The Dynamic Typology in the Development Process of Credit Union Movements
Abstract
:1. Introduction
2. Literature Review
2.1. The Credit Union Movement
2.2. Stages of Credit Union Development
3. Methods
3.1. Variables Definition
3.1.1. Dependent Variables
3.1.2. Independent Variables
3.1.3. Proxy Variable
3.1.4. Research Variables
3.2. Research Design
3.2.1. Data Source
3.2.2. Data
3.2.3. Data Analysis Method
3.2.4. Ordered Logistic Model
4. Results
4.1. Estimated Results of Ordered Logistic Regression
4.2. Models’ Estimation Results
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Black, Harold, and Robert H. Dugger. 1981. Credit Union Structure, Growth and Regulatory Problems. The Journal of Finance 36: 529–38. [Google Scholar] [CrossRef]
- Chang, Fon-Chung, and Min-Ning Yu. 2002. The Study of Construction of the National Development Index. Formosan Education and Society 4: 71–110. [Google Scholar]
- Commission on Credit Unions. 2012. Report of the Commission on Credit Unions. Dublin: Department of Finance. [Google Scholar]
- Feinberg, Robert M. 2001. The competitive role of credit unions in small local financial services markets. Review of Economics and Statistics 83: 560–63. [Google Scholar] [CrossRef]
- Feinberg, Robert M., and A. F. M. Ataur Rahman. 2001. A causality test of the relationship between bank and credit union lending rates in local markets. Economics Letters 71: 271–75. [Google Scholar] [CrossRef]
- Ferguson, Charles, and Donal G. McKillop. 1997a. An Industry Approach to Classifying Credit Union Development. Chichester: John Wiley and Sons. [Google Scholar]
- Ferguson, Charles, and Donal G. McKillop. 1997b. The Strategic Development of Credit Unions. Chichester: John Wiley and Sons. [Google Scholar]
- Ferguson, Charles, and Donal G. McKillop. 2000. Classifying Credit Union Development in Terms of Mature, Transition and Nascent Industry Types. Service Industries Journal 20: 103–20. [Google Scholar] [CrossRef]
- Goddard, John A., Donal G. McKillop, and John O. S. Wilson. 2002. The growth of US credit unions. Journal of Banking and Finance 22: 2327–56. [Google Scholar] [CrossRef]
- Goddard, John A., Donal G. McKillop, and John O. S. Wilson. 2008. The diversification and performance of US credit unions. Journal of Banking and Finance 32: 1836–49. [Google Scholar] [CrossRef]
- Goddard, John A., Donal G. McKillop, and John O. S. Wilson. 2009. Which credit unions are acquired? Journal of Financial Services Research 36: 231–52. [Google Scholar] [CrossRef]
- Goddard, John, and John O. S. Wilson. 2005. US credit unions: An empirical investigation of size, age and growth. Annals of Public and Cooperative Economics 76: 375–406. [Google Scholar] [CrossRef]
- Hettne, Björn. 1990. Development Theory and the Three Worlds. Harlow: Longman Scientific and Technical. [Google Scholar]
