Principles of Drug Dosing in Sustained Low Efficiency Dialysis (SLED) and Review of Antimicrobial Dosing Literature
Abstract
:1. Principles of Drug Dosing in Sustained Low Efficiency Dialysis (SLED)
2. Pharmacokinetic and Pharmacodynamic Principles during SLED
3. Published Studies of Antimicrobials in Patients Receiving Extended Modes of Dialysis
3.1. Penicillins
3.1.1. Penicillin G
3.1.2. Ampicillin/Sulbactam
3.1.3. Piperacillin/Tazobactam
3.2. Cephalosporins
3.2.1. Ceftazidime
3.2.2. Cefepime
3.2.3. Ceftolozane/Tazobactam
3.3. Carbapenems
3.3.1. Carbapenems
3.3.2. Meropenem
3.3.3. Ertapenem
3.4. Colistin
3.5. Fluoroquinolones
3.5.1. Ciprofloxacin and Levofloxacin
3.5.2. Moxifloxacin and Levofloxacin
3.6. Vancomycin
3.7. Sulfamethoxazole/Trimethoprim (SMX/TMP)
3.8. Daptomycin
3.9. Linezolid
3.10. Antifungals
3.10.1. Anidulafungin
3.10.2. Fluconazole
3.10.3. Voriconazole
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Evanson, J.A.; Himmelfarb, J.; Wingard, R. Prescribed versus delivered dialysis dose in acute renal failure patients. Am. J. Kidney Dis. 1998, 32, 731–738. [Google Scholar] [CrossRef]
- Manns, B.; Doig, C.J.; Lee, H. Cost of acute renal failure requiring dialysis in the intensive care unit: Clinical and resource implications of renal recovery. Crit. Care Med. 2003, 31, 449–455. [Google Scholar] [CrossRef] [PubMed]
- Kumar, V.A.; Craig, M.; Depner, T.A.; Yeun, J.Y. Extended daily dialysis: A new approach to renal replacement for acute renal failure in the intensive care unit. Am. J. Kidney Dis. 2000, 36, 294–300. [Google Scholar] [CrossRef] [PubMed]
- Lonnemann, G.; Floege, J.; Kliem, V.; Brunkhorst, R.; Koch, K.M. Extended daily veno-venous high-flux haemodialysis in patients with acute renal failure and multiple organ dysfunction syndrome using a single path batch dialysis system. Nephrol. Dial. Transplant. 2000, 15, 1189–1193. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Marshall, M.R.; Golper, T.A.; Shaver, M.J.; Alam, M.G.; Chatoth, D.K. Sustained low-efficiency dialysis for critically ill patients requiring renal replacement therapy. Kidney Int. 2001, 60, 777–785, (erratum: Kidney Int 2001, 60, 1629). [Google Scholar] [CrossRef] [Green Version]
- Marshall, M.R.; Ma, T.; Galler, D.; Rankin, A.P.; Williams, A.B. Sustained low-efficiency daily diafiltration (SLEDD-f) for critically ill patients requiring renal replacement therapy: Towards an adequate therapy. Nephrol. Dial. Transplant. 2004, 19, 877–884. [Google Scholar] [CrossRef] [Green Version]
- Berbece, A.N.; Richardson, R.M. Sustained low-efficiency dialysis in the ICU: Cost, anticoagulation, and solute removal. Kidney Int. 2006, 70, 963–968. [Google Scholar] [CrossRef] [Green Version]
- Fliser, D.; Kielstein, J.T. Technology insight: Treatment of renal failure in the intensive care unit with extended dialysis. Nat. Clin. Pract. Nephrol. 2006, 2, 32–39. [Google Scholar] [CrossRef]
- Evenepoel, P.; Meijers, B.K.I.; Bammens, B.R.M.; Verbeke, K. Uremic toxins originating from colonic microbialmetabolism. Kidney Int. 2009, 76 (Suppl. 114), S12–S19. [Google Scholar] [CrossRef] [Green Version]
