Drug Dosing Considerations in Critically Ill Patients Receiving Continuous Renal Replacement Therapy
Abstract
:1. Introduction
2. Drug Dosing Challenges for Clinicians
3. Pharmacokinetic Changes in Critically Ill Patients with Sepsis
4. Types of Renal Replacement Therapy
5. Drug Administration Strategies in CRRT
5.1. Drug Specific Considerations
5.2. Time-Dependent vs. Concentration-Dependent Antibiotics
5.3. Drug Administration Strategies
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Barbar, S.D.; Binquet, C.; Monchi, M.; Bruyere, R.; Quenot, J.P. Impact on mortality of the timing of renal replacement therapy in patients with severe acute kidney injury in septic shock: The IDEAL-ICU study (initiation of dialysis early versus delayed in the intensive care unit): Study protocol for a randomized controlled trial. Trials 2014, 15, 270. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rhodes, A.; Evans, L.E.; Alhazzani, W.; Levy, M.M.; Antonelli, M.; Ferrer, R.; Kumar, A.; Sevransky, J.E.; Sprung, C.L.; Nunnally, M.E.; et al. Surviving Sepsis Campaign: International Guidelines for Management of Sepsis and Septic Shock: 2016. Intensive Care Med. 2017, 43, 304–377. [Google Scholar] [CrossRef] [PubMed]
- Edrees, F.; Li, T.; Vijayan, A. Prolonged Intermittent Renal Replacement Therapy. Adv. Chronic Kidney Dis. 2016, 23, 195–202. [Google Scholar] [CrossRef] [PubMed]
- Seyler, L.; Cotton, F.; Taccone, F.S.; De Backer, D.; Macours, P.; Vincent, J.L.; Jacobs, F. Recommended beta-lactam regimens are inadequate in septic patients treated with continuous renal replacement therapy. Crit. Care 2011, 15, R137. [Google Scholar] [CrossRef] [Green Version]
- Tsai, D.; Stewart, P.; Goud, R.; Gourley, S.; Hewagama, S.; Krishnaswamy, S.; Wallis, S.C.; Lipman, J.; Roberts, J.A. Pharmacokinetics of Piperacillin in Critically Ill Australian Indigenous Patients with Severe Sepsis. Antimicrob. Agents Chemother. 2016, 60, 7402–7406. [Google Scholar] [CrossRef] [Green Version]
- Imani, S.; Buscher, H.; Day, R.; Gentili, S.; Jones, G.R.D.; Marriott, D.; Norris, R.; Sandaradura, I. An evaluation of risk factors to predict target concentration non-attainment in critically ill patients prior to empiric beta-lactam therapy. Eur. J. Clin. Microbiol. Infect. Dis. 2018, 37, 2171–2175. [Google Scholar] [CrossRef]
- Lewis, S.J.; Mueller, B.A. Antibiotic Dosing in Patients With Acute Kidney Injury: “Enough But Not Too Much”. J. Intensive Care Med. 2016, 31, 164–176. [Google Scholar] [CrossRef]
- Lewis, S.J.; Mueller, B.A. Antibiotic dosing in critically ill patients receiving CRRT: Underdosing is overprevalent. Semin. Dial. 2014, 27, 441–445. [Google Scholar] [CrossRef] [Green Version]
- Dellinger, R.P.; Levy, M.M.; Rhodes, A.; Annane, D.; Gerlach, H.; Opal, S.M.; Sevransky, J.E.; Sprung, C.L.; Douglas, I.S.; Jaeschke, R.; et al. Surviving Sepsis Campaign: International guidelines for management of severe sepsis and septic shock, 2012. Intensive Care Med. 2013, 39, 165–228. [Google Scholar] [CrossRef]
- Castellanos-Ortega, A.; Suberviola, B.; Garcia-Astudillo, L.A.; Holanda, M.S.; Ortiz, F.; Llorca, J.; Delgado-Rodriguez, M. Impact of the Surviving Sepsis Campaign protocols on hospital length of stay and mortality in septic shock patients: Results of a three-year follow-up quasi-experimental study. Crit. Care Med. 2010, 38, 1036–1043. [Google Scholar] [CrossRef]
