Corporate Culture, Special Items, and Firm Performance
Abstract
:1. Introduction
2. Literature Review and Hypothesis Development
2.1. Information on Special Items
2.2. Special Items
2.3. Corporate Culture
2.4. Hypothesis Development
3. Research Design
3.1. Measuring Corporate Culture
Respect Strength + Teamwork Strength
3.2. Empirical Specification
α7ZSCORE + α8TACCRUAL + α9WDP + α10RCP + α11LOSS + α12BIG4 +
α13AGE + Year Indicators + Industry Indicators + ε
3.3. Sample Selection
3.4. Sample Descriptive Statistics
3.5. Correlation Matrices
4. Primary Findings
5. Robustness Tests
5.1. Alternative Corporate Culture Measure
5.2. Alternative Sample Periods
5.3. Lagged Measures of Corporate Culture
6. Firm Performance
6.1. Higher Performance vs. Lower Performance
6.2. High-Tech Firms vs. Low-Tech Firms
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
Appendix A. Variable Definitions
Variable Name | Definition | |
D_SPI | = | an indicator variable that equals one if a firm reports a special item (SPI) in a given year; |
CULTURE | = | total culture score, calculated as the sum of the five culture values of innovation, integrity, quality, respect, and teamwork; |
INNOVATION | = | weighted-frequency count of innovation-related words in the Q&A section of earnings calls averaged over a three-year window; |
INTEGRITY | = | weighted-frequency count of integrity-related words in the Q&A section of earnings calls averaged over a three-year window; |
QUALITY | = | weighted-frequency count of quality-related words in the Q&A section of earnings calls averaged over a three-year window; |
RESPECT | = | weighted-frequency count of respect-related words in the Q&A section of earnings calls averaged over a three-year window; |
TEAMWORK | = | weighted-frequency count of teamwork-related words in the Q&A section of earnings calls averaged over a three-year window; |
SIZE | = | natural logarithm of total assets (AT); |
MTB | = | market to book ratio, measured as market value of common shares [Outstanding common shares (CSHO) × price at fiscal year-end (PRCC_F)] divided by total book value of common shares (CEQ); |
LEV | = | leverage ratio, measured as long-term liabilities (DLTT), scaled by total assets (AT); |
ROA | = | return on assets, measured as income before extraordinary items (IB), scaled by total assets (AT); |
SPI | = | an indicator variable that equals 1 if a firm reports a non-zero special items (SPI) and 0 otherwise; |
WDP | = | an indicator variable that equals 1 if a firm reports a non-zero long-term assets write-down (WDP) and 0 otherwise; |
RCP | = | an indicator variable that equals 1 if a firm reports a non-zero restructuring charge (RCP) and 0 otherwise; |
OCF | = | cash flows from operating activities (OANCF), scaled by total assets (AT); |
ZSCORE | = | Altman’s Z-Score, calculated as 3.3 × [Net Income (NI)/Assets (AT)] + Sales (SALE)/Assets (AT) + 0.6 × {market value of common shares [(CSHO) × (PRCC_F)]/Total Liabilities (LT)} + 1.2 × Working Capital [Current Assets (ACT) − Current Liabilities (LCT)]/Assets (AT) + 1.4 × Retained Earnings (RE)/Assets (AT); |
TACCRUAL | = | total operating accruals, calculated as [net income before extraordinary items (IBC) − Cash from operating activities (OANCF − XIDOC)]/Sales (SALE); |
BIG4 | = | an indicator variable that equals 1 if a firm uses a Big 4 auditor and 0 otherwise; |
AGE | = | natural logarithm of the number of years in Compustat database; |
H_CULTURE | = | an indicator variable that equals 1 if the value of CULTURE is greater than median and 0 otherwise; |
LAG_CULTURE1 | = | CULTURE in year t − 1; |
LAG_CULTURE2 | = | CULTURE in year t − 2; |
LAG_CULTURE3 | = | CULTURE in year t − 3; |
1 | Regression results without the WDP and RCP control variables are qualitatively similar to the reported results. |
2 | https://www.fengmai.net/, accessed on 1 May 2024. |
References
