotherapy 2008, 28, 1133–1139. [Google Scholar] [CrossRef]
- Dulhunty, J.M.; Roberts, J.A.; Davis, J.S.; Webb, S.A.; Bellomo, R.; Gomersall, C.; Shirwadkar, C.; Eastwood, G.M.; Myburgh, J.; Paterson, D.L.; et al. A multicenter randomized trial of continuous versus intermittent beta-lactam infusion in severe sepsis. Am. J. Respir. Crit. Care Med. 2015, 192, 1298–1305. [Google Scholar] [CrossRef]
- Monti, G.; Bradic, N.; Marzaroli, M.; Konkayev, A.; Fominskiy, E.; Kotani, Y.; Likhvantsev, V.V.; Momesso, E.; Nogtev, P.; Lobreglio, R.; et al. Continuous vs. intermittent meropenem administration in critically ill patients with sepsis. The Mercy Randomized Controlled Trial. JAMA 2023, 330, 141–151. [Google Scholar] [CrossRef] [PubMed]
Agent | Dosing Recommendation for CI | Storage/Stability | Notes/Special Populations * | MIC90 of Relevant Pathogens (mcg/mL) |
---|---|---|---|---|
Cefazolin (CFZ) [7,8,9] | CFZ 2 g IV LD followed by CI of 60–80 mg/kg/day Maximum daily dose: 12 g | Reconstituted solutions are stable for 1 day at room temperature and for 10 days under refrigeration. Protect powders and reconstituted solutions from light. Parenteral admixtures are stable for 48 h at room temperature and 14 days when refrigerated. | Doses may be adjusted for body weight. Consider therapeutic drug monitoring to target serum concentrations of 40–70 mg/L. | MSSA: <2 E. coli: 1.6 K. pneumoniae: 4 Enterobacter spp.: >32 H. influenzae: 16 Streptococcus spp.: ≤2 |
Cefuroxime (CXM) [10,11,12,13,14,15,16,17] | CXM 1.5 g IV LD followed by CI of 3 g/24 h Maximum daily dose: 4.5 g | Reconstituted solution with NS or D5W is stable for 24 h at room temperature, 7 days when refrigerated, or 26 weeks when frozen. Store intact vials at 15–30 °C (59–86 °F) and protect them from light. | Dose adjustments should be considered in patients with renal impairment. | MSSA: 2 E. coli: 8 K. pneumoniae: >16 Enterobacter spp.: >16 H. influenzae: 4 S. pneumoniae: 8 Viridans streptococci: 4 Beta-hemolytic streptococci: 0.25 |
Ceftriaxone (CRO) [18,19,20,21,22,23,24] | CRO 500 mg IV LD followed by 2 g/24 h Maximum daily dose: 6 g | Thawed premixed solutions (manufacturer premixed) are stable for 3 days at 25 °C (77 °F) or for 21 days at 5 °C (41 °F). Reconstituted solution (100 mg/mL) with NS, D5W, or SWFI is stable for 2 days at room temperature or 10 days when refrigerated. Prior to reconstitution, store powder for injection at ≤25 °C (≤77 °F) and protect from light. | MSSA: 4 E. coli: 4–8 K. pneumoniae: >8 S. pneumoniae: 1 Viridans streptococci: 1 Beta-hemolytic streptococci: 0.06–0.12 N. meningitidis: <0.0002 H. influenzae: ≤0.06 M. catarrhalis: 0.5 P. mirabilis: ≤0.25 | |
Ceftazidime (CAZ) [25,26,27,28,29,30] | CAZ 2 g IV LD followed by 6 g/24 h Maximum daily dose: 12 g | Thawed solution in NS in a Viaflex is stable for 24 h at room temperature and for 7 days after refrigeration. If reconstituted in NS D5W, D5NS, LR, or D10W, it is stable for 24 h at room temperature and for 7 days when refrigerated. Reconstituted and further diluted solutions are stable for 24 weeks when frozen at −20 °C (−4 °F). Vials should be stored at 20–25 °C (68–77 °F) and protected from light. | E. coli: ≤2 Enterobacter spp.: >16 Klebsiella spp.: ≤2 H. influenzae: ≤0.25 M. catarrhalis: 0.5 P. mirabilis: ≤0.12 P. aeruginosa: 16 Serratia spp.: 0.25 S. maltophilia: >16 | |