- Ulldemolins, M.; Roberts, J.A.; Rello, J.; Paterson, D.L.; Lipman, J. The effects of hypoalbuminaemia on optimizing antibacterial dosing in critically ill patients. Clin. Pharmacokinet. 2011, 50, 99–110. [Google Scholar] [CrossRef] [PubMed]
- Mueller, B.A.; Scarim, S.K.; Macias, W.L. Comparison of imipenem pharmacokinetics in patients with acute or chronic renal failure treated with continuous hemofiltration. Am. J. Kidney Dis. 1993, 21, 172–179. [Google Scholar] [CrossRef]
- Tegeder, I.; Bremer, F.; Oelkers, R.; Schobel, H.; Schuttler, J.; Brune, K.; Geisslinger, G. Pharmacokinetics of imipenem-cilastatin in critically ill patients undergoing continuous venovenous hemofiltration. Antimicrob. Agents Chemother. 1997, 41, 2640–2645. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Macias, W.L.; Mueller, B.A.; Scarim, S.K. Vancomycin pharmacokinetics in acute renal failure: Preservation of nonrenal clearance. Clin. Pharmacol. Ther. 1991, 50, 688–694. [Google Scholar] [CrossRef]
- Matzke, G.R.; McGory, R.W.; Halstenson, C.E.; Keane, W.F. Pharmacokinetics of vancomycin in patients with various degrees of renal function. Antimicrob. Agents Chemother. 1984, 25, 433–437. [Google Scholar] [CrossRef] [Green Version]
- Vilay, A.M.; Churchwell, M.D.; Mueller, B.A. Clinical review: Drug metabolism and nonrenal clearance in acute kidney injury. Crit. Care 2008, 12, 235. [Google Scholar] [CrossRef]
- Nilsson-Ehle, I.; Hutchison, M.; Haworth, S.J.; Norrby, S.R. Pharmacokinetics of meropenem compared to imipenem-cilastatin in young, healthy males. Eur. J. Clin. Microbiol. Infect. Dis. 1991, 10, 85–88. [Google Scholar] [CrossRef]
- Leroy, A.; Fillastre, J.P.; Etienne, I.; Borsa-Lebas, F.; Humbert, G. Pharmacokinetics of meropenem in subjects with renal insufficiency. Eur. J. Clin. Pharmacol. 1992, 42, 535–538. [Google Scholar] [CrossRef]
- Christensson, B.A.; Nilsson-Ehle, I.; Hutchison, M.; Haworth, S.J.; Oqvist, B.; Norrby, S.R. Pharmacokinetics of meropenem in subjects with various degrees of renal impairment. Antimicrob. Agents Chemother. 1992, 36, 1532–1537. [Google Scholar] [CrossRef] [Green Version]
- Giles, L.J.; Jennings, A.C.; Thomson, A.H.; Creed, G.; Beale, R.J.; McLuckie, A. Pharmacokinetics of meropenem in intensive care unit patients receiving continuous veno-venous hemofiltration or hemodiafiltration. Crit. Care Med. 2000, 28, 632–637. [Google Scholar] [CrossRef]
- Ververs, T.F.; van Dijk, A.; Vinks, S.A.; Blankestijn, P.J.; Savelkoul, J.F.; Meulenbelt, J.; Boereboom, F.T. Pharmacokinetics and dosing regimen of meropenem in critically ill patients receiving continuous venovenous hemofiltration. Crit. Care Med. 2000, 28, 3412–3416. [Google Scholar] [CrossRef] [PubMed]
- Wang, A.Y.; Bellomo, R. Renal replacement therapy in the ICU: Intermittent hemodialysis, sustained low-efficiency dialysis or continuous renal replacement therapy? Curr. Opin. Crit. Care 2018, 24, 437–442. [Google Scholar] [CrossRef] [PubMed]