- Huntington, Samuel P. 1971. The change to change: Modernization, development and politics. Comparative Politics 3: 283–322. [Google Scholar] [CrossRef] [Green Version]
- Inci, Ahmet Can, and Biao Lu. 2004. Exchange Rates and Interest Rates: Can Term Structure Models Explain Currency Movements? Journal of Economic Dynamics & Control 28: 1595–624. [Google Scholar]
- Levi, Y. 1997. Co-operatives, Social Enterprises and the For Profit and Nonprofit Argument. International Co-operative Research Conference; pp. 1–18. [Google Scholar]
- McKillop, Donal, and John O. S. Wilson. 2011. Credit Unions: A Theoretical and Empirical Overview. Financial Markets, Institutions & Instruments 20: 79–123. [Google Scholar]
- Morris, M. D. 1979. Measuring the Condition of World’s Poor: The Physical Quality of Life Index. London: Frank Cass. [Google Scholar]
- Rich, Philip. 1992. The Organizational Taxonomy: Definition and Design. Academy of Management Review 17: 758–82. [Google Scholar] [CrossRef]
- Rostow, Walt Whitman. 1971. Politics and the Stages of Growth. Cambridge: Cambridge the University Press. [Google Scholar]
- Schmid, Frank. 2006. When for-profits and not-for profits compete: Theory and empirical evidence from retail banking. Managerial Finance 31: 50–71. [Google Scholar] [CrossRef]
- Sibbald, Alexander, Charles Ferguson, and Donal McKillop. 1999. A Comparative Analysis of Selected Features Affecting Credit Union Industry Development with Special Reference to the UK and New Zealand. In Financial Services Research Forum. Belfast: The Queen’s University of Belfast and University of Ulster. [Google Scholar]
- Sibbald, Alexander, Charles Ferguson, and Donal McKillop. 2002. An examination of key factors of influence in the development process of credit union industries. Annals of Public and Cooperative Economics 73: 399–428. [Google Scholar] [CrossRef] [Green Version]
- Thomas, Ian C., and Susan Balloch. 1994. Local Authorities and the Expansion of Credit Unions 1991–93. Local Economy 9: 166–84. [Google Scholar] [CrossRef]
- Tokle, Robert J., and Joanne G. Tokle. 2000. The influence of credit union and savings and loan competition on bank deposit rates in Idaho and Montana. Review of Industrial Organization 17: 427–39. [Google Scholar] [CrossRef]
- United Nations Development Programme(UNDP). 1995. Human Development Report. New York: Oxford University Press. [Google Scholar]
- World Council of Credit Unions (WOCCU). 2016a. A Technical Guide to PEARLS. Available online: http://www.woccu.org/programs/tools (accessed on 24 November 2017).
- World Council of Credit Unions. 2016b. Statistical Report. Available online: http://www.woccu.org/publications/statreport (accessed on 24 November 2017).
Stage | Attributes |