- Verbeeck, R.K.; Musuamba, F.T. Pharmacokinetics and dosage adjustment in patients with renal dysfunction. Eur. J. Clin. Pharmacol. 2009, 65, 757–773. [Google Scholar] [CrossRef]
- Álvarez-Lerma, F.; Grau, S. Management of antimicrobial use in the intensive care unit. Drugs 2012, 72, 447–470. [Google Scholar] [CrossRef] [PubMed]
- Meijers, B.K.I.; Bemmers, B.; Verbeke, B. A review of albumin binding in CKD. Am. J. Kidney Dis. 2008, 51, 839–850. [Google Scholar] [CrossRef]
- Mushatt, D.M.; Mihm, L.B.; Dreisbach, A.W. Antibiotic dosing in slow extended daily dialysis. Clin. Infect. Dis. 2009, 49, 433–437. [Google Scholar] [CrossRef] [PubMed]
- Vilay, M.A.; Churchwell, M.D.; Mueller, B.A. Clinical review: Drug metabolism and nonrenal clearance in acute kidney injury. Crit. Care 2008, 12, 235–244. [Google Scholar] [CrossRef] [PubMed]
- Edrees, F.; Li, T.; Vijayan, A. Prolonged intermittent renal replacement therapy. Adv. Chronic. Kidney Dis. 2016, 23, 195–202. [Google Scholar] [CrossRef]
- Mueller, B.A.; Scoville, B.A. Adding to the armamentarium: Antibiotic dosing in extended dialysis. Clin. J. Am. Soc. Nephrol. 2012, 7, 373–375. [Google Scholar] [CrossRef] [Green Version]
- Battistella, M.; Matzke, G.R. Drug therapy individualization for patients with chronic kidney disease. In Pharmacotherapy: A Pathophysiologic Approach, 10th ed.; Dipiro, J.T., Talbert, R.L., Yee, G.C., Matzke, G.R., Wells, B.G., Posey, L.M., Eds.; Mcgraw-Hill Education: New York, NY, USA, 2017; pp. 699–718. [Google Scholar]
- Cheng, V.; Rawlins, M. Pharmacokinetics of Benzylpenicillin (Penicillin G) during Prolonged Intermittent Renal Replacement Therapy. Chemotherapy 2019, 64, 17–21. [Google Scholar] [CrossRef]
- Kielstein, J.T.; Lorenzen, J. Risk of underdosing of ampicillin/sulbactam in patients with acute kidney injury undergoing extended daily dialysis—A single case. Nephrol. Dial. Transplant. 2009, 24, 2283–2285. [Google Scholar] [CrossRef] [Green Version]
- Lorenzen, J.M.; Broll, M. Pharmacokinetics of Ampicillin/Sulbactam in Critically Ill Patients with Acute Kidney Injury undergoing Extended Dialysis. Clin. J. Am. Soc. Nephrol. 2012, 7, 385–390. [Google Scholar] [CrossRef] [Green Version]
- Jang, S.M.; Gharibian, N.K. A Monte Carlo Simulation Approach for Beta-Lactam Dosing in Critically Ill Patients Receiving Prolonged Intermittent Renal Replacement Therapy. J. Clin. Pharmacol. 2018, 58, 1–12. [Google Scholar] [CrossRef]
- Kanji, S.; Roberts, J.A. Piperacillin population pharmacokinetics in critically ill adults during sustained low-efficiency dialysis. Ann. Pharmacother. 2018, 52, 965–973. [Google Scholar] [CrossRef] [PubMed]
- Sinnollareddy, M.G.; Roberts, M.S. Pharmacokinetics of piperacillin in critically ill patients with acute kidney injury receiving sustained low-efficiency diafiltration. J. Antimicrob. Chemother. 2018, 73, 1647–1650. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Konig, C.; Braune, S. Population pharmacokinetics and dosing simulations of ceftazidime in critically ill patients receiving sustained low-efficiency dialysis. J. Antimicrob. Chemother. 2017, 72, 1433–1440. [Google Scholar] [CrossRef] [PubMed]
- Rawlins, M.; Cheng, V. Pharmacokinetics of Ceftolozane-Tazobactam during Prolonged Intermittent Renal Replacement Therapy. Chemotherapy 2018, 63, 203–206. [Google Scholar] [CrossRef] [PubMed]