- Alciatore, Mimi, Peter Easton, and Nasser Spear. 2000. Accounting for the impairment of long-lived assets: Evidence from the petroleum industry. Journal of Accounting and Economics 29: 151–72. [Google Scholar] [CrossRef]
- Bartov, Eli, and Partha S. Mohanram. 2014. Does Income Statement Placement Matter to Investors? The Case of Gains/Losses from Early Debt Extinguishment. The Accounting Review 89: 2021–55. [Google Scholar] [CrossRef]
- Barua, Abhijit, Steve Lin, and Andrew M. Sbaraglia. 2010. Earnings management using discontinued operations. The Accounting Review 85: 1485–509. [Google Scholar] [CrossRef]
- Benabou, Roland, and Jean Tirole. 2002. Self-confidence and personal motivation. The Quarterly Journal of Economics 117: 871–915. [Google Scholar] [CrossRef]
- Benabou, Roland, and Jean Tirole. 2011. Identity, morals, and taboos: Beliefs as assets. The Quarterly Journal of Economics 126: 805–55. [Google Scholar] [CrossRef]
- Bhandari, Avishek, Babak Mammadov, Maya Thevenot, and Hamid Vakilzadeh. 2022. Corporate Culture and Financial Reporting Quality. Accounting Horizons 36: 1–24. [Google Scholar] [CrossRef]
- Burgstahler, David, James Jiambalvo, and Terry Shevlin. 2002. Do stock price fully reflect the implications of special items for future earnings. Journal of Accounting Research 40: 585–612. [Google Scholar] [CrossRef]
- Cohen, Daniel A., Aiyesha Dey, and Thomas Z. Lys. 2008. Real and Accrual-Based Earnings Management in the Pre- and Post-Sarbanes Oxley Periods. The Accounting Review 83: 757–87. [Google Scholar] [CrossRef]
- Collins, Denton, A. D. I. Masli, Austin L. Reitenga, and Juan Manuel Sanchez. 2009. Earnings Restatements, the Sarbanes-Oxley Act and the Disciplining of Chief Financial Officers. Journal of Accounting, Auditing and Finance 24: 1–34. [Google Scholar] [CrossRef]
- Cready, William M., Thomas J. Lopez, and Craig A. Sisneros. 2012. Negative special items and future earnings: Expense transfer or real improvements? The Accounting Review 87: 1165–95. [Google Scholar] [CrossRef]
- Darrough, Masako N., Lale Guler, and Ping Wang. 2014. Goodwill impairment losses and CEO compensation. Journal of Accounting, Auditing and Finance 29: 435–63. [Google Scholar] [CrossRef]
- Dechow, Patricia M., and Weili Ge. 2006. The persistence of earnings and cash flows and the role of special items: Implications for the accrual anomaly. Review of Accounting Studies 11: 253–96. [Google Scholar] [CrossRef]
- Denison, Daniel R. 1984. Bringing corporate culture to the bottom line. Organizational Dynamics 13: 4–22. [Google Scholar] [CrossRef] [PubMed]
- Denison, Daniel R. 1990. Corporate Culture and Organizational Effectiveness. Hoboken: John Wiley & Sons. [Google Scholar]
- Elliott, John A., and Wayne H. Shaw. 1988. Write-offs as accounting procedures to manage perception. Journal of Accounting Research 26: 91–119. [Google Scholar] [CrossRef]
- Fairfield, Patricia M., Karen A. Kitching, and Vicki Wei Tang. 2009. Are special items informative about future profit margins? Review of Accounting Studies 14: 204–36. [Google Scholar] [CrossRef]
- Fan, Yun, Abhijit Barua, William M. Cready, and Wayne B. Thomas. 2010. Managing Earnings Using Classification Shifting: Evidence from Quarterly Special Items. The Accounting Review 85: 1303–23. [Google Scholar] [CrossRef]
- Gaver, Jennifer J., and Kenneth M. Gaver. 1998. The relation between nonrecurring accounting transactions and CEO cash compensation. The Accounting Review 73: 235–53. [Google Scholar]
- Gordon, George G., and Nancy DiTomaso. 1992. Predicting corporate performance from organizational culture. Journal of Management Studies 29: 783–98. [Google Scholar] [CrossRef]
- Graham, John R., Jillian Grennan, Campbell R. Harvey, and Shivaram Rajgopal. 2022. Corporate culture: Evidence from the field. Journal of Financial Economics 146: 552–94. [Google Scholar] [CrossRef]
- Guiso, Luigi, Paola Sapienza, and Luigi Zingales. 2015. The value of corporate culture. Journal of Financial Economics 117: 60–76. [Google Scholar] [CrossRef]