Ceftazidime/avibactam (CAZ/AVI) [18,31,32,33,34,35] | CAZ/AVI 2.5 g IV LD followed by CAZ/AVI 10 g/24 h Maximum daily dose: 15 g | Reconstitute vial with 10 mL of NS, D5W, SWFI, or other compatible solution. Mix and further dilute to a concentration of 8–40 mg/mL CAZ and 2–10 mg/mL AVI. Store intact vials at 25 °C. After reconstitution, transfer to infusion bag within 30 min for further dilution. Admixed solutions (up to dextrose 2.5% and sodium chloride 0.45%) are stable up to 12 h at room temperature and 24 h at 2 °C to 8 °C. | Citrobacter spp.: 0.12 Enterobacter spp.: 0.5 E. coli: 0.12 E. coli (ESBL phenotype): 0.25 H. influenzae: 0.03 K. pneumoniae: 0.5 K. pneumoniae (ESBL phenotype): 1 K. pneumoniae (meropenem NS): 2 M. catarrhalis: 0.12 P. mirabilis: 0.06 P. aeruginosa: 4 P. aeruginosa (meropenem NS): 16 P. aeruginosa (XDR): 32 | |
Cefotaxime (CTX) [11,25,36,37,38,39,40,41,42,43,44,45,46] | CTX 1 g IV LD followed by 2–4 g/24 h Maximum daily dose: 8 g | Reconstituted solution stable for 12–24 h at room temperature, 7–10 days when refrigerated, and 13 weeks when frozen. IV infusions in NS or D5W solution are stable for 24 h at room temperature, 5 days when refrigerated, or 13 weeks when frozen in Viaflex plastic containers. Thawed solutions of frozen mixed bags are stable for 24 h at room temperature or 10 days when refrigerated. Store vials in temperatures below 30 °C (86°) and protect from light. | A dosing range of 0.5 to 2 g in 12 h intervals may be suitable for non-immunocompromised patients without CNS infections. | MSSA: 4 S. pneumoniae: 1 Viridans streptococci: 1 Beta-hemolytic streptococci: ≤0.06 Citrobacter spp.: 128 Enterobacter spp.: 256 E. coli: ≤1 K. pneumoniae: ≤1 N. meningitidis: 0.007 H. influenzae: ≤0.015 M. catarrhalis: 1 P. mirabilis: ≤1 Serratia spp.: 128 |
Cefepime (FEP) [25,27,42,43,47,48] | FEP 2 g IV LD followed by 4–6 g/24 h Maximum daily dose: 6 g (note, 8 g has been used in patients with augmented clearance) | After reconstitution with NS or D5W, it is stable for 24 h at room temperature or 7 days when refrigerated. Intact vials must be stored at 20–25 °C (68–77 °F) and protected from light. | Dose adjustments should be considered in patients with renal impairment and those with augmented renal clearance (potentially up to 8 g). | MSSA: 4 S. pneumoniae: 1 Beta-hemolytic streptococci: ≤0.12 Viridans streptococci: ≤0.12 Citrobacter spp.: ≤0.25 Enterobacter spp: ≤1 E. coli: ≤0.25 H. influenzae: ≤0.25 Klebsiella spp.: ≤0.25 M. morganii: ≤0.25 P. mirabilis: ≤1 P. aeruginosa: 16 Serratia spp.: ≤0.25 |
Ceftaroline (CPT) [12,18,19,21,49,50] | CPT 600 mg IV LD followed by 1.2 g/24 h Maximum daily dose: 1.8 g | After reconstitution in 1/2NS, D5W, LR, or NS, it must be used within 6 h when stored at room temperature or within 24 h if refrigerated at 2–8 °C (36–46 °F). Vials must be stored at 25 °C (77 °F). | Dose adjustments should be considered in patients with renal impairment. | MSSA: 0.25 MRSA: 1 S. pneumoniae: 0.12 Viridans streptococci: 0.12 Beta-hemolytic Streptococci: ≤0.015 E. coli: 0.25 K. pneumoniae: 8 P. mirabilis: 0.25 Serratia spp.: 2 |
Ceftobiprole (BPR) [20,51,52,53,54] | BPR 500 mg LD followed by 2 g/24 h Maximum daily dose: 3 g | After reconstitution in NS, may store for 4 h at 25 °C (77 °F) or 24 h at 2 °C to 8 °C (36–46 °F). After reconstitution in D5W, may store for 6 h at 25 °C (77 °F) or 94 h at 2 °C to 8 °C (36–46 °F). Reconstituted solution should be protected from light. Vials must be stored at 2–8 °C (36–46 °F) and protected from light. Reconstituted solutions may store for ≤1 h at room temperature and ≤24 h refrigerated prior to further dilution in an infusion bag. | Dose adjustments should be considered in patients with renal impairment. | MSSA: 0.5 MRSA: 2 S. pneumoniae: ≤0.015 Viridans streptococci 0.25 Beta hemolytic Streptococci ≤ 0.06 E. coli: 0.06 K. pneumoniae 0.06 P. mirabilis: ≤0.06 P. aeruginosa: 16 Serratia spp.: 8 |