- Lewis, S.J.; Kays, M.B. Use of Monte Carlo Simulations to Determine Optimal Carbapenem Dosing in Critically Ill Patients Receiving Prolonged Intermittent Renal Replacement Therapy. J. Clin. Pharmacol. 2016, 56, 1277. [Google Scholar] [CrossRef] [PubMed]
- Braune, S.; Konig, C. Pharmacokinetics of meropenem in septic patients on sustained low-efficiency dialysis: A population pharmacokinetic study. Crit. Care 2018, 22, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Deshpande, P.; Chen, J. Meropenem removal in critically ill patients undergoing sustained low-efficiency dialysis (SLED). Nephrol. Dial. Transplant. 2010, 25, 2632–2636. [Google Scholar] [CrossRef] [Green Version]
- Kielstein, J.T.; Czock, D. Pharmacokinetics and total elimination of meropenem and vancomycin in intensive care unit patients undergoing extended daily dialysis. Crit. Care Med. 2006, 34, 51–56. [Google Scholar] [CrossRef]
- Burkhardt, O.; Hafer, C. Pharmacokinetics of ertapenem in critically ill patients with acute renal failure undergoing extended daily dialysis. Nephrol. Dial. Transplant. 2009, 24, 267–271. [Google Scholar] [CrossRef] [Green Version]
- Schmidt, J.J.; Strunk, A.K. Single- and multiple-dose pharmacokinetics and total removal of colistin in critically ill patients with acute kidney injury undergoing prolonged intermittent renal replacement therapy. J. Antimicrob. Chemother. 2019, 74, 997–1002. [Google Scholar] [CrossRef]
- Strunk, A.K.; Schmidt, J.J. Single- and multiple-dose pharmacokinetics and total removal of colistin in a patient with acute kidney injury undergoing extended daily dialysis. J. Antimicrob. Chemother. 2014, 69, 2008–2010. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lewis, S.J.; Chaijamorn, W. In silico trials using Monte Carlo simulation to evaluate ciprofloxacin and levofloxacin dosing in critically ill patients receiving prolonged intermittent renal replacement therapy. Ren. Replace Ther. 2016, 2, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Czock, D.; Husig-Linde, C. Pharmacokinetics of Moxifloxacin and Levofloxacin in Intensive Care Unit Patients Who Have Acute Renal Failure and Undergo Extended Daily Dialysis. Clin. J. Am. Soc. Nephrol. 2006, 1, 1263–1268. [Google Scholar] [CrossRef] [PubMed]
- Lewis, S.J.; Mueller, B.A. Development of a vancomycin dosing approach for critically ill patients receiving hybrid hemodialysis using Monte Carlo simulation. SAGE Open Med. 2018, 6, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Ahern, J.W.; Lai, C. Experience with Vancomycin in Patients Receiving Slow Low-Efficiency Dialysis. Hosp. Pharm. 2004, 39, 138–143. [Google Scholar] [CrossRef]
- Rybak, M.J.; Le, J. Therapeutic Monitoring of Vancomycin: A Revised Consensus Guideline and Review of the American Society of Health-System Pharmacists, the Infectious Disease Society of America, the Pediatric Infectious Diseases Society and the Society of Infectious Diseases Pharmacists. Available online: https://www.ashp.org/-/media/assets/policy-guidelines/docs/draft-guidelines/draft-guidelines-ASHP-IDSA-PIDS-SIDP-therapeutic-vancomycin.ashx (accessed on 2 February 2020).