- Hasan, Mostafa Monzur. 2022. Corporate culture and bank debt. Finance Research Letters 49: 103152. [Google Scholar] [CrossRef]
- Jiang, Fuxiu, Kenneth A. Kim, Yunbiao Ma, John R. Nofsinger, and Beibei Shi. 2019. Corporate culture and investment-cash flow sensitivity. Journal of Business Ethics 154: 425–39. [Google Scholar] [CrossRef]
- Johnson, Peter M., Thomas J. Lopez, and Juan Manuel Sanchez. 2011. Special items: A descriptive analysis. Accounting Horizons 25: 511–36. [Google Scholar] [CrossRef]
- Kile, Charles O., and Mary E. Phillips. 2009. Using industry classification codes to sample high-technology firms: Analysis and recommendations. Journal of Accounting, Auditing and Finance 24: 35–58. [Google Scholar] [CrossRef]
- Kotter, John P., and James L. Heskett. 1992. Corporate Culture and Performance. New York: Free Press. [Google Scholar]
- Kreps, David M. 1990. Corporate culture and economic theory. In Perspectives on Positive Political Economy. Cambridge: Cambridge University Press. [Google Scholar]
- Li, Kai, Feng Mai, Rui Shen, and Xinyan Yan. 2021. Measuring corporate culture using machine learnings. The Review of Financial Studies 34: 3265–315. [Google Scholar] [CrossRef]
- Liu, Xiaoding. 2016. Corruption culture and corporate misconduct. Journal of Financial Economics 122: 307–27. [Google Scholar] [CrossRef]
- Marquardt, CCarol A., and Christine I. Wiedman. 2004. How Are Earnings Managed? An Examination of Specific Accruals. Contemporary Accounting Research 21: 461–91. [Google Scholar] [CrossRef]
- McVay, Sarah Elizabeth. 2006. Earnings management using classification shifting: An examination of core earnings and special items. The Accounting Review 81: 501–32. [Google Scholar] [CrossRef]
- O’Reilly, Charles A., and Jennifer A. Chatman. 1996. Culture as social control: Corporations, cults, and commitment. Research in Organizational Behavior 18: 157–200. [Google Scholar]
- O’Reilly, Charles A., Jennifer A. Chatman, Bernadette Doerr, and David Caldwell. 2014. The promise and problems of organizational culture: CEO personality, culture, and firm performance. Group & Organization Management 39: 595–625. [Google Scholar]
- Riedl, Edward J., and Suraj Srinivasan. 2010. Signaling firm performance through financial presentation: An analysis using special items. Contemporary Accounting Research 27: 289–332. [Google Scholar] [CrossRef]
- Sorensen, Jesper. 2002. The strength of corporate culture and the reliability of firm performance. Administrative Science Quarterly 47: 70–91. [Google Scholar] [CrossRef]
- Stock, James H., and Motohiro Yogo. 2005. Testing for weak instruments in linear IV regression. In Identification and Inference for Econometric Models. Edited by Donald W. K. Andrews and James H. Stoc. New York: Cambridge University Press. [Google Scholar]
- Watson, Luke. 2015. Corporate social responsibility, tax avoidance, and earnings performance. Journal of American Taxation Association 37: 1–21. [Google Scholar] [CrossRef]
- Zaingales, Luigi. 2015. Presidential address: Does finance benefit society? Journal of Finance 70: 1327–63. [Google Scholar] [CrossRef]
Panel A: Sample Distribution by Industry. | |||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Full Sample | SI Sample | Non-SI Sample | Full Sample | SI Sample | Non-SI Sample | ||||||||||
SIC | Description | Obs. | % | Obs. | % | Obs. | % | SIC | Description | Obs. | % | Obs. | % | Obs. | % |
1 | Agricultural Crops | 91 | 0.16% | 79 | 0.19% | 12 | 0.08% | 46 | Pipelines | 23 | 0.04% | 13 | 0.03% | 10 | 0.07% |
7 | Agricultural Services | 19 | 0.03% | 17 | 0.04% | 2 | 0.01% | 47 | Transportation Services | 185 | 0.33% | 150 | 0.36% | 35 | 0.24% |
10 | Metal Mining | 887 | 1.59% | 588 | 1.43% | 299 | 2.08% | 48 | Communications | 2307 | 4.15% | 1891 | 4.58% | 416 | 2.90% |
12 | Coal Mining | 157 | 0.28% | 119 | 0.29% | 38 | 0.26% | 49 | Electric Gas and Sanitary Services | 2156 | 3.88% | 1387 | 3.36% | 769 | 5.35% |