Ceftolozane/tazobactam (C/T) [55,56,57,58,59] | C/T 3 g IV LD followed by 4.5 g–6 g/24 h Maximum daily dose: 9 g | Diluted solutions can be stored for 24 h at room temperature or for 7 days at 2–8 °C (36–46 °F). Vials must be stored at 2–8 °C (36–46 °F) and protected from light. Reconstituted solutions can be held for 1 h prior to placement and further dilution into an infusion bag. | S. aureus: 32 S. pneumoniae: 0.125–16 Citrobacter spp.: 8 Enterobacter spp.: 8 E. coli: 0.5 E. coli (ESBL phenotype): 4 K. pneumoniae: >32 K. pneumoniae (ESBL phenotype): >32 P. mirabilis: 0.5 P. aeruginosa: >32 P. aeruginosa (MDRS): >32 P. aeruginosa (XDR): >32 Serratia spp.: 1 | |
Cefoxitin (FOX) [7,60,61,62,63] | FOX 2 g IV LD followed by either 3 g/24 h (if ≤80 kg) or 6 g/24 h (if >80 kg) Maximum daily dose: 8 g | Prior to reconstitution, store at 2–25 °C (36–77 °F). Reconstituted solution in SWFI, BWFI, NS, or D5W is stable for 6 h at room temperature or for 7 days when refrigerated. | ≥6 g/day is likely required for most rapidly growing mycobacterial organisms, especially in deep-seated infections. | MSSA: 4 Enterobacter spp.: 256 E. coli: 8 K. pneumoniae: 16 H. influenzae: 4 M. morganii: 32 P. mirabilis: 4 Serratia spp.: 64 |
Study | Type of Study | Population | Comparator Arms/Groups | PK/PD Data and Outcomes |
---|---|---|---|---|
Cefazolin | ||||
Howard GW, et al. [8] | Observational trial | n = 7; patients with uncomplicated cellulitis | No LD provided. CFZ 3 g/24 h IV for ≥5 d, adjusted at the discretion of the physician. | Mean (±SD) dose of CFZ 3.5 ± 1.1 g (36 ± 6.1 mg/kg) IV via CI. Total concentrations (mean ± SD) in plasma proved higher than interstitial fluid concentration in 6/7 patients (32 ± 17 mg/L vs. 17.4 ± 8.3 mg/L). Free drug concentrations were not significantly different between plasma and interstitial fluid. Positive correlation between free concentrations of plasma and interstitial fluid (p = 0.005). |
Zeller V, et al. [9] | Retrospective cohort study | n = 100; patients with bone and joint infection | CFZ 1 or 2 g IV LD (for daily doses ≤ 4 g or >4 g, respectively) followed by CFZ 60–80 mg/kg/24 h IV. | Median CFZ serum concentration 63 mg/L on days 2–10 and 57 mg/L on days 11–21 (target 40–70 mg/L); median CFZ bone concentration of 13.5 µg/g (n = 8). Cure/probable cure in 93% of patients. One person died secondary to infection. |
Adembri, et al. [64] | Prospective, randomized study | n = 20; cardiac surgery patients | CFZ 2 g IV LD, followed by either CFZ 1 g IV q6h x 3 doses (at 3, 9, and 15 h after the first dose) (n = 10) or CFZ 3 g/18 h IV (n = 10). | Mean total CFZ serum concentrations were significantly higher with CI compared to II at 14.5 h (51.3 ± 18.1 mg/L vs. 34.1 ± 19.2 mg/L, p < 0.05) and 24 h post dose (52.5 ± 19.4 mg/L vs. 14.9 ± 10.3 mg/L, p < 0.01). Mean total myocardial tissue CFZ concentrations higher for CI group (6.9 ± 1.1 mg/L vs. 3.28 ± 0.1 mg/L, p < 0.05). More patients in the CI group achieved free concentrations 90% T > MIC (assuming E. coli) (90% patients vs. 30% patients, p < 0.01). |
Anlicoara R, et al. [65] | Observational trial | n = 18; patients undergoing bariatric surgery | CFZ 2 g IV LD followed by CFZ 1 g IV over 2 h during surgery. | Mean adipose tissue CFZ concentration at start of surgery = 6.66 ± 2.56 mg/L and at surgery conclusion = 7.93 ± 2.54 mg/L; higher initial and final tissue concentrations with BMI < 40 kg/m2. No SSIs in BMI ≥ 40 kg/m2. |