- Economou, C.J.; Kielstein, J.T. Population pharmacokinetics of vancomycin in critically ill patients receiving prolonged intermittent renal replacement therapy. Int. J. Antimicrob. Agents 2018, 5, 151–157. [Google Scholar] [CrossRef] [Green Version]
- Suzuki, Y.; Kawasaki, K. Is peak concentrations needed in therapeutic drug monitoring of vancomycin? A pharmacokinetic-pharmacodynamic analysis in patients with methicillin-resistant Staphylococcus aureus pneumonia. Chemother 2012, 58, 308–312. [Google Scholar] [CrossRef]
- Clajus, C.; Kuhn-Velten, N. Cotrimoxazole plasma levels, dialyzer clearance and total removal by extended dialysis in a patient with acute kidney injury: Risk of underdosing using current dosing recommendations. BMC Pharmacol. Toxicol. 2013, 14, 19. [Google Scholar] [CrossRef] [Green Version]
- Burkhardt, O.; Joukhadar, C. Elimination of daptomycin in a patient with acute renal failure undergoing extended daily dialysis. J. Antimicrob. Chemother. 2008, 61, 224. [Google Scholar] [CrossRef]
- Kielstein, J.T.; Engbers, C. Dosing of daptomycin in intensive care unit patients with acute kidney injury undergoing extended dialysis—A pharmacokinetic study. Nephrol. Dial. Transplant. 2010, 25, 1537–1541. [Google Scholar] [CrossRef] [Green Version]
- Swoboda, S.; Ober, M.C. Pharmacokinetics of linezolid in septic patients with and without extended dialysis. Eur. J. Clin. Pharmacol. 2010, 66, 291–298. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cremaschi, E.; Maggiore, U. Linezolid levels in a patient with biliary tract sepsis, severe hepatic failure and acute kidney injury on sustained low-efficiency dialysis (SLED). Minerva Anestesiol. 2010, 76, 961–964. [Google Scholar] [PubMed]
- Fiaccadori, E.; Maggiore, U. Removal of linezolid by conventional intermittent hemodialysis, sustained low-efficiency dialysis, or continuous venovenous hemofiltration in patients with acute renal failure. Crit. Care Med. 2004, 32, 2437–2442. [Google Scholar] [CrossRef] [PubMed]
- Burkhardt, O.; Kaever, V. Extended daily dialysis does not affect the pharmacokinetics of anidulafungin. Int. J. Antimicrob 2009, 34, 282–283. [Google Scholar] [CrossRef] [PubMed]
- Gharibian, K.N.; Mueller, B.A. Fluconazole dosing predictions in critically-ill patients receiving prolonged intermittent renal replacement therapy: A Monte Carlo simulation approach. Clin. Nephrol. 2016, 86, 43–50. [Google Scholar] [CrossRef]
- Burkhardt, O.; Thon, S. Sulphobutylether-β-cyclodextrin accumulation in critically ill patients with acute kidney injury treated with intravenous voriconazole under extended daily dialysis. Int. J. Antimicrob. 2010, 36, 93–94. [Google Scholar] [CrossRef]
Modality | Acronym | Description | Blood Flow Rate (mL/min) | Dialysate Flow Rate (mL/min) |
---|---|---|---|---|
Continuous Renal Replacement Therapy * | CRRT | Generic term to describe dialysis over 24 h | 10–180 | 0–45 (0–2.5 L/h) ^ |
Intermittent Hemodialysis | IHD | Conventional intermittent dialysis over 4 h, 3 times per week | 250–400 | 200–350 |
Sustained Low efficiency dialysis ** | SLED | Dialysis over 6–12 h | 200–300 | 200–350 |
Slow extended daily dialysis ** | SLEDD | Dialysis over 6–12 h | same as above | same as above |