13 | Oil and Gas Extraction | 2288 | 4.11% | 1586 | 3.84% | 702 | 4.89% | 50 | Durable Goods Wholesale | 1107 | 1.99% | 792 | 1.92% | 315 | 2.19% |
14 | Mining | 156 | 0.28% | 126 | 0.31% | 30 | 0.21% | 51 | Nondurable Goods Wholesale | 557 | 1.00% | 459 | 1.11% | 98 | 0.68% |
15 | Building Construction | 43 | 0.08% | 30 | 0.07% | 13 | 0.09% | 52 | Building Materials | 106 | 0.19% | 67 | 0.16% | 39 | 0.27% |
16 | Heavy Construction | 307 | 0.55% | 243 | 0.59% | 64 | 0.45% | 53 | General Merchandise Stores | 309 | 0.56% | 203 | 0.49% | 106 | 0.74% |
17 | Special Construction | 133 | 0.24% | 106 | 0.26% | 27 | 0.19% | 54 | Food Stores | 286 | 0.51% | 195 | 0.47% | 91 | 0.63% |
20 | Food | 1323 | 2.38% | 1079 | 2.62% | 244 | 1.70% | 55 | Automotive Dealers | 397 | 0.71% | 263 | 0.64% | 134 | 0.93% |
21 | Tobacco | 84 | 0.15% | 74 | 0.18% | 10 | 0.07% | 56 | Apparel Stores | 658 | 1.18% | 387 | 0.94% | 271 | 1.89% |
22 | Textile Mill | 139 | 0.25% | 118 | 0.29% | 21 | 0.15% | 57 | Furniture Stores | 171 | 0.31% | 121 | 0.29% | 50 | 0.35% |
23 | Apparel | 453 | 0.81% | 328 | 0.80% | 125 | 0.87% | 58 | Eating and Drinking Places | 836 | 1.50% | 593 | 1.44% | 243 | 1.69% |
24 | Lumber | 307 | 0.55% | 223 | 0.54% | 84 | 0.58% | 59 | Miscellaneous Retail | 1021 | 1.84% | 662 | 1.60% | 359 | 2.50% |
25 | Furniture | 350 | 0.63% | 307 | 0.74% | 43 | 0.30% | 60 | Depository Institutions | 95 | 0.17% | 80 | 0.19% | 15 | 0.10% |
26 | Paper | 592 | 1.06% | 532 | 1.29% | 60 | 0.42% | 61 | Nondepository Credit Institutions | 86 | 0.15% | 50 | 0.12% | 36 | 0.25% |
27 | Printing | 456 | 0.82% | 387 | 0.94% | 69 | 0.48% | 62 | Security and Commodity Brokers | 410 | 0.74% | 309 | 0.75% | 101 | 0.70% |
28 | Chemicals | 6219 | 11.18% | 4280 | 10.37% | 1939 | 13.50% | 63 | Insurance Carriers | 158 | 0.28% | 101 | 0.24% | 57 | 0.40% |
29 | Petroleum Refining | 486 | 0.87% | 333 | 0.81% | 153 | 1.06% | 64 | Insurance Agents Brokers | 216 | 0.39% | 161 | 0.39% | 55 | 0.38% |
30 | Rubber | 346 | 0.62% | 284 | 0.69% | 62 | 0.43% | 65 | Real Estate | 263 | 0.47% | 202 | 0.49% | 61 | 0.42% |
31 | Leather | 137 | 0.25% | 102 | 0.25% | 35 | 0.24% | 67 | Investment Offices | 695 | 1.25% | 524 | 1.27% | 171 | 1.19% |
32 | Stone Clay Glass | 330 | 0.59% | 261 | 0.63% | 69 | 0.48% | 70 | Hotels | 165 | 0.30% | 137 | 0.33% | 28 | 0.19% |
33 | Primary Metal | 692 | 1.24% | 542 | 1.31% | 150 | 1.04% | 72 | Personal Services | 209 | 0.38% | 160 | 0.39% | 49 | 0.34% |
34 | Fabricated Metal | 667 | 1.20% | 562 | 1.36% | 105 | 0.73% | 73 | Business Services | 7952 | 14.30% | 5921 | 14.35% | 2031 | 14.14% |
35 | Industrial Machinery | 3042 | 5.47% | 2478 | 6.01% | 564 | 3.93% | 75 | Auto Repair Services | 88 | 0.16% | 73 | 0.18% | 15 | 0.10% |
36 | Electronic Equipment | 4994 | 8.98% | 3762 | 9.12% | 1232 | 8.58% | 78 | Motion Pictures | 187 | 0.34% | 149 | 0.36% | 38 | 0.26% |
37 | Transportation Equipment | 1482 | 2.66% | 1158 | 2.81% | 324 | 2.26% | 79 | Amusement | 488 | 0.88% | 406 | 0.98% | 82 | 0.57% |
38 | Measuring Instruments | 3605 | 6.48% | 2618 | 6.35% | 987 | 6.87% | 80 | Health Services | 1042 | 1.87% | 820 | 1.99% | 222 | 1.55% |
39 | Miscellaneous Manufacturing | 384 | 0.69% | 294 | 0.71% | 90 | 0.63% | 81 | Legal Services | 35 | 0.06% | 23 | 0.06% | 12 | 0.08% |
40 | Railroad Transportation | 149 | 0.27% | 101 | 0.24% | 48 | 0.33% | 82 | Educational Services | 406 | 0.73% | 261 | 0.63% | 145 | 1.01% |
41 | Local/Suburban Transit | 36 | 0.06% | 29 | 0.07% | 7 | 0.05% | 83 | Social Services | 60 | 0.11% | 45 | 0.11% | 15 | 0.10% |
42 | Motor Freight Transportation | 329 | 0.59% | 210 | 0.51% | 119 | 0.83% | 87 | Engineering and Accounting | 1036 | 1.86% | 802 | 1.94% | 234 | 1.63% |
44 | Water Transportation | 519 | 0.93% | 337 | 0.82% | 182 | 1.27% | 89 | Miscellaneous Services | 1 | 0.00% | 0 | 0.00% | 1 | 0.01% |