- Jang, S.M.; Mueller, B.A. Drug Dosing Considerations in Patients with Acute Kidney Injury and Continuous Renal Replacement Therapy; American College of Clinical Pharmacy: Lenexa, KS, USA, 2017; pp. 49–77. [Google Scholar]
- Clark, W.R.; Mueller, B.A.; Alaka, K.J.; Macias, W.L. A comparison of metabolic control by continuous and intermittent therapies in acute renal failure. J. Am. Soc. Nephrol. 1994, 4, 1413–1420. [Google Scholar]
- Mei, J.P.; Ali-Moghaddam, A.; Mueller, B.A. Survey of pharmacists’ antibiotic dosing recommendations for sustained low-efficiency dialysis. Int. J. Clin. Pharm. 2016, 38, 127–134. [Google Scholar] [CrossRef]
- Claure-Del Granado, R.; Macedo, E.; Chertow, G.M.; Soroko, S.; Himmelfarb, J.; Ikizler, T.A.; Paganini, E.P.; Mehta, R.L. Effluent volume in continuous renal replacement therapy overestimates the delivered dose of dialysis. Clin. J. Am. Soc. Nephrol. 2011, 6, 467–475. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Choi, G.; Gomersall, C.D.; Tian, Q.; Joynt, G.M.; Li, A.M.; Lipman, J. Principles of antibacterial dosing in continuous renal replacement therapy. Blood Purif. 2010, 30, 195–212. [Google Scholar] [CrossRef]
- Network, V.N.A.R.F.T.; Palevsky, P.M.; Zhang, J.H.; O’Connor, T.Z.; Chertow, G.M.; Crowley, S.T.; Choudhury, D.; Finkel, K.; Kellum, J.A.; Paganini, E.; et al. Intensity of renal support in critically ill patients with acute kidney injury. N. Engl. J. Med. 2008, 359, 7–20. [Google Scholar] [CrossRef]
- Jang, S.M.; Pai, M.P.; Shaw, A.R.; Mueller, B.A. Antibiotic Exposure Profiles in Trials Comparing Intensity of Continuous Renal Replacement Therapy. Crit. Care Med. 2019, 47, e863–e871. [Google Scholar] [CrossRef]
- Aronoff, G.R.; Bennett, W.M.; Berns, J.S.; Brier, M.E.; Kasbekar, N.; Mueller, B.A.; Pasko, D.A.; Smoyer, W.E. Drug Prescribing in Renal Failure: Dosing Guidelines for Adults and Children, 5th ed.; American College of Physicians: Philadelphia, PA, USA, 2007. [Google Scholar]
- Heintz, B.H.; Matzke, G.R.; Dager, W.E. Antimicrobial dosing concepts and recommendations for critically ill adult patients receiving continuous renal replacement therapy or intermittent hemodialysis. Pharmacotherapy 2009, 29, 562–577. [Google Scholar] [CrossRef] [Green Version]
- Hoff, B.M.; Maker, J.H.; Dager, W.E.; Heintz, B.H. Antibiotic Dosing for Critically Ill Adult Patients Receiving Intermittent Hemodialysis, Prolonged Intermittent Renal Replacement Therapy, and Continuous Renal Replacement Therapy: An Update. Ann. Pharmacother. 2020, 54, 43–55. [Google Scholar] [CrossRef]
- Drusano, G.L. Antimicrobial pharmacodynamics: Critical interactions of ‘bug and drug’. Nat. Rev. Microbiol. 2004, 2, 289–300. [Google Scholar] [CrossRef] [PubMed]
- Clinical and Laboratory Standards Institute (CLSI). Performance Standards for Antimicrobial Susceptibility Testing; Twenty-Fourth Informational Supplement; CLSI Document M100-S24; CLSI: Wayne, PA, USA, 2014. [Google Scholar]
- McKinnon, P.S.; Paladino, J.A.; Schentag, J.J. Evaluation of area under the inhibitory curve (AUIC) and time above the minimum inhibitory concentration (T>MIC) as predictors of outcome for cefepime and ceftazidime in serious bacterial infections. Int. J. Antimicrob. Agents 2008, 31, 345–351. [Google Scholar] [CrossRef] [PubMed]