---|---|
Nascent Movement | Small asset size |
Highly regulated | |
Tight common bond | |
Strong emphasis on voluntarism | |
Serve weak sections of society | |
Single savings and loans products | |
Requires sponsorship from wider credit union movement to take root | |
High commitment to traditional self-help ideals | |
Transition Movement | Large asset size |
Shifts in regulatory framework | |
Adjustments to common bond | |
Shifts towards greater product diversification | |
Emphasis on growth and efficiency | |
Weakening of reliance on voluntarism | |
Recognition of the need for greater effectiveness and professionalism of trade bodies | |
Development of central services | |
Mature Movement | Large asset size |
Deregulation | |
Loose common bond | |
Competitive environment | |
Electronic technology environment | |
Well-organized, progressive trade bodies | |
Professionalization of management | |
Well-developed central services | |
Diversification of products and services | |
Products and services based on market rate structures | |
Emphasis upon economic viability and long term sustainability | |
Rigorous financial management of operations | |
Well-functioning deposit insurance mechanism |
Country | Number of Credit Unions | Membership | Assets (million USD) | Penetration 1 (%) |
---|---|---|---|---|
Mature Credit Unions | ||||
United States | 6100 | 103,709,631 | 1,215,943 | 48.8 |
Canada | 695 | 10,348,048 | 249,276 | 44.1 |
Australia | 91 | 4,100,000 | 70,706 | 27.0 |
India | 2705 | 21,060,430 | 60,450 | 2.6 |
Thailand | 2277 | 4,078,311 | 57,101 | 8.2 |
Korea | 910 | 5,752,000 | 56,111 | 16.0 |
Brazil | 582 | 6,339,462 | 28,239 | 4.5 |
Ireland | 421 | 3,400,000 | 16,816 | 77.0 |
Transition Credit Unions | ||||
Kenya | 5769 | 5,432,009 | 5355 | 21.3 |
Hong Kong | 41 | 86,558 | 1631 | 1.7 |
ROC Taiwan | 340 | 217,909 | 844 | 1.3 |
Sri Lanka | 8423 | 1,039,458 | 83 | 7.2 |
Singapore | 22 | 103,444 | 671 | 2.3 |
Indonesia | 912 | 2,640,692 | 1890 | 1.5 |
Philippines | 1649 | 4,091,059 | 2646 | 6.6 |
Vietnam | 1148 | 2,097,584 | 2705 | 3.2 |
Colombia | 193 | 2,408,000 | 4700 | 8.5 |
Ecuador | 900 | 4,758,802 | 8100 | 46.2 |
Mexico | 142 | 5,140,944 | 5264 | 6.4 |
New Zealand | 13 | 180,916 | 673 | 6.2 |
Dominican Republic | 15 | 645,331 | 910 | 9.4 |
Jamaica | 34 | 999,416 | 748 | 52.8 |
Trinidad & Tobago | 128 | 651,388 | 1982 | 75.3 |
Great Britain | 342 | 1,269,345 | 2028 | 3.1 |
Poland | 48 | 2,072,598 | 3172 | 7.7 |
Nascent Credit Unions | ||||
Rwanda | 416 | 1,607,560 | 137 | 22.8 |
Mali | 70 | 911,794 | 116 | 10.8 |
Myanmar | 2228 | 388,258 | 37 | 1.0 |
Moldova | 295 | 126,453 | 26 | 5.1 |
Mongolia | 253 | 39,146 | 49 | 1.9 |
Guyana | 28 | 34,212 | 29 | 7.0 |
Romania | 19 | 68,103 | 61 | 0.5 |
Covariates | Description |
---|---|