Drug | Study Design | Dose | Single vs. Multiple Doses | # of Subjects | Mode of Dialysis | Dialysis Duration (min) (mean ± SD) | Blood Flow (mL/min) (mean ± SD) | Dialysate Flow (mL/min) (mean ± SD) | Machine and Filter Information | Dosing Recommendation as per Study |
---|---|---|---|---|---|---|---|---|---|---|
Penicillin G [18] | PK | 3 MU q6h with a dose given within the first hour of PIRRT and a dose within one hour of stopping PIRRT | Multiple (48 h) | 2 | PIRRT | 510 or 570 | 200 | 200 | Fresenius 5008; Ultraflux AV600S, SA 1.4 m2 | 1800 mg (3 MU) q6h with doses given within the first hour of PIRRT and within the first hour of stopping PIRRT |
Ampicillin/sulbactam [19] | PK | 3 g (ampicillin 2 g/sulbactam 1 g) over 30 min given 4 h prior to EDD | Single | 1 | EDD | 450 | 180 | 180 | GENIUS, PS high-flux (F60S), SA 1.3 m2 | No specific recommendation but suggested IHD dosing is inadequate |
Ampicillin/sulbactam [20] | PK | 3 g (ampicillin 2 g/sulbactam 1 g) over 30 min given 3 h prior to ED | Single and multiple (4 d in 3 subjects) | 12 | ED | 442 ± 77 | 162 ± 6 | 162 ± 6 | GENIUS, PS high flux (F60S); SA 1.3 m2 | At least 2 g/1 g ampicillin/sulbactam BID with one dose given post ED |
Piperacillin/tazobactam [21] | MCS | Multiple dosing models with dose given just prior or post-SLED | Multiple (48 h) | 5000 virtual | PIRRT | 480 or 600 | 300 | 66.7 or 83.3 | N/A | 4.5 g q6h if PIRRT initiated at the same time as the first piperacillin-tazobactam dose or immediately post-PIRRT |
Piperacillin/tazobactam [22] | PK & MCS | 3 g of piperacillin q8h over 30 min; for MCS multiple dosing regimens modeled | Multiple | PK = 34 MCS = 5000 virtual | SLED | 480 | 200 | 300 | Gambro Artis; high flux F40S PS, SA 0.7 m2 | 3.375 g of piperacillin/tazobactam administered over 30 min q8h for pathogens with MIC <16 mg/L; for life-threatening infections this dose should be given as a continuous infusion |
Piperacillin/tazobactam [23] | PK | Piperacillin 4 g/tazobactam 0.5 g q12h given over 30 min given 30 min prior to SLED-f | Multiple | 6 | SLED-f | 360 | 200 | 200 | 4008S; A600S PS filter, SA 1.4 m2 | At least piperacillin 4 g q12h with 2 g post-SLED-f or 4 g q8h |
Drug | Study Design | Dose | Single vs. Multiple Doses | # of Subjects | Mode of Dialysis | Dialysis Duration (min) (mean ± SD) | Blood Flow (mL/min) (mean ± SD) | Dialysate Flow (mL/min) (mean ± SD) | Machine and Filter Information | Dosing Recommendation as per Study |
---|---|---|---|---|---|---|---|---|---|---|
Ceftazidime [21] | MCS | Multiple dosing models with dose given just prior or post-SLED | Multiple (48 h) | 5000 virtual | PIRRT | 480 or 600 | 300 | 66.7 or 83.3 | N/A | 2 g q12h if PIRRT initiated at same time as ceftazidime dose or immediately post-PIRRT |
Ceftazidime [24] | PK & MCS | 1 g or 2 g q8h or q12h administered over 30 min | Multiple (24 h) | PK = 16 MCS = 1000 virtual | SLED | 299 ± 68.4 | 264 ± 40.4 | 264 ± 40.4 | GENIUS, Fresenius FX 60 filter, SA 1.4 m2 | 2 g q8h or 2 g q12h (for MICs ≤8 mg/L); ceftazidime not recommended for monotherapy if MIC >8 mg/L |
Cefepime [21] | MCS | Multiple dosing models with dose given just prior or post-SLED | Multiple (48 h) | 5000 virtual | PIRRT | 480 or 600 | 300 | 66.7 or 83.3 | N/A | LD of 2 g then 1 g q6h when PIRRT is initiated at same time as first cefepime dose or immediately post-PIRRT |