Shoulders BR, et al. [66] | Retrospective quasi-experimental cohort study | n = 516; patients undergoing CABG on CPB | CFZ 2 or 3 g IV q2h (n = 284) vs. CFZ 2 or 3 g/24 h IV (n = 232) during cardiac surgery Initial dosage adjustments for CrCl. | No statistically significant difference in the reduction in SSI in the CI group vs. II group (1.7% vs. 4.6%, p = 0.116). No statistically significant difference in safety outcomes, such as seizures, AKI, or need for postoperative dialysis, between groups. |
Cefuroxime | ||||
Broekhuysen et al. [67] | Controlled trial | n = 18; patients > 70 years old with acute pulmonary infection | CXM 1500 mg IV LD followed by CXM 4500 mg/24 h IV (n = 7) vs. CXM 4500 mg IV daily divided q8h or q12h (n = 11) (all doses adjusted for CrCl) for an average of 7 days. | Mean (range) Css in the CI group was 37 mg/mL (23–61 mg/L). Mean (range) Cmax and Cmin in the II group were 83 mg/L (44–118 mg/L) and 10 mg/L (1.6–29.5 mg/L), respectively. |
Pass et al. [68] | Prospective, non-comparative trial | n = 54; patients undergoing CABG procedure | CXM 1500 mg IV 30 min preoperatively followed by 3000 mg/24 h IV (average duration 2.6 ± 2.1 days). | Mean (±SD) Css 21.6 ± 14.2 mg/L (range 6.56–59.5 mg/L). Significant inverse correlation between estimated CrCl and serum concentration (r = −0.5029; p = 0.0005). No patients experienced sternal wound infection within 30 days post-op or readmission for sternal wound infection within 6 months. |
Carlier et al. [17] | Observational PK study | n = 20; patients in the ICU from which 160 blood samples were collected | CXM 1500 mg IV q8h (750 mg IV q8h for CrCl < 20 mL/min), with population PK analysis and Monte Carlo dosing simulations applied with non-linear mixed-effects modeling to evaluate EI (no LD, CXM 1500 mg q6-8 h over half of the dosing interval) and CI (CXM 750 mg IV LD followed by CXM 4500 mg–9000 mg/24 h IV). | Standard intermittent dosing of CXM resulted in inadequate PTA (87%) for MICs of 8 mg/L in patients with CrCl ≥ 50 mL/min. CrCl ranged 10–304 mL/min. The PTA decreases as CrCl increases; thus, standard II doses may be insufficient in critically ill patients. PTA was overall improved with simulated CI dosing strategies. PTA ≥87% for CI of 9 g daily and CrCl ≤ 200 mL/min. |
Tøttrup M, et al. [69] | PK study in swine models | n = n/a; plasma, tissue, and bone concentrations were assessed | CXM 1500 mg IV once vs. CXM 500 mg IV LD followed by CXM 1000 mg/8 h IV. | Tissue penetration was incomplete in all groups except subcutaneous tissue penetration in the II group. Plasma concentrations consistently optimized in CI group with longer T > MIC. |
Ceftriaxone | ||||
Salvador P, et al. [23] | PK study | n = 35; patients with neutropenia | High variability in dosing strategies, up to CRO 6 g/24 h IV. Most commonly used was LD 1 g followed by 2 g/8 h (repeated). | High variability in PK observations due to high variability in dosing regimens. Mean serum CRO concentration on day 2–8 was 135 mg/L (range 117–151 mg/L). |
Roberts JA, et al. [24] | Open-label, randomized controlled pilot study | n = 57; patients in the ICU diagnosed with sepsis | CRO 2 g IV once daily vs. CRO 2 g/24 h IV. | No statistically significant difference in the intention-to-treat analysis for clinical response, clinical cure, or bacteriological response. Controlling for SOFA score and age demonstrated improved clinical outcomes among CI group (aOR 22.8, 95% CI 2.24–232.3, p = 0.008) and among those with low APACHE score (aOR 0.70, 95% CI 0.54–0.91, p = 0.008). |
Ceftazidime | ||||