Dependent Variable | |
STAGE | Nascent: 1; transition: 2; mature: 3 |
PENETRATION | Total number of reported credit union members/the economically active population aged 15–64 years old. |
Independent Variable | |
AVG_ASSET (C1) | Log-average assets of credit union |
LOAN_RATIO (C2) | Total loans/total assets |
CU_GRO (C3) | (CU No. of year t—CU No. of year t − 1)/CU No. of year t − 1 |
MEM_GRO (C4) | (Members of year t—members of year t − 1)/members of year t − 1 |
CRISIS (C5) | The time before the financial crisis of 2008: 0; the time after the financial crisis of 2008: 1 |
DEREGULATION (C6) | The time before the WOCCU declared the importance of legislative frameworks in 2002: 0; the time after the WOCCU declared the importance of legislative frameworks in 2002: 1 |
Proxy Variable | |
GDP (C7) | Gross domestic product divided by midyear population. |
URBAN_RATIO (C8) | Urban population refers to people living in urban areas |
EMP_NONAGR_RATIO (C9) | Employment in non-agriculture to population ratio is the proportion of a country’s population that is employed. People aged 15 years and older are generally considered to be the working-age population. |
HEALTH_EXP_RATIO (C10) | Total health expenditure is the sum of public and private health expenditure. |
BIRTH_CON_RATE (C11) | Reciprocal of total fertility rate. Total fertility rate represents the number of children that would be born to a woman if she were to live to the end of her childbearing years and bear children in accordance with age-specific fertility rates of the specified year. |
LIFE_EXP (C12) | Life expectancy at birth indicates the number of years a newborn infant would live if prevailing patterns of mortality at the time of their birth were to stay the same throughout their life. |
GOVEXP_EDU_RATIO (C13) | General government expenditure on education (current, capital, and transfers) is expressed as a percentage of GDP. |
ADULT_LIT_RATE (C14) | Percentage of the population aged 15 and above who can, with understanding, read and write a short, simple statement about their everyday life. |
RD_EXP_RATIO (C15) | Expenditure for research and development includes current and capital expenditure on creative work undertaken systematically to increase knowledge, including knowledge of humanity, culture, and society, and the use of knowledge for new applications. |
INTERNET_USERS (C16) | Internet users are individuals who have used the Internet in the last 12 months. The Internet can be used via a computer, mobile phone, personal digital assistant, games machine, digital TV, etc. |
Covariate | Obs | Mean | Std. Dev. | Minimum | Maximum |
---|---|---|---|---|---|
AVG_ASSETi, t(Ln) | 1659 | 14.27 | 2.557 | 6.44 | 21.19 |
LOAN_RATIOi, t | 1659 | 0.676 | 0.173 | 0.014 | 0.99 |