Ceftolozane/tazobactam [25] | PK | 500/250 mg administered over 90 min, 100/50 mg q8h for non-PIRRT days and 500/250 mg during and post-PIIRT on dialysis days | Multiple | 1 | PIRRT | 450 | 200 | 200 | Fresenius 5008; Ultraflux AV600S, SA 1.4 m2 | 500 mg/250 mg during and after PIRRT, 100/50 mg q8h during non-PIRRT periods for P. aeruginosa with MIC ≤ 4 mg/L |
Drug | Study Design | Dose | Single vs. Multiple Doses | # of Subjects | Mode of Dialysis | Dialysis Duration (min) (mean ± SD) | Blood Flow (mL/min) (mean ± SD) | Dialysate Flow (mL/min) (mean ± SD) | Machine and Filter Information | Dosing Recommendation as per Study |
---|---|---|---|---|---|---|---|---|---|---|
Meropenem [26] | MCS | Multiple dosing regimens modeled given pre- or post-PIRRT | Multiple (48 h) | 5000 virtual | PIRRT | 480 or 600 | 300 | 66.7 or 83.3 | N/A | 1 g q12h or 1 g pre- and post- PIRRT for P. aeruginosa with MIC of 2 mg/L |
Meropenem [27] | PK & MCS | 0.5 g, 1 g, or 2 g administered over 30 min given q8h; SLED started within 3 h of dose | Multiple (24 h) | PK = 19 MCS = 1000 virtual | SLED | 315 [range 275–354] | 250 [range 208–278] | 250 [range 208–278] | GENIUS, Fresenius FX 60 filter, SA 1.4 m2 | Dosing requirements dependent on the degree of residual urine output (RUO) −500 mg q8h if RUO was 0–100 mL/d; −1 g q8h if RUO >300 mL/d |
Meropenem [28] | PK | 1 g administered over 30 min q12h given at 2–4 h prior to SLED | Single | 10 | SLED | 480 | 160 ± 45.9 | 170 ± 42.2 | Fresenius 2000K with AV 400 PS dialyzer, SA 0.7 m2 | 1 g q12h for P. aeruginosa with MIC = 2 mcg/mL |
Meropenem [29] | PK | 1 g IV over 30 min given 6 h prior to EDD | Single | 10 | EDD | 480 ± 6 | 160 | 160 | GENIUS, PS high-flux (F60S); SA 1.3 m2 | 500 mg to 1000 mg q8h but should be tailored to severity of illness and MIC of organism |
Ertapenem [26] | MCS | Multiple dosing regimens modeled, given pre- or post-PIRRT | Multiple (48 h) | 5000 virtual | PIRRT | 480 or 600 | 300 | 66.7 or 83.3 | N/A | 500 mg followed by 500 mg post-PIRRT for Streptococcus pneumoniae with MIC of 1 mg/L |
Ertapenem [30] | PK | 1 g IV administered over 30 min | Single | 6 | EDD | 480 | 160 | 160 | GENIUS, PS high flux (F60S), SA 1.3 m2 | 1 g per day |
Doripenem [26] | MCS | Multiple dosing regimens modeled, given pre- or post-PIRRT | Multiple (48 h) | 5000 virtual | PIRRT | 480 or 600 | 300 | 66.7 or 83.3 | N/A | 750 mg q8h for P. aeruginosa with MIC of 2 mg/L |
Imipenem [26] | MCS | Multiple dosing regimens modeled, given pre- or post-PIRRT | Multiple (48 h) | 5000 virtual | PIRRT | 480 or 600 | 300 | 66.7 or 83.3 | N/A | 1g q8h or 750 q6h for P. aeruginosa with MIC of 2 mg/L |
Drug | Study Design | Dose | Single vs. Multiple Doses | # of Subjects | Mode of Dialysis | Dialysis Duration (min) (mean ± SD) | Blood Flow (mL/min) (mean ± SD) | Dialysate Flow (mL/min) (mean ± SD) | Machine and Filter Information | Dosing Recommendation as per Study |
---|---|---|---|---|---|---|---|---|---|---|
Ciprofloxacin [33] | MCS | Multiple regimens modeled with doses given pre-PIRRT and post-PIRRT | Multiple (72 h) | 5000 virtual | PIRRT | 480 or 600 | 300 | 66.7 or 83.3 | N/A | Required doses exceeded FDA max doses; not recommended as empiric monotherapy If used as combination therapy LD of 400 mg then 400 mg q8h |