Benko AS, et al. [70] | Prospective, randomized, crossover study | n = 14; patients with suspected gram- negative infection (mostly pneumonia) | CAZ 2 g IV LD followed by CAZ 3 g/24 h IV vs. CAZ 2 g IV q8h; participants received each regimen for 2 days prior to crossover to opposite regimen. | Mean serum Cmax for II was 124.4 ± 52.6 mg/L, mean serum Cmin was 25.0 ± 17.5 mg/L. Mean Css for CI was 29.7 ± 17.4 mg/L. Time > MIC was higher in CI group than II (T > MIC 100% vs. 92%). |
Nicolau DP, et al. [71] | Open-label, randomized, steady-state, four-way crossover study | n = 12; healthy volunteers | CAZ 1 g IV q8h vs. CAZ 1 g IV q12h vs. CAZ 3 g/24 h IV vs. CAZ 2 g/24 h IV. | AUBCs for all organisms were the same for II and CI doses (p > 0.05). No statistically significant differences found for varying CAZ dosing schedules for any isolates obtained from blood samples (p > 0.05). |
Riethmueller J, et al. [72] | Randomized, crossover study | n = 80; patients with cystic fibrosis colonized with P. aeruginosa | CAZ 200 mg/kg/day in 3 divided doses IV with TOB 10 mg/kg OR CAZ 100 mg/kg/24 h IV with TOB 10 mg/kg via a 30 min IV infusion. | CI mean concentrations 32 ± 12 mg/L (target of >20 mg/L). Mean peak concentrations of II were 159 ± 44 mg/L (target < 180 mg/L) while mean trough concentrations were 8.5 ± 5 mg/L (target < 30 mg/L). |
Vinks AA, et al. [73] | Observational cohort study | n = 17 patients with cystic fibrosis | CAZ CI 100 mg/kg/24 h IV given via infusion pump at home | 25 clinically evaluable courses among 12 patients were all considered effective over a mean duration of 21 days; Bacterial density and proportion of patients with positive cultures decreased significantly; Among 10 patients with TDM, mean serum concentrations were 28.4 ± 5.0 mg/L and sputum concentrations were 3.9 ± 4.0 mg/L |
Rappaz I, et al. [74] | Observational cohort study | n = 14 pediatric patients with cystic fibrosis and chronic P. aeruginosa infections | CAZ CI 100 mg/kg/24 h IV given via infusion pump at home or CAZ standard II | Among 14 children (mean weight 38.8 kg, mean age 12.6 years), CAZ CI maintained mean serum concentrations of 29.7 ± 9.9 mcg/mL and 27.4 ± 6.6 mcg/mL on days 3 and 10., respectively which achieved target concentrations significant more frequently than II. Mean sputum concentrations were 2.1 ± 1.1 mcg/g in patients receiving CI, very similar to those achieved with II. No resistance was noted and CI was well tolerated. |
Bosso JA, et al. [75] | Prospective, crossover pilot study | n = 5 patients with cystic fibrosis requiring IV therapy for exacerbation | CAZ II 2 g q8 for 10 days and crossed over at next hospitalization to CAZ CI adjusted via TDM to achieve concentrations 6.6 × the MIC of least susceptible isolate | No differences in laboratory values, clinical outcomes or bacterial density; the mean reduction in CAZ dosage needed to obtain target concentrations using the CI was 50% |
Bulitta JB, et al. [29] | Pharmacokinetic study with Monte Carlo simulation | n = 15; 8 patients with cystic fibrosis and 7 healthy volunteers | Patients received 2 g IV over 5-min infusion; Monte Carlo simulation of multiple dosing strategies including standard II, EI over 5-h and CI of 6 g/24 h | Based on Monte Carlo simulations, standard II dosing (2g q8h) over 30 min achieved good PTA for MICs of ≤ 1 MIC in patients with CF; using EI of 2 g q8h over 5-h, PTA remained high for MICs approaching 12 mg/L; Use of CI 6 g/24 h resulted in high PTA for MICs ≤ 12 mg/L. All simulations assumed 2 g/70 kg. |
Lipman J, et al. [30] | Randomized controlled trial | n = 18; critically ill patients | CAZ 12 mg/kg LD followed by CAZ 6 g/24 h IV CI vs. CAZ 2g q8h II | Target concentrations were to remain above 40 mg/L in the study; all patients except 1 receiving CI met the goal versus target attainment in only 20–30% of those receiving standard II dosing |