CU_GROi, t | 1659 | 0.161 | 1.801 | −0.997 | 44.00 |
MEM_GROi, t | 1659 | 0.173 | 0.983 | −0.964 | 21.02 |
CRISISi, t | 1659 | 0.464 | 0.499 | 0 | 1 |
DEREGULATIONi, t | 1659 | 0.754 | 0.431 | 0 | 1 |
GDPi, t | 1642 | 9597.3 | 14,595.35 | 149 | 93,606 |
URBAN_RATIOi, t | 1645 | 0.529 | 0.238 | 0.084 | 1.00 |
EMP_NONAGR_RATIOi, t | 1480 | 0.408 | 0.09 | 0.088 | 0.597 |
HEALTH_EXP_RATIOi, t | 1580 | 0.061 | 0.022 | 0 | 0.171 |
BIRTH_CON_RATEi, t | 1565 | 0.433 | 0.184 | 0.132 | 1.11 |
LIFE_EXPi, t | 1545 | 68.95 | 8.852 | 35.66 | 83.98 |
GOVEXP_EDU_RATIOi, t | 1297 | 0.044 | 0.015 | 0.011 | 0.1 |
ADULT_LIT_RATEi, t | 928 | 0.828 | 0.179 | 0.15 | 1.00 |
RD_EXP_RATIOi, t | 915 | 0.007 | 0.0076 | 0 | 0.043 |
INTERNET_USERSi, t | 1605 | 24.11 | 25.11 | 0 | 98.32 |
PENETRATIONi, t | 1659 | 0.166 | 0.285 | 0 | 2.88 |
STAGEi, t | 1659 | 1.547 | 0.633 | 1 | 3 |
Covariate | Mature Stage | Transition Stage | Nascent Stage | ||||||
---|---|---|---|---|---|---|---|---|---|
Mean | St. Dev. | Median | Mean | St. Dev. | Median | Mean | St. Dev. | Median | |
AVG_ASSETi, t(Ln) | 17.69 | 1.39 | 17.55 | 15.22 | 2.09 | 15.51 | 13.07 | 2.24 | 13.16 |
LOAN_RATIOi, t | 0.657 | 0.147 | 0.657 | 0.655 | 0.177 | 0.69 | 0.694 | 0.171 | 0.721 |
CU_GROi, t | −0.013 | 0.119 | −0.028 | 0.301 | 2.772 | 0 | 0.082 | 0.619 | 0 |
MEM_GROi, t | 0.037 | 0.115 | 0.015 | 0.11 | 0.389 | 0.046 | 0.24 | 1.305 | 0.047 |
CRISISi, t | 0.504 | 0.502 | 1 | 0.599 | 0.49 | 1 | 0.357 | 0.479 | 0 |
DEREGULATIONi, t | 0.795 | 0.405 | 1 | 0.858 | 0.349 | 1 | 0.671 | 0.47 | 1 |
GDPi, t | 28,161.1 | 19,353.1 | 24,155.8 | 9486.3 | 12,504.9 | 4274.9 | 6963.9 | 13,221.9 | 2640.1 |
URBAN_RATIOi, t | 0.718 | 0.184 | 0.801 | 0.565 | 0.241 | 0.595 | 0.475 | 0.223 | 0.46 |
EMP_NONAGR_RATIOi, t | 0.467 | 0.069 | 0.479 | 0.414 | 0.09 | 0.415 | 0.393 | 0.088 | 0.402 |
HEALTH_EXP_RATIOi, t | 0.086 | 0.035 | 0.083 | 0.059 | 0.016 | 0.059 | 0.059 | 0.021 | 0.058 |
BIRTH_CON_RATEi, t | 0.58 | 0.125 | 0.555 | 0.437 | 0.181 | 0.409 | 0.407 | 0.183 | 0.387 |
LIFE_EXPi, t | 77.08 | 4.52 | 78.54 | 70.93 | 6.97 | 72.03 | 66.18 | 9.44 | 69.21 |
GOVEXP_EDU_RATIOi, t | 0.048 | 0.007 | 0.049 | 0.044 | 0.014 | 0.044 | 0.043 | 0.017 | 0.042 |
ADULT_LIT_RATEi, t | 0.871 | 0.126 | 0.926 | 0.833 | 0.175 | 0.908 | 0.819 | 0.185 | 0.875 |
RD_EXP_RATIOi, t | 0.018 | 0.009 | 0.018 | 0.0051 | 0.005 | 0.003 | 0.0057 | 0.006 | 0.0037 |
INTERNET_USERSi, t | 51.19 | 26.98 | 58.75 | 27.61 | 24.23 | 20.81 | 17.5 | 22.08 | 7 |
PENETRATIONi, t | 0.298 | 0.25 | 0.247 | 0.171 | 0.254 | 0.068 | 0.144 | 0.306 | 0.025 |
N | 127 | 654 | 878 | ||||||
Marginal Percentage | 7.6% | 39.4% | 53% |
Estimation/Stage | I | II | III | IV | V |
---|---|---|---|---|---|
AVG_ASSETi, t(Ln) | 2.00 *** (0.147) | 1.54 *** (0.276) | 1.47 *** (0.274) | 1.51 *** (0.285) | 1.44 *** (0.284) |