- Mariat, C.; Venet, C.; Jehl, F.; Mwewa, S.; Lazarevic, V.; Diconne, E.; Fonsale, N.; Carricajo, A.; Guyomarc’h, S.; Vermesch, R.; et al. Continuous infusion of ceftazidime in critically ill patients undergoing continuous venovenous haemodiafiltration: Pharmacokinetic evaluation and dose recommendation. Crit. Care 2006, 10, R26. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chant, C.; Leung, A.; Friedrich, J.O. Optimal dosing of antibiotics in critically ill patients by using continuous/extended infusions: A systematic review and meta-analysis. Crit. Care 2013, 17, R279. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Covajes, C.; Scolletta, S.; Penaccini, L.; Ocampos-Martinez, E.; Abdelhadii, A.; Beumier, M.; Jacobs, F.; de Backer, D.; Vincent, J.L.; Taccone, F.S. Continuous infusion of vancomycin in septic patients receiving continuous renal replacement therapy. Int. J. Antimicrob. Agents 2013, 41, 261–266. [Google Scholar] [CrossRef]
- Martinez, M.N.; Papich, M.G.; Drusano, G.L. Dosing regimen matters: The importance of early intervention and rapid attainment of the pharmacokinetic/pharmacodynamic target. Antimicrob. Agents Chemother. 2012, 56, 2795–2805. [Google Scholar] [CrossRef] [Green Version]
- Taccone, F.S.; de Backer, D.; Laterre, P.F.; Spapen, H.; Dugernier, T.; Delattre, I.; Wallemacq, P.; Vincent, J.L.; Jacobs, F. Pharmacokinetics of a loading dose of amikacin in septic patients undergoing continuous renal replacement therapy. Int. J. Antimicrob. Agents 2011, 37, 531–535. [Google Scholar] [CrossRef] [Green Version]
- Economou, C.J.P.; Wong, G.; McWhinney, B.; Ungerer, J.P.J.; Lipman, J.; Roberts, J.A. Impact of beta-lactam antibiotic therapeutic drug monitoring on dose adjustments in critically ill patients undergoing continuous renal replacement therapy. Int. J. Antimicrob. Agents 2017, 49, 589–594. [Google Scholar] [CrossRef] [Green Version]
CRRT Types | CRRT Clearance Equations | Solute Removal |
---|---|---|
CVVH pre-dilution | CLCVVH(pre) = QeffSC() | Convection (influence of gravity) |
CVVH post-dilution | CLCVVH(post) = QeffSC | Convection |
CVVHD | CLCVVHD = Qd SA | Diffusion (concentration gradient) |
CVVHDF | CLCVVHDF = (QufQd)SA | Convection + diffusion |
CVVH(pre) = pre-dilution continuous veno-venous hemofiltration; CVVH(post) = post-dilution continuous veno-venous hemofiltration; CVVHD = continuous veno-venous hemodialysis; CVVHDF = continuous veno-venous hemodiafiltration; SA = saturation coefficient; SC = sieving coefficient; Qb = blood flow rate; Qd = dialysate flow rate; Qeff = effluent flow rate; Qrep = replacement fluid rate; Quf = ultrafiltration rate |
Medication | Accepted PD Target | Aronoff (Qeff 33 mL/min) | Hoff/Heintz CVVH (Qeff 17–33 mL/min) | Jang (Qeff 25 mL/kg/h) |
---|---|---|---|---|
Aminoglycosides (CD) | ||||
Amikacin | Cmax/MIC ≥ 10 mg/L; AUC0–24/MIC ≥ 70–120 mgh/L | 7.5 mg/kg q12h or 15 mg/kg q24–72h by concentrations | 10 mg/kg LD, 7.5 mg/kg q24–48h | 10–15 mg/kg LD, 7.5 mg/kg re-dose when trough concentrationsn<5 mg/L |
Gentamicin | Cmax/MIC ≥ 10 mg/L; AUC0–24/MIC ≥ 70–120 mgh/L | 1.7 mg/kg q8h or 5–7 mg/kg q12–48h by concentrations | 2–3 mg/kg LD, systemic GNR infection 1.5–2.5 mg/kg q24–48h | 2–3 mg/kg LD, re-dose when trough concentrations <1 mg/L |