45 | Transportation By Air | 502 | 0.90% | 378 | 0.92% | 124 | 0.86% | 99 | Nonclassified Establishments | 208 | 0.37% | 178 | 0.43% | 30 | 0.21% |
Panel A: Full Sample. | ||||||||
Variable | Observations | Mean | Std Dev | 25th Pctl | Median | 75th Pctl | ||
D_SPI | 55,623 | 0.742 | 0.438 | 0.000 | 1.000 | 1.000 | ||
CULTURE | 55,623 | 15.546 | 5.954 | 11.150 | 14.482 | 18.836 | ||
SIZE | 55,623 | 6.904 | 2.048 | 5.471 | 6.857 | 8.288 | ||
MTB | 55,623 | 3.221 | 6.822 | 1.264 | 2.182 | 3.875 | ||
LEV | 55,623 | 0.208 | 0.210 | 0.008 | 0.168 | 0.325 | ||
ROA | 55,623 | −0.031 | 0.228 | −0.037 | 0.030 | 0.072 | ||
OCF | 55,623 | 0.046 | 0.178 | 0.027 | 0.079 | 0.130 | ||
ZSCORE | 55,623 | 3.391 | 6.122 | 1.176 | 2.650 | 4.754 | ||
TACCRUAL | 55,623 | −0.246 | 1.031 | −0.167 | −0.071 | −0.024 | ||
WDP | 55,623 | 0.182 | 0.386 | 0.000 | 0.000 | 0.000 | ||
RCP | 55,623 | 0.366 | 0.482 | 0.000 | 0.000 | 1.000 | ||
LOSS | 55,623 | 0.339 | 0.473 | 0.000 | 0.000 | 1.000 | ||
BIG4 | 55,623 | 0.828 | 0.377 | 1.000 | 1.000 | 1.000 | ||
AGE | 55,623 | 2.798 | 0.769 | 2.197 | 2.833 | 3.332 | ||
Panel B: Special Items Sample vs. Non-Special Items Sample. | ||||||||
SI Sample | Non-SI Sample | Difference in Mean | ||||||
Variable | Obs. | Mean | 50th Pctl | Obs. | Mean | Median | p-Value | |
CULTURE | 41,256 | 15.407 | 14.363 | 14,367 | 15.945 | 14.86 | <0.0001 | |
SIZE | 41,256 | 7.149 | 7.129 | 14,367 | 6.199 | 6.017 | <0.0001 | |
MTB | 41,256 | 3.04 | 2.101 | 14,367 | 3.743 | 2.465 | <0.0001 | |
LEV | 41,256 | 0.229 | 0.198 | 14,367 | 0.146 | 0.067 | <0.0001 | |
ROA | 41,256 | −0.031 | 0.027 | 14,367 | −0.033 | 0.041 | <0.0001 | |
OCF | 41,256 | 0.051 | 0.078 | 14,367 | 0.032 | 0.085 | <0.0001 | |
ZSCORE | 41,256 | 2.891 | 2.449 | 14,367 | 4.826 | 3.547 | <0.0001 | |
TACCRUAL | 41,256 | −0.221 | −0.073 | 14,367 | −0.317 | −0.064 | <0.0001 | |
WDP | 41,256 | 0.243 | 0.000 | 14,367 | 0.009 | 0.000 | <0.0001 | |
RCP | 41,256 | 0.488 | 0.000 | 14,367 | 0.017 | 0.000 | <0.0001 | |
LOSS | 41,256 | 0.351 | 0.000 | 14,367 | 0.304 | 0.000 | <0.0001 | |
BIG4 | 41,256 | 0.848 | 1.000 | 14,367 | 0.77 | 1.000 | <0.0001 | |
AGE | 41,256 | 2.848 | 2.833 | 14,367 | 2.653 | 2.639 | <0.0001 |
D_SPI | CULTURE | SIZE | MTB | LEV | ROA | OCF | ZSCORE | TACCRUAL | WDP | RCP | LOSS | BIG4 | AGE | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
D_SPI | −0.034 | 0.208 | −0.083 | 0.199 | −0.077 | −0.026 | −0.152 | −0.039 | 0.266 | 0.428 | 0.044 | 0.091 | 0.109 | |
<0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | ||
CULTURE | −0.040 | 1.000 | −0.275 | 0.164 | −0.189 | −0.183 | −0.166 | 0.019 | −0.097 | −0.014 | −0.048 | 0.220 | −0.148 | −0.192 |
<0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | 0.001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | ||
SIZE | 0.203 | −0.255 | 0.026 | 0.444 | 0.316 | 0.296 | −0.044 | 0.021 | 0.065 | 0.209 | −0.371 | 0.437 | 0.374 | |
<0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | ||
MTB | −0.045 | 0.116 | 0.002 | 1.000 | −0.081 | 0.276 | 0.226 | 0.392 | 0.061 | −0.089 | −0.066 | −0.158 | 0.073 | −0.041 |
<0.0001 | <0.0001 | 0.690 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | ||
LEV | 0.174 | −0.133 | 0.304 | −0.062 | −0.059 | 0.001 | −0.464 | −0.100 | 0.056 | 0.132 | −0.034 | 0.152 | 0.157 | |
<0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | 0.872 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | ||
ROA | 0.005 | −0.230 | 0.415 | 0.032 | −0.025 | 1.000 | 0.703 | 0.564 | 0.476 | −0.121 | −0.062 | −0.820 | 0.153 | 0.214 |
0.279 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | ||
OCF | 0.048 | −0.232 | 0.406 | 0.024 | 0.012 | 0.812 | 0.422 | −0.040 | −0.046 | −0.031 | −0.559 | 0.157 | 0.159 | |
<0.0001 | <0.0001 | <0.0001 | <0.0001 | 0.005 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | ||
ZSCORE | −0.138 | 0.013 | 0.041 | 0.180 | −0.330 | 0.466 | 0.401 | 1.000 | 0.315 | −0.106 | −0.128 | −0.402 | 0.065 | 0.014 |
<0.0001 | 0.003 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | 0.001 | ||