LOAN_RATIOi, t | −1.187 (0.898) | −0.376 (1.78) | −0.624 (1.78) | −0.312 (1.84) | −0.569 (1.84) |
CU_GROi, t | 0.192 *** (0.059) | 0.063 (0.1) | 0.065 (0.102) | 0.076 (0.096) | 0.078 (0.097) |
MEM_GROi, t | −0.709 ** (0.284) | −0.558 (0.357) | −0.511 (0.353) | −0.639 * (0.372) | −0.589 (0.371) |
CRISISi, t | 1.202 * (0.666) | 1.203 * (0.682) | |||
DEREGULATIONi, t | 2.162 * (1.27) | 2.097 * (1.26) | |||
GDPi, t | −0.00007 (0.0001) | −0.00009 (0.0001) | −0.00006 (0.0001) | −0.00007 (0.0001) | |
URBAN_RATIOi, t | −8.51 * (5.12) | −7.31 (5.09) | −8.9 * (5.39) | −7.61 (5.38) | |
EMP_NONAGR_RATIOi, t | 5.51 (3.723) | 5.19 (3.68) | 5.25 (3.74) | 5.05 (3.71) | |
HEALTH_EXP_RATIOi, t | −23.81 (26.9) | −28.32 (27.4) | −31.52 (28.3) | −35.53 (28.8) | |
BIRTH_CON_RATEi, t | −7.713 * (4.37) | −6.885 (4.37) | −8.383 * (4.55) | −7.599 * (4.57) | |
LIFE_EXPi, t | 0.249 ** (0.099) | 0.244 ** (0.099) | 0.257 ** (0.101) | 0.253 ** (0.102) | |
GOVEXP_EDU_RATIOi, t | 29.13 (28.95) | 28.14 (29.66) | 37.45 (30.27) | 37.01 (31.07) | |
ADULT_LIT_RATEi, t | −1.49 (5.4) | −1.111 (5.4) | −0.562 (5.63) | −0.226 (5.7) | |
RD_EXP_RATIOi, t | 364.52 ** (145.1) | 369.21 ** (144.7) | 382.65 ** (153.5) | 386.03 ** (153.5) | |
INTERNET_USERSi, t | 0.028 (0.024) | 0.003 (0.027) | 0.021 (0.025) | −0.004 (0.029) | |
Cut1 | 29.28 *** (2.42) | 31.19 *** (8.45) | 30.72 *** (8.41) | 33.43 *** (8.86) | 33.01 *** (8.88) |
Cut2 | 41.16 *** (3.01) | 46.43 *** (9.66) | 45.91 *** (9.52) | 49.33 *** (10.21) | 48.81 *** (10.12) |
Estimated Variance | 41.21 (12.98) | 26.89 (12.69) | 26.11 (12.1) | 29.71 (14.56) | 29.01 (14.04) |
LR test | 1359.8 *** | 222.5 *** | 219.16 *** | 223.67 *** | 221.32 *** |
Estimation/Stage | I | II | III | IV | V |
---|---|---|---|---|---|
Constant Term | −5.568 *** (−12.09) | −16.495 *** (−6.27) | −17.139 *** (−6.45) | −17.906 *** (−6.23) | −18.091 *** (−6.29) |
AVG_ASSETi, t(Ln) | 0.467 *** (15.83) | 0.949 *** (10.16) | 0.942 *** (10.08) | 0.945 *** (10.09) | 0.940 *** (10.04) |
LOAN_RATIOi, t | −1.961 *** (−5.399) | −2.861 *** (−3.20) | −2.970 *** (−3.28) | −2.932 *** (−3.25) | −3.105 *** (−3.31) |
CU_GROi, t | 0.317 ** (2.49) | 0.102 (0.92) | 0.110 (0.96) | 0.117 (1.00) | 0.120 (1.01) |
MEM_GROi, t | −0.402 ** (−2.46) | −0.519 * (−1.75) | −0.484 * (−1.68) | −0.561 * (−1.87) | −0.517 * (−1.77) |
CRISISi, t | 0.736 ** (2.14) | 0.673 * (1.92) | |||
DEREGULATIONi, t | 0.884 (1.33) | 0.632 (0.93) | |||
GDPi, t | −0.00012 *** (−3.02) | −0.00013 *** (−3.12) | −0.00012 *** (−3.05) | −0.00013 *** (−3.13) | |
URBAN_RATIOi, t | −4.923 *** (−4.44) | −4.428 *** (−3.90) | −4.759 *** (−4.29) | −4.357 *** (−3.84) | |
EMP_NONAGR_RATIOi, t | 0.569 (0.36) | −0.022 (−0.014) | 0.458 (0.29) | −0.06 (−0.03) | |
HEALTH_EXP_RATIOi, t | −20.057 ** (−2.37) | −20.739 ** (−2.39) | −19.258 ** (−2.26) | −20.08 ** (−2.31) | |