El Haj C, et al. [28] | Pharmacokinetic analysis | n = n/a; CAZ susceptible and resistant P. aeruginosa isolates | CAZ 6 g/24 h OR CAZ 9 g/24 h. | CAZ exhibited dose-dependent antibiofilm activity in vitro; administration of CAZ by CI may provide benefits over intermittent bolus infusion. |
Ceftazidime/Avibactam | ||||
Goncette V, et al. [35] | Retrospective case series | n = 10; MDR P. aeruginosa (n = 6) and K. pneumoniae (n = 4) (multi-site/source) | CAZ/AVI 2.5 g IV LD followed by CAZ/AVI 5 g/12 h IV given q12h (i.e., 10 g/24 h CI); Initial dosage adjustments for CrCl and subsequent dosage adjustments based on TDM. | Median CAZ plasma Css was 63.6 mg/L (range 47.6–80 mg/L). Moreover, 100% of patients met goal of ≥4× MIC in plasma and/or site infection., and 40% of patients received additional antibiotics. Clinical cure was 80%, and microbiological eradication was 90%. The 30-day mortality was 10% (1 patient death attributed to unrelated cause of ventilator-associated tracheobronchitis). |
Lodise TP, et al. [34] | Hollow-fiber infection model | n = n/a; MBL-producing strains of E. coli and K. pneumoniae | Staggered vs. simultaneous administration of CAZ/AVI plus aztreonam; 16 unique dosing strategies, of which 6 included CAZ/AVI CI: CAZ/AVI 7.5 g/24 IV + various aztreonam dosing strategies. | Simultaneous administration was superior to staggered administration against MBL-producing organisms. Longer infusion durations (2 h infusions and CI) demonstrated enhanced bacterial killing compared to standard infusion. |
Cefotaxime | ||||
Buijk SE, et al. [44] | Non-randomized, block design, observational study | n = 15; patients undergoing elective orthotopic liver transplantation | CTX 4 g/24 h IV vs. 1 g IV q6h as an II, aimed to determine the PK of CTX in serum, bile and urine. | Mean concentration in serum after CI was 18 mg/L. Serum concentrations of ≥4 mg/L were achieved for 100% of the CI dosing interval and for 60% of the II interval. |
van Zanten, et al. [45] | Randomized controlled, prospective, non-blinded study | n = 93; patients with acute exacerbations of chronic obstructive pulmonary disease | CTX 1 g IV LD followed by CTX 2 g/24 h IV vs. CTX 1 g IV three times daily. | Clinical cure did not differ between groups (93%). Time ≥ 5x MIC was 100% in the CI group and 55% in the intermittent group (p < 0.001). |
Seguin P, et al. [46] | Prospective observational study | n = 11; patients in the ICU with secondary peritonitis | CTX 4 g/24 h IV, aimed to determine SS plasma and peritoneal concentration of CTX. | CI of CTX at 4 g/day provided mean plasma and peritoneal concentrations well above MIC for the gram-negative bacteria discovered (24.0 ± 21.5 on day 2 and 22.1 ± 20.7 on day 3). |
Cefepime | ||||
Burgess DS, et al. [76] | Randomized crossover study | n = 12; healthy volunteers | FEP 2 g IV q12h via II vs. FEP 3–4 g/24 IV. | Intermittent infusion regimen achieved serum concentrations above the MIC for P. aeruginosa and E. cloacae in 11 patients for ≥70% of the dosing interval when MIC was ≤4 mcg/mL. Steady state concentrations for both CI regimens (i.e., 3 and 4 g/24 h) were above the MIC for P. aeruginosa, E. cloacae, and S. aureus, but Css was ≥4x MIC only if the MIC was ≤2 mcg/mL. |
Boselli E, et al. [77] | Prospective, open-label study | n = 20; patients with severe VAP | FEP 2 g IV LD followed by FEP 4 g/24 h IV. | Mean plasma Css was 13.5 ± 3.3 mg/L, and mean epithelial lining fluid Css was 14.1 ± 2.8 mg/L. Mean percentage penetration to epithelial lining was 100%. |