TACCRUAL | 0.041 | −0.104 | 0.138 | −0.013 | 0.007 | 0.433 | 0.305 | 0.080 | −0.106 | 0.014 | −0.418 | 0.003 | 0.151 | |
<0.0001 | <0.0001 | <0.0001 | 0.003 | 0.080 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | 0.001 | <0.0001 | 0.448 | <0.0001 | ||
WDP | 0.266 | −0.018 | 0.066 | −0.031 | 0.048 | −0.080 | −0.015 | −0.081 | −0.014 | 1.000 | 0.133 | 0.106 | 0.032 | 0.031 |
<0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | 0.000 | <0.0001 | 0.001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | ||
RCP | 0.428 | −0.057 | 0.206 | −0.041 | 0.107 | 0.001 | 0.027 | −0.131 | 0.048 | 0.133 | 0.033 | 0.123 | 0.175 | |
<0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | 0.725 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | ||
LOSS | 0.044 | 0.225 | −0.373 | −0.019 | 0.030 | −0.624 | −0.511 | −0.272 | −0.248 | 0.106 | 0.033 | 1.000 | −0.168 | −0.247 |
<0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | ||
BIG4 | 0.091 | −0.147 | 0.443 | 0.030 | 0.119 | 0.182 | 0.177 | 0.073 | 0.054 | 0.032 | 0.123 | −0.168 | 0.058 | |
<0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | ||
AGE | 0.111 | −0.203 | 0.372 | −0.042 | 0.087 | 0.210 | 0.187 | −0.059 | 0.122 | 0.035 | 0.179 | −0.246 | 0.066 | |
<0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 |
Panel A: Main Findings. | |||||||||||
Logistic Regression | |||||||||||
Dependent Variable = D_SPI | |||||||||||
Column 1 | Column 2 | ||||||||||
Full Sample | Excluding Obs. in Regulated Industries | ||||||||||
Parameter | Estimate | Chi-Square | Pr > ChiSq | Estimate | Chi-Square | Pr > ChiSq | |||||
Intercept | −0.472 *** | 13.36 | 0.000 | −0.446 *** | 9.48 | 0.002 | |||||
CULTURE | −0.009 *** | 12.85 | 0.000 | −0.011 *** | 18.98 | <0.0001 | |||||
SIZE | 0.177 *** | 397.78 | <0.0001 | 0.181 *** | 336.73 | <0.0001 | |||||
MTB | −0.010 *** | 26.91 | <0.0001 | −0.010 *** | 27.31 | <0.0001 | |||||
LEV | 1.256 *** | 300.69 | <0.0001 | 1.250 *** | 238.28 | <0.0001 | |||||
ROA | −0.410 *** | 11.63 | 0.001 | −0.418 *** | 10.79 | 0.001 | |||||
OCF | 1.005 *** | 62.01 | <0.0001 | 1.034 *** | 59.11 | <0.0001 | |||||
ZSCORE | −0.017 *** | 55.81 | <0.0001 | −0.018 *** | 59.36 | <0.0001 | |||||
TACCRUAL | 0.039 *** | 10.67 | 0.001 | 0.043 *** | 11.91 | 0.001 | |||||
WDP | 3.586 *** | 1516.22 | <0.0001 | 3.625 *** | 1216.57 | <0.0001 | |||||
RCP | 3.774 *** | 3183.23 | <0.0001 | 3.849 *** | 2805.32 | <0.0001 | |||||
LOSS | 0.391 *** | 119.00 | <0.0001 | 0.354 *** | 83.48 | <0.0001 | |||||
BIG4 | −0.010 | 0.09 | 0.764 | 0.010 | 0.08 | 0.778 | |||||
AGE | 0.020 | 1.25 | 0.264 | 0.021 | 1.11 | 0.293 | |||||
Year Indicator | Yes | Yes | |||||||||
Industry Indicator | Yes | Yes | |||||||||
Observations | 55,623 | 47,494 | |||||||||
Pseudo R2 | 0.4642 | 0.4767 | |||||||||
Panel B: Individual Components of Corporate Culture. | |||||||||||
Dependent Variable = D_SPI | |||||||||||
Column 1 | Column 2 | Column 3 | Column 4 | Column 5 | |||||||
Parameter | Estimate | Chi-Square | Estimate | Chi-Square | Estimate | Chi-Square | Estimate | Chi-Square | Estimate | Chi-Square | |
Intercept | −0.701 *** | 32.18 | −0.640 *** | 27.86 | −0.568 *** | 21.47 | −0.583 *** | 22.63 | −0.455 *** | 14.01 | |
INNOVATION | 0.007 | 2.06 | |||||||||
INTEGRITY | −0.005 | 0.32 | |||||||||
QUALITY | −0.024 *** | 8.23 | |||||||||
RESPECT | −0.015 ** | 5.75 | |||||||||
TEAMWORK | −0.056 *** | 63.08 | |||||||||
SIZE | 0.178 *** | 403.24 | 0.179 *** | 406.35 | 0.177 *** | 396.32 | 0.177 *** | 390.93 | 0.177 *** | 400.13 | |
MTB | −0.010 *** | 30.83 | −0.010 *** | 29.75 | −0.010 *** | 28.60 | −0.010 *** | 28.61 | −0.010 *** | 28.26 | |
LEV | 1.290 *** | 317.32 | 1.280 *** | 314.72 | 1.271 *** | 309.73 | 1.278 *** | 314.11 | 1.219 *** | 283.04 | |
ROA | −0.379 *** | 9.91 | −0.390 *** | 10.54 | −0.395 *** | 10.78 | −0.397 *** | 10.91 | −0.395 *** | 10.79 | |
OCF | 1.018 *** | 63.87 | 1.019 *** | 63.91 | 1.016 *** | 63.57 | 1.020 *** | 64.03 | 0.928 *** | 52.49 | |