BIRTH_CON_RATEi, t | −4.923 *** (−3.82) | −4.364 *** (−3.33) | −5.068 *** (−3.91) | −4.509 *** (−3.405) | |
LIFE_EXPi, t | 0.164 *** (4.69) | 0.169 *** (4.76) | 0.174 *** (4.83) | 0.176 *** (4.83) | |
GOVEXP_EDU_RATIOi, t | −2.437 (−0.23) | −3.377 (−0.31) | −1.705 (−0.15) | −2.689 (−0.25) | |
ADULT_LIT_RATEi, t | 0.872 (0.67) | 0.851 (0.65) | 0.892 (0.68) | 0.869 (0.67) | |
RD_EXP_RATIOi, t | 290.772 *** (4.38) | 305.34 *** (4.55) | 301.22 *** (4.48) | 311.53 *** (4.61) | |
INTERNET_USERSi, t | −0.026 ** (−2.57) | −0.036 *** (−3.18) | −0.029 *** (−2.81) | −0.038 *** (−3.28) | |
Observations | 1532 (654) | 494 (297) | 494 (297) | 494 (297) | 494 (297) |
LR Statistic | 378.48 *** | 284.49 *** | 289.15 *** | 286.30 *** | 290.04 *** |
McFadden R-squared | 0.1810 | 0.4281 | 0.4352 | 0.4308 | 0.4365 |
Estimation/Stage | I | II | III | IV | V |
---|---|---|---|---|---|
Constant Term | −17.357 *** (−10.79) | −45.29 *** (−3.28) | −44.33 *** (−3.37) | −40.402 *** (−4.78) | −40.504 *** (−4.77) |
AVG_ASSETi, t(Ln) | 0.970 *** (10.27) | 2.300 *** (3.78) | 2.285 *** (3.60) | 2.143 *** (5.96) | 2.146 *** (5.97) |
LOAN_RATIOi, t | −0.494 (−0.76) | −2.207 (−0.88) | −3.359 (−1.23) | 1.677 (0.75) | 1.657 (0.74) |
CU_GROi, t | −0.030 (−0.21) | 0.111 (0.71) | 0.111 (0.69) | 0.083 (0.54) | 0.084 (0.54) |
MEM_GROi, t | −1.756 ** (−2.34) | −0.819 (−0.42) | −0.588 (−0.31) | −1.04 (−0.81) | −1.105 (−0.83) |
CRISISi, t | 1.638 (1.53) | −0.150 (−0.23) | |||
DEREGULATIONi, t | 3.855 *** (3.57) | 3.936 *** (3.44) | |||
GDPi, t | −0.00028 (−1.50) | −0.00034 (−1.58) | −0.000001 (−0.58) | −0.000001 (−0.62) | |
URBAN_RATIOi, t | −19.926 *** (−2.81) | −16.872 ** (−2.35) | −15.983 *** (−5.47) | −16.045 *** (−5.45) | |
EMP_NONAGR_RATIOi, t | 6.573 (0.996) | 4.192 (0.63) | −3.783 (−0.86) | −3.702 (−0.84) | |
HEALTH_EXP_RATIOi, t | 136.78 ** (2.48) | 115.07 ** (2.12) | 118.958 *** (4.33) | 119.54 ** (4.32) | |
BIRTH_CON_RATEi, t | 8.681 (1.56) | 10.531 * (1.65) | 9.848 *** (3.71) | 9.734 *** (3.60) | |
LIFE_EXPi, t | −0.024 (−0.14) | −0.033 (−0.19) | −0.079 (−0.83) | −0.078 (−0.82) | |
GOVEXP_EDU_RATIOi, t | −62.681 (−1.61) | −55.023 (−1.43) | |||
ADULT_LIT_RATEi, t | 7.688 (1.28) | 7.490 (1.16) | |||
RD_EXP_RATIOi, t | 997.93 *** (3.45) | 967.35 *** (3.37) | 888.870 *** (6.27) | 892.38 *** (6.21) | |
INTERNET_USERSi, t | −0.138 ** (−2.55) | −0.152 *** (−2.71) | −0.125 *** (−4.75) | −0.124 *** (−4.5) | |
Observations | 781 (127) | 337 (40) | 337 (40) | 525 (125) | 525 (125) |
LR Statistic | 199.84 *** | 170.43 *** | 172.96 *** | 448.34 *** | 448.40 *** |
McFadden R-squared | 0.2881 | 0.6940 | 0.7044 | 0.7779 | 0.7780 |
Models | I | II | III | IV | V |
---|---|---|---|---|---|
Constant Term | −0.06 (0.046) | 0.221 *** (0.075) | 0.111 (0.096) | −0.129 ** (0.062) | 0.172 ** (0.082) |