Levofloxacin [33] | MCS | Multiple dosing regimens modeled with doses given pre-PIRRT and post-PIRRT | Multiple (72 h) | 5000 virtual | PIRRT | 480 or 600 | 300 | 66.7 or 83.3 | N/A | Required doses exceeded FDA max doses; not recommended as empiric monotherapy If used as combination therapy LD of 750 mg then 750 mg q24 h post-PIRRT |
Levofloxacin [34] | PK | 250 mg or 500 mg IV administered over 60 min given 12 h prior to EDD | Single | 5 | EDD | 481 ± 9 | 160 ± 4 | 160 ± 4 | GENIUS, PS high-flux dialyzer (F60S), SA 1.3 m2 | No specific recommendation but should be administered post-EDD |
Moxifloxacin [34] | PK | 400 mg IV administered over 60 min given 8 h prior to EDD | Single | 10 | EDD | 481 ± 9 | 160 ± 4 | 160 ± 4 | GENIUS, PS high-flux dialyzer (F60S), SA 1.3 m2 | 400 mg IV once daily post-EDD |
Drug | Study Design | Dose | Single vs. Multiple Doses | # of Subjects | Mode of Dialysis | Dialysis Duration (min) (mean ± SD) | Blood Flow (mL/min) (mean ± SD) | Dialysate Flow (mL/min) (mean ± SD) | Machine & Filter Information | Dosing Recommendation as per Study |
---|---|---|---|---|---|---|---|---|---|---|
Vancomycin [35] | MCS | Nine regimens modeled with doses given immediate pre-PIRRT or post-PIRRT | Multiple (48 h) | 5000 virtual | PIRRT | 480 or 600 | 300 | 83.3 or 66.7 | N/A | LD of 15–20 mg/kg with initiation of PIRRT; MD of 15 mg/kg after each PIRRT session plus TDM If vancomycin is to be initiated and PIRRT will not start for ≥12 h LD 20 mg/kg; MD 15 mg/kg post-PIRRT plus TDM |
Vancomycin [36] | PK | 15 mg/kg by actual body weight | Multiple | 11 | SLED | continuous | 200 | 100 | Fresenius 2008H; PS low flux (F4 or F5); SA 1.2 m2 | Initial dose of 15 mg/kg of actual body weight with levels drawn 24 h following the initial dose |
Vancomycin [38] | PK & MCS | Dose given 12 h prior to PIRRT; Multiple dosing regimens modeled for MCS | Single or multiple | PK = 11 MCS =1000 virtual | PIRRT | 360 or 480 | 300 | 300 | Fresenius 4008S, AV600S, SA 1.4 m2 or Genius, PS high-flux dialyzer (F60S), SA 1.3 m2 | 25 mg/kg/d in 12 h PIRRT with TDM |
Vancomycin [29] | PK | 1 g IV over 60 min given 12 h prior to EDD | Single | 10 | EDD | 480 ± 6 | 160 | 160 | GENIUS, PS high-flux (F60S); SA 1.3 m2 | Initial dose of 20–25 mg/g then TDM |
Drug | Study Design | Dose | Single vs. Multiple Doses | # of Subjects | Mode of Dialysis | Dialysis Duration (min) (mean ± SD) | Blood Flow (mL/min) (mean ± SD) | Dialysate Flow (mL/min) (mean ± SD) | Machine and Filter Information | Dosing Recommendation as per Study |
---|---|---|---|---|---|---|---|---|---|---|
Colistin [31] | PK | 6 MU CMS given 8 h prior to PIRRT then 3 MU q8h given over 30 min | Single & Multiple | 8 | PIRRT | 480 | 200 | 200 | GENIUS; PS high-flux; SA 1.3 m2 | LD of 6–9 MU CMS in patients >70 kg and/or with pathogens with high MIC values, MD of 1.5–2 MU every 8 h Obese or volume-overloaded patients may require higher doses |
Colistin [32] | PK | 6 MU CMS then 3 MU q8h | Single and Multiple (9 d) | 1 | ED | 552 | 191 | 121 | High-flux, SA 1.3 m2 | 3 MU CMS every 8 h |