ZSCORE | −0.017 *** | 59.05 | −0.017 *** | 58.18 | −0.017 *** | 57.08 | −0.017 *** | 56.45 | −0.017 *** | 59.61 | |
TACCRUAL | 0.038 *** | 10.22 | 0.038 *** | 10.38 | 0.039 *** | 10.63 | 0.039 *** | 10.95 | 0.035 *** | 8.65 | |
WDP | 3.585 *** | 1515.88 | 3.585 *** | 1515.91 | 3.586 *** | 1516.25 | 3.584 *** | 1515.31 | 3.591 *** | 1519.75 | |
RCP | 3.774 *** | 3182.18 | 3.775 *** | 3183.64 | 3.775 *** | 3184.14 | 3.774 *** | 3181.64 | 3.771 *** | 3175.88 | |
LOSS | 0.377 *** | 111.08 | 0.381 *** | 114.01 | 0.384 *** | 115.44 | 0.383 *** | 114.80 | 0.402 *** | 125.66 | |
BIG4 | −0.007 | 0.05 | −0.008 | 0.06 | −0.007 | 0.04 | −0.010 | 0.09 | −0.005 | 0.02 | |
AGE | 0.025 | 1.95 | 0.024 | 1.79 | 0.021 | 1.42 | 0.023 | 1.73 | 0.012 | 0.44 | |
Year Indicator | Yes | Yes | Yes | Yes | Yes | ||||||
Industry Indicator | Yes | Yes | Yes | Yes | Yes | ||||||
Observations | 55,623 | 55,623 | 55,623 | 55,623 | 55,623 | ||||||
Pseudo R2 | 0.4640 | 0.4639 | 0.4641 | 0.4640 | 0.4651 |
Dependent Variable = D_SPI | |||
---|---|---|---|
Logistic Regression | |||
Parameter | Estimate | Chi-Square | Pr > ChiSq |
Intercept | −0.621 *** | 26.27 | <0.0001 |
H_CULTURE | −0.037 ** | 5.82 | 0.016 |
SIZE | 0.178 *** | 401.07 | <0.0001 |
MTB | −0.010 *** | 29.12 | <0.0001 |
LEV | 1.275 *** | 311.11 | <0.0001 |
ROA | −0.392 *** | 10.65 | 0.001 |
OCF | 1.017 *** | 63.62 | <0.0001 |
ZSCORE | −0.017 *** | 57.42 | <0.0001 |
TACCRUAL | 0.038 *** | 10.51 | 0.001 |
WDP | 3.585 *** | 1516.02 | <0.0001 |
RCP | 3.776 *** | 3185.20 | <0.0001 |
LOSS | 0.384 *** | 115.10 | <0.0001 |
BIG4 | −0.008 | 0.05 | 0.825 |
AGE | 0.023 | 1.63 | 0.201 |
Year Indicator | Yes | ||
Industry Indicator | Yes | ||
Observations | 55,623 | ||
Pseudo R2 | 0.464 |
Dependent Variable = D_SPI | ||||||
---|---|---|---|---|---|---|
Column 1 | Column 2 | |||||
2002–2011 | 2012–2021 | |||||
Parameter | Estimate | Chi-Square | Pr > ChiSq | Estimate | Chi-Square | Pr > ChiSq |
Intercept | −1.119 *** | 51.96 | <0.0001 | −0.116 | 0.40 | 0.529 |
CULTURE | −0.010 *** | 7.22 | 0.007 | −0.009 *** | 8.54 | 0.004 |
SIZE | 0.174 *** | 197.79 | <0.0001 | 0.181 *** | 191.35 | <0.0001 |
MTB | −0.012 *** | 8.52 | 0.004 | −0.009 *** | 19.04 | <0.0001 |
LEV | 1.123 *** | 115.79 | <0.0001 | 1.344 *** | 173.83 | <0.0001 |
ROA | −0.837 *** | 19.31 | <0.0001 | −0.135 | 0.70 | 0.403 |
OCF | 1.318 *** | 47.32 | <0.0001 | 0.804 *** | 20.95 | <0.0001 |
ZSCORE | −0.019 *** | 28.87 | <0.0001 | −0.016 *** | 28.88 | <0.0001 |
TACCRUAL | 0.107 *** | 8.33 | 0.004 | 0.018 | 2.01 | 0.156 |
WDP1 | 3.617 *** | 968.20 | <0.0001 | 3.510 *** | 542.15 | <0.0001 |
RCP1 | 3.815 *** | 1806.98 | <0.0001 | 3.714 *** | 1364.83 | <0.0001 |
LOSS | 0.500 *** | 92.98 | <0.0001 | 0.258 *** | 26.32 | <0.0001 |
BIG4 | 0.109 ** | 4.98 | 0.026 | −0.121 ** | 6.28 | 0.012 |
AGE | 0.056 ** | 4.78 | 0.029 | −0.034 | 1.82 | 0.177 |
Year Indicator | Yes | Yes | ||||
Industry Indicator | Yes | Yes | ||||
Observations | 27,635 | 27,988 | ||||
Pseudo R2 | 0.484 | 0.4317 |
Panel A: Using Lagged CULTURE Measures. | |||||||||||||||
Dependent Variable = D_SPI | |||||||||||||||
Column 1 | Column 2 | Column 3 | |||||||||||||
Parameter | Estimate | Chi-Square | Pr > ChiSq | Estimate | Chi-Square | Pr > ChiSq | Estimate | Chi-Square | Pr > ChiSq | ||||||
Intercept | −0.489 *** | 11.93 | 0.001 | −0.365 ** | 5.55 | 0.018 | −0.297 * | 3.02 | 0.082 | ||||||
LAG_CULTURE1 | −0.008 *** | 8.26 | 0.004 | ||||||||||||
LAG_CULTURE2 | −0.009 *** | 9.71 | 0.002 | ||||||||||||
LAG_CULTURE3 | −0.011 *** | 10.70 | 0.001 | ||||||||||||
SIZE | 0.179 *** | 349.27 | <0.0001 | 0.177 *** | 291.93 | <0.0001 | 0.175 *** | 241.92 | <0.0001 | ||||||
MTB | −0.010 *** | 25.25 | <0.0001 | −0.011 ** | 25.35 | <0.0001 | −0.012 *** | 24.78 | <0.0001 | ||||||
LEV | 1.264 *** | 257.79 | <0.0001 | 1.259 *** | 216.37 | <0.0001 | 1.247 *** | 178.07 | <0.0001 | ||||||
ROA | −0.348 ** | 6.48 | 0.011 | −0.287 * | 3.54 | 0.060 | −0.209 | 1.53 | 0.216 | ||||||