Penicillin (TD) | ||||
Piperacillin/ tazobactam | ≥50% fT ≥ 16/4 mg/L (P. aeruginosa) | 4.5 g q8h | 3.375 g q8h 4-hour infusion | 4.5 g q8h |
Ampicillin/ sulbactam | ≥50% fT ≥ 8/4 mg/L (Acinetobacter spp.) | N/A | 3 g LD, 1.5–3 g q8–12h | 3 g q8–12h |
Cephalosporins (TD) | ||||
Cefepime | ≥70% fT ≥ 8 mg/L (P. aeruginosa) | 1–2 g q12h | 30minute infusion 1L/h: 1 g q8h 2–3 L/h: 1 g q6h | 2 g LD, 1g q8–12h |
Ceftazidime | ≥70% fT ≥ 8 mg/L (P. aeruginosa) | 1–2 g q12h or 2 g LD, followed by 3 g/day continuous infusion | 2 g LD, 1–2 g q12h | 2 g LD, 1–2 g q12h |
Carbapenems (TD) | ||||
Meropenem | ≥40% fT ≥ 2 mg/L (P. aeruginosa) | 1–2 g q12h | 3-hour infusion 0.5 g q8h | 1 g q8–12h |
Doripenem | ≥40% fT ≥ 2 mg/L (P. aeruginosa) | N/A | N/A | 500 mg q8h |
Imipenem | ≥40% fT ≥ 2 mg/L (P. aeruginosa) | 500 mg q6h | 1 g LD, 500 mg q8h | 500 mg q6h |
Ertapenem | ≥ 40% fT ≥ 2 mg/L (Streptococcus pneumoniae) | 1 g q24h | N/A | 1 g q24h |
Fluoroquinolones (CD) | ||||
Levofloxacin | Cmax/MIC 6–8; AUC0-24/MIC ≥ 87 mgh/L (gram-negative); AUC24/MIC ≥ 50 mgh/L (gram-positive) | 500 mg q48h | 500–750 mg LD, 250 mg q24h | 500–750 mg LD, 250–500 mg q24h |
Ciprofloxacin | 400 mg q24h | 200–400 mg q12–24h | 400 mg q12h | |
Miscellaneous | ||||
Colistin (CD) | Free AUC/MIC 10 mgh/L | N/A | 2.5 mg/kg q48h | 5–10 mg/kg LD, 2.5–5 mg/kg q24h |
Aztreonam (TD) | ≥50% fT ≥ 8 mg/L (P. aeruginosa) | 1 g q12h | 2 g LD, 1–2 g q12h | 2 g LD, 1–2 g q8–12h |
Linezolid (CD/TD) | AUC/MIC = 80 mgh/L | 600 mg q12h | 600 mg q12h | 600 mg q12h |
Vancomycin (CD/TD) | AUC/MIC = 400 mgh/L (Staphylococcus aureus and S. pneumoniae) | 1 g q24–96h | 20–25 mg/kg LD, 500–750 mg q12h with TDM adjustments | 25 mg/kg LD, 15 mg/kg q24h re-dose when through concentrations <15 mg/L |
Daptomycin (CD/TD) | AUC/MIC of 75–237 mgh/L for S. pneumoniae, 388–537 mgh/L for S. aureus, 0.94–1.67 mgh/L for Enterococcus faecium | 8 mg/kg q48h | 6–8mg/kg q24h | 6–8 mg/kg q24h |
CD = concentration-dependent; fT = free serum concentration; GNR = Gram-negative rod; IV = intravenous; LD = loading dose; N/A = not available; PO = orally; q = every; TD = time-dependent; TDM = therapeutic drug monitoring; PD = pharmacodynamics; MIC = minimum inhibitory concentration; AUC = area under the curve. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jang, S.M.; Infante, S.; Abdi Pour, A. Drug Dosing Considerations in Critically Ill Patients Receiving Continuous Renal Replacement Therapy. Pharmacy 2020, 8, 18. https://doi.org/10.3390/pharmacy8010018
Jang SM, Infante S, Abdi Pour A. Drug Dosing Considerations in Critically Ill Patients Receiving Continuous Renal Replacement Therapy. Pharmacy. 2020; 8(1):18. https://doi.org/10.3390/pharmacy8010018
Chicago/Turabian StyleJang, Soo Min, Sergio Infante, and Amir Abdi Pour. 2020. "Drug Dosing Considerations in Critically Ill Patients Receiving Continuous Renal Replacement Therapy" Pharmacy 8, no. 1: 18. https://doi.org/10.3390/pharmacy8010018
APA StyleJang, S. M., Infante, S., & Abdi Pour, A. (2020). Drug Dosing Considerations in Critically Ill Patients Receiving Continuous Renal Replacement Therapy. Pharmacy, 8(1), 18. https://doi.org/10.3390/pharmacy8010018