Al-Shaer MH, et al. [47] | Monte Carlo simulation | n = 266; critically ill pediatric and adult patients | A total of 8 unique dosing strategies evaluated via Monte Carlo simulation, 3 of which included CI: FEP IV 6 g/24 h, 7 g/24 h, and 8 g/24 h. EIs of FEP 4 g IV via 4 h infusion as LD to CI regimens were also evaluated. | CI dosing strategies were most likely to achieve targets of Time > 4×MIC, with only FEP 8 g/24 h IV achieving >90% PTA (MIC = 1 mg/L). Assuming higher MIC (8 mg/L), the regimen with the highest PTA was LD provided over EI followed by CI. |
Alvarez JC, et al. [48] | Open-label, non-randomized, prospective, observational, and descriptive study | n = 15; patients with hematological malignancies treated for febrile neutropenia | 12 unique dosing strategies evaluated via Monte Carlo simulations, 3 of which included CI: FEP IV 4 g/24 h, 6 g/24 h, and 8 g/24 h. | PTA was higher among CI regimens. FEP 6 g/24 h IV obtained the highest cut-off MIC value. |
Reese A, et al. [78] | Monte Carlo simulation | n = 10,000; non-duplicate ESBL isolates | Intermittent bolus and CI of PIP/TZB and FEP (1 g q8h, 1 g q12h, 2 g q12h, 3 g/24 h and 4 g/24 h). | FEP 4 g CI had the highest PTA (T > MIC = 77%); no CI regimen achieved an adequate (>90%) T > MIC. |
Ceftaroline | ||||
Fresán D, et al. [50] | Retrospective, observational study | n = 12; patients receiving treatment for confirmed gram-positive infections | 1800 mg/24 h, 1200 mg/24 h, and 600 mg/24 h. All doses adjusted based on renal function. | Six of seven patients who received CI achieved 100% fT > 4×MIC. Based on TDM, two patients receiving 1800 mg/24 h via continuous infusion had the dose decreased, while others were maintained. |
Ceftobiprole | ||||
Cojutti PG, et al. [54] | Retrospective pharmacokinetic study with Monte Carlo simulation | n = 132; patients with gram-positive infections | The following CI dosing strategies were evaluated via Monte Carlo simulation: 3000 mg/24 h for eGFR > 130 mL/min/1.73 m2; 2000 mg/24 h for eGFR 51–130 mL/min/1.73 m2; 1500 mg/24 h for eGFR 30–50 mL/min/1.73 m2; 750 mg/24 h CI for eGFR < 30 mL/min/1.73 m2. | Monte Carlo simulations of CI, using standard doses based on GFR, were needed to achieve optimal PD targets against MRSA. This remained the case for patients with renal impairment and augmented renal clearance. |
Ceftolozane/Tazobactam | ||||
Jones BM, et al. [79] | Case report | n = 1; MDR P. aeruginosa pulmonary infection | C/T 4.5 g/24 h. | Clinical and microbiological resolution; no TDM performed. |
Stewart A, et al. [80] | Case report | n = 1; MDR P. aeruginosa cavitating pulmonary infection | C/T 4.5 g/24 h. | Clinical resolution; improvement of lesion on imaging; inpatient and outpatient TDM demonstrated unbound plasma (and assumed epithelial lining) ceftolozane concentrations well above 4–5 times the MIC value associated with maximal bacterial killing for the full dosing interval. |
Davis SE, et al. [81] | Case report | n = 1; cystic fibrosis patient with P. aeruginosa and ESBL E. coli | C/T 3 g IV LD followed by C/T 6 g/24 h. | TDM confirmed adequate exposure: observed concentrations exceeded the established CLSI susceptibility breakpoints for P. aeruginosa and E. coli (≤4/4 μg/mL and ≤2/4 μg/mL, respectively). |
Pilmis B, et al. [82] | Prospective cohort study | n = 72; patients with MDR P. aeruginosa infections (primarily respiratory) | C/T 3 g IV q8h infused over 1 h (n = 44) vs. C/T 3 g IV q8h via 4 h EI (n = 13) vs. C/T 9 g/24 h (n = 15). | No difference in PTA for MICs < 4 mg/L; intermittent dosing inadequate for MICs ≥ 4 mg/L, but prolonged and CI of C/T (dosed 6 g/day) achieved >90% PTA. |