Sulfamethoxazole/ trimethoprim [40] | PK | SMX 95 mg/kg/d and TMP 15 mg/kg/d | Multiple | 1 | EDD | 442 ± 101 | 170 ± 41 | 170 ± 41 | GENIUS, PS high-flux dialyzer (F60S), SA 1.3 m2 | No specific recommendations but dose reduction from standard may lead to underdosing |
Daptomycin [41] | PK | 6 mg/kg actual body weight over 30 min | Single | 1 | EDD | 720 | 200 | 100 | GENIUS, PS high-flux dialyzer (F60S), SA 1.3 m2 | No specific recommendation but IHD dosing is likely inadequate |
Daptomycin [42] | PK | 6 mg/kg administered over 30 min given 8 h prior to ED | Single | 10 | ED | 456 ± 13 | 166 ± 5 | 166 ± 5 | GENIUS, PS high flux (F60S), SA 1.3 m2 | 6 mg/kg per day with ED starting within 8 h of dose |
Linezolid [43] | PK | 600 mg q12h infused over 60 min | Multiple (24h) | 10 | ED | 1170 [range 720–1440] | 110–150 | N/A | GENIUS, PS high-flux dialyzer (F60S), SA 1.3 m2 | No specific recommendation but higher doses may be required except in patients with concomitant liver failure |
Linezolid [44] | PK | 600 mg IV twice daily | Multiple | 1 | SLED | 360–480 | 200 | 300 | PS Fresenius F8 HPS filter, SA 1.6 m2 | No specific recommendation; higher doses may not be required in patient with liver failure |
Linezolid [45] | PK | 600 mg IV over 60 min given prior to SLED | Single | 5 | SLED | 480–540 | 200 | 100 | PS low-flux (F7HPS), SA 1.6 m2 or BLS 514G, SA 1.4 m2 | Give dose at end of SLED session |
Drug | Study Design | Dose | Single vs. Multiple Doses | # of Subjects | Mode of Dialysis | Dialysis Duration (min) (mean ± SD) | Blood Flow (mL/min) (mean ± SD) | Dialysate Flow (mL/min) (mean ± SD) | Machine and Filter Information | Dosing Recommendation as per Study |
---|---|---|---|---|---|---|---|---|---|---|
Anidulafungin [46] | PK | 200 mg IV administered over 30 min | Single | 1 | EDD | 480 | 180 | 180 | GENIUS, PS high-flux dialyzer (F60S), SA 1.3 m2 | No dose adjustment required |
Fluconazole [47] | MCS | Various dose regimens with the dose administered pre- or post-PIRRT | Multiple (48 h) | 5000 virtual | PIRRT | 480 or 600 | 300 | N/A | N/A | LD of 800 mg then 400 mg twice daily |
Voriconzole [48] | PK | 4 mg/kg IV twice daily | Multiple (5 d) | 4 | EDD | 480 | 180 | 180 | GENIUS, PS high-flux dialyzer (F60S), SA 1.3 m2 | Voriconazole IV cannot be recommended as SBECD accumulation was substantial |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Brown, P.; Battistella, M. Principles of Drug Dosing in Sustained Low Efficiency Dialysis (SLED) and Review of Antimicrobial Dosing Literature. Pharmacy 2020, 8, 33. https://doi.org/10.3390/pharmacy8010033
Brown P, Battistella M. Principles of Drug Dosing in Sustained Low Efficiency Dialysis (SLED) and Review of Antimicrobial Dosing Literature. Pharmacy. 2020; 8(1):33. https://doi.org/10.3390/pharmacy8010033
Chicago/Turabian StyleBrown, Paula, and Marisa Battistella. 2020. "Principles of Drug Dosing in Sustained Low Efficiency Dialysis (SLED) and Review of Antimicrobial Dosing Literature" Pharmacy 8, no. 1: 33. https://doi.org/10.3390/pharmacy8010033
APA StyleBrown, P., & Battistella, M. (2020). Principles of Drug Dosing in Sustained Low Efficiency Dialysis (SLED) and Review of Antimicrobial Dosing Literature. Pharmacy, 8(1), 33. https://doi.org/10.3390/pharmacy8010033