Covariate/PENETRATION | |||||
AVG_ASSETi, t(Ln) | 0.0132 *** (0.003) | 0.014 *** (0.003) | 0.014 *** (0.003) | 0.00005 (0.0019) | −0.0056 ** (0.002) |
LOAN_RATIOi, t | 0.057 ** (0.023) | 0.059 *** (0.023) | 0.063 *** (0.024) | 0.021 (0.013) | 0.022 (0.014) |
CU_GROi, t | 0.002 (0.0015) | 0.002 (0.0014) | 0.002 (0.0014) | 0.0015 *** (0.0006) | 0.0012 ** (0.0005) |
MEM_GROi, t | 0.003 (0.0028) | 0.003 (0.0026) | 0.003 (0.0026) | −0.00017 (0.0013) | 0.0041 ** (0.0016) |
CRISISi, t | 0.031 *** (0.008) | 0.053 *** (0.007) | 0.046 *** (0.008) | 0.019 *** (0.0046) | 0.0063 (0.0054) |
DEREGULATIONi, t | −0.021 *** (0.008) | 0.00012 (0.008) | −0.009 (0.009) | 0.012 * (0.006) | −0.01 (0.008) |
GDPi, t | −0.000003 *** (0.0000007) | −0.000003 *** (0.0000007) | −0.00000017 (0.0000008) | −0.0000006 (0.0000008) | |
URBAN_RATIOi, t | −0.657 *** (0.135) | −0.76 *** (0.139) | 0.078 (0.094) | −0.136 (0.114) | |
EMP_NONAGR_RATIOi, t | 0.061 (0.046) | 0.049 (0.046) | 0.011 (0.021) | 0.038 (0.025) | |
HEALTH_EXP_RATIOi, t | 0.21 (0.306) | −0.235 (0.199) | 0.283 (0.265) | ||
BIRTH_CON_RATEi, t | 0.223 *** (0.08) | 0.045 (0.046) | 0.105 ** (0.045) | ||
LIFE_EXPi, t | 0.0007 (0.096) | 0.0003 (0.0005) | −0.0016 ** (0.0006) | ||
GOVEXP_EDU_RATIOi, t | 1.026 *** (0.228) | 0.985 *** (0.269) | |||
ADULT_LIT_RATEi, t | 0.054 (0.061) | −0.0017 (0.074) | |||
RD_EXP_RATIOi, t | 0.663 (1.317) | ||||
INTERNET_USERSi, t | 0.0007 *** (0.0002) | ||||
Observations | 1659 (113) | 1480 (101) | 1443 (98) | 765 (69) | 534 (52) |
F-Test | 80.29 *** | 54.17 *** | 50.15 *** | 50.72 *** | 34.8 *** |
Cross-Section F-Test | 53.41 *** | 58.21 *** | 48.23 *** | 15.3 *** | 13.41 *** |
Hausman Test | - | 97.49 *** | 64.92 *** | 24.78 ** | 55.37 *** |
R-squared | 0.1625 | 0.2627 | 0.2881 | 0.2221 | 0.2933 |
Adjusted R-squared | 0.1594 | 0.2582 | 0.2821 | 0.2076 | 0.2715 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kang, C.-M.; Wang, M.-C.; Lin, L. The Dynamic Typology in the Development Process of Credit Union Movements. Int. J. Financial Stud. 2022, 10, 29. https://doi.org/10.3390/ijfs10020029
Kang C-M, Wang M-C, Lin L. The Dynamic Typology in the Development Process of Credit Union Movements. International Journal of Financial Studies. 2022; 10(2):29. https://doi.org/10.3390/ijfs10020029
Chicago/Turabian StyleKang, Chien-Min, Ming-Chieh Wang, and Lin Lin. 2022. "The Dynamic Typology in the Development Process of Credit Union Movements" International Journal of Financial Studies 10, no. 2: 29. https://doi.org/10.3390/ijfs10020029
APA StyleKang, C. -M., Wang, M. -C., & Lin, L. (2022). The Dynamic Typology in the Development Process of Credit Union Movements. International Journal of Financial Studies, 10(2), 29. https://doi.org/10.3390/ijfs10020029