Sime FB, et al. [83] | Prospective observational study with Monte Carlo Simulation | n = 12; critically ill patients without renal impairment | C/T 1.5 g IV or 3 g IV q8h infused over 1 h (n = 1000 Monte Carlo Simulations). | CI C/T dosing regimens associated with higher PTAs particularly in patients with augmented renal clearance (85% for directed therapy with MICs up to 4 mg/L; 84 and >85%, for empirical coverage with MICs up to 64 mg/L with 1.5 g and 3 g dosing regimens, respectively). |
Jones BM, et al. [84] | Retrospective, case series | n = 7; Outpatients with P. aeruginosa infections (multi-site/source) | C/T 4.5 g/24 h (n = 6) and C/T 9 g/24 h (n = 1) (labeled dosing converted to 24 h dosing, e.g., patients eligible for 1.5 g q8h received 4.5 g CI). | 6 of 7 patients had symptom resolution; 3/3 patients had microbiological clearance. |
Otero JA, et al. [59] | Case report | n = 1; MDR P. aeruginosa osteomyelitis | C/T 1.5 g IV LD followed by 2.25 g/24 h (adjusted for renal dysfunction, glomerular filtration rate 40 mL/min). | Clinical resolution (both antibiotic and surgical management employed). |
Sheffield M, et al. [58] | Retrospective, case series | n = 7; deep-seated MDR P. aeruginosa infections | C/T 3 g IV LD for all patients; 1 patient treated with C/T 3 g/24 h (n = 1, suppression dosing); C/T 4.5 g/24 h (n = 1, adjusted for renal function; C/T 6 g/24 h (n = 5, 3 patients had q12h infusions over 12 h). | 7/7 patients had clinical resolution, and 1/1 patients had partial microbiological clearance; TDM in 4 cases confirmed adequate exposure with observed concentrations 100% fT > 4×MIC. |
Winans SA, et al. [85] | Case report | n = 1; P. aeruginosa meningitis | C/T 3 g IV LD followed by C/T 9 g/24 h. | Serum TDM obtained 3 and 6.75 h after the 3 g LD of C/T and 15 h after CI started. CSF TDM obtained 4 h after the third serum concentration was obtained and 6 d after starting CI to confirm steady state. Ceftolozane CSF concentrations were 83% of serum. Clinical resolution with C/T + IV and intraventricular gentamicin. |
Cefiderocol | ||||
No clinical data available | ||||
Cefoxitin | ||||
Suffoletta TJ, et al. [76] | Retrospective, cohort-matched pilot study | n = 116; patients undergoing colorectal surgery stratified into low and medium risk groups | FOX 1 g IV if ≤80 kg or 2 g IV if >80 kg q8h for three doses 3 h after surgery vs. FOX 3 g/20 h IV if ≤80 kg or 6 g/20 h IV if >80 kg started immediately after surgery. | 30-day postoperative SSI rate showed a 50% relative risk reduction in medium-risk patients while it was equal between continuous and intermittent regimens in the low-risk group. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Blunier, A.L.; Crocker, R.J.; Foster, R.; May, S.S.; Powers, C.E.; Bookstaver, P.B. Rationale and Logistics of Continuous Infusion Cephalosporin Antibiotics. Pharmacy 2024, 12, 185. https://doi.org/10.3390/pharmacy12060185
Blunier AL, Crocker RJ, Foster R, May SS, Powers CE, Bookstaver PB. Rationale and Logistics of Continuous Infusion Cephalosporin Antibiotics. Pharmacy. 2024; 12(6):185. https://doi.org/10.3390/pharmacy12060185
Chicago/Turabian StyleBlunier, Abbie L., R. Jake Crocker, Rachel Foster, Stephanie S. May, Caroline E. Powers, and P. Brandon Bookstaver. 2024. "Rationale and Logistics of Continuous Infusion Cephalosporin Antibiotics" Pharmacy 12, no. 6: 185. https://doi.org/10.3390/pharmacy12060185
APA StyleBlunier, A. L., Crocker, R. J., Foster, R., May, S. S., Powers, C. E., & Bookstaver, P. B. (2024). Rationale and Logistics of Continuous Infusion Cephalosporin Antibiotics. Pharmacy, 12(6), 185. https://doi.org/10.3390/pharmacy12060185