OCF | 0.931 *** | 42.21 | <0.0001 | 0.926 *** | 33.67 | <0.0001 | 0.903 *** | 25.82 | <0.0001 | ||||||
ZSCORE | −0.016 *** | 39.72 | <0.0001 | −0.018 *** | 38.68 | <0.0001 | −0.017 *** | 30.50 | <0.0001 | ||||||
TACCRUAL | 0.045 *** | 9.96 | 0.002 | 0.045 *** | 7.26 | 0.007 | 0.047 ** | 6.07 | 0.014 | ||||||
WDP1 | 3.592 *** | 1212.06 | <0.0001 | 3.545 *** | 1001.95 | <0.0001 | 3.549 *** | 814.44 | <0.0001 | ||||||
RCP1 | 3.770 *** | 2794.66 | <0.0001 | 3.760 *** | 2447.30 | <0.0001 | 3.784 *** | 2110.10 | <0.0001 | ||||||
LOSS | 0.373 *** | 89.61 | <0.0001 | 0.363 *** | 70.23 | <0.0001 | 0.362 *** | 58.06 | <0.0001 | ||||||
BIG4 | −0.019 | 0.27 | 0.607 | −0.029 | 0.53 | 0.465 | −0.018 | 0.16 | 0.687 | ||||||
AGE | 0.035 * | 2.85 | 0.091 | 0.018 | 0.58 | 0.448 | 0.013 | 0.23 | 0.630 | ||||||
Year Indicator | Yes | Yes | Yes | ||||||||||||
Industry Indicator | Yes | Yes | Yes | ||||||||||||
Observations | 55,623 | 42,555 | 37,117 | ||||||||||||
Pseudo R2 | 0.4585 | 0.4542 | 0.4532 | ||||||||||||
Panel B: Two-Stage Regression Analysis (2SLS). | |||||||||||||||
Column 1 | Column 2 | ||||||||||||||
Dep. Var. = CULTURE_Instrumental | Dep. Var. = D_SPI | ||||||||||||||
Parameter | Estimate | t-stat. | p-value | Estimate | Chi-Square | Pr > ChiSq | |||||||||
Intercept | 10.643 *** | 30.69 | <0.0001 | −1.109 *** | 160.94 | <0.0001 | |||||||||
CULTURE_Mean | 0.695 *** | 35.69 | <0.0001 | ||||||||||||
CULTURE_Instrumental | −0.006 *** | 6.99 | 0.008 | ||||||||||||
SIZE | −0.153 *** | −10.48 | <0.0001 | 0.176 *** | 403.19 | <0.0001 | |||||||||
MTB | 0.039 *** | 12.87 | <0.0001 | −0.009 *** | 24.10 | <0.0001 | |||||||||
LEV | −2.241 *** | −19.49 | <0.0001 | 1.301 *** | 331.72 | <0.0001 | |||||||||
ROA | −1.755 *** | −9.32 | <0.0001 | −0.347 *** | 8.45 | 0.004 | |||||||||
OCF | −3.287 *** | −15.65 | <0.0001 | 0.923 *** | 53.59 | <0.0001 | |||||||||
ZSCORE | 0.045 *** | 10.59 | <0.0001 | −0.015 *** | 46.39 | <0.0001 | |||||||||
TACCRUAL | 0.016 | 0.71 | 0.476 | 0.034 *** | 8.20 | 0.004 | |||||||||
WDP | −0.074 | −1.38 | 0.167 | 3.589 *** | 1519.96 | <0.0001 | |||||||||
RCP | −0.117 ** | −2.52 | 0.012 | 3.785 *** | 3213.33 | <0.0001 | |||||||||
LOSS | 0.831 *** | 14.61 | <0.0001 | 0.399 *** | 124.95 | <0.0001 | |||||||||
BIG4 | −0.512 *** | −8.27 | <0.0001 | −0.031 | 0.82 | 0.366 | |||||||||
AGE | −0.329 *** | −10.85 | <0.0001 | 0.026 | 2.12 | 0.145 | |||||||||
Year Indicator | Yes | Yes | |||||||||||||
Industry Indicator | Yes | Yes | |||||||||||||
Observations | 55,623 | 55,623 | |||||||||||||
Adjusted R2/Pseudo R2 | 0.365 | 0.462 | |||||||||||||
Cragg–Donald F statistics | 41.09 |
Dependent Variable = D_SPI | ||||||
---|---|---|---|---|---|---|
Column 1 | Column 2 | |||||
Higher Earnings Performance | Lower Earnings Performance | |||||
Parameter | Estimate | Chi-Square | Pr > ChiSq | Estimate | Chi-Square | Pr > ChiSq |
Intercept | −0.327 | 1.89 | 0.170 | −0.456 *** | 7.83 | 0.005 |
CULTURE | 0.002 | 0.13 | 0.719 | −0.010 *** | 12.78 | 0.000 |
SIZE | 0.121 *** | 58.82 | <0.0001 | 0.198 *** | 315.53 | <0.0001 |
MTB | −0.007 * | 3.48 | 0.062 | −0.007 *** | 8.98 | 0.003 |
LEV | 1.322 *** | 71.03 | <0.0001 | 1.182 *** | 202.79 | <0.0001 |
ROA | −0.365 | 0.52 | 0.473 | −0.779 *** | 34.28 | <0.0001 |
OCF | −1.147 *** | 11.81 | 0.001 | 1.489 *** | 104.88 | <0.0001 |
ZSCORE | −0.018 *** | 15.44 | <0.0001 | −0.012 *** | 21.19 | <0.0001 |
TACCRUAL | 0.024 | 0.03 | 0.852 | 0.030 ** | 6.35 | 0.012 |
WDP | 3.719 *** | 353.81 | <0.0001 | 3.539 *** | 1151.06 | <0.0001 |
RCP | 3.886 *** | 761.96 | <0.0001 | 3.703 *** | 2358.22 | <0.0001 |
LOSS | −0.269 | 0.12 | 0.728 | 0.360 *** | 89.59 | <0.0001 |
BIG4 | 0.147 ** | 4.55 | 0.033 | −0.024 | 0.36 | 0.546 |
AGE | −0.033 | 0.94 | 0.333 | 0.062 *** | 8.23 | 0.004 |
Year Indicator | Yes | Yes | ||||
Industry Indicator | Yes | Yes | ||||
Observations | 13,583 | 42,040 | ||||
Pseudo R2 | 0.4461 | 0.4691 |
Dependent Variable = D_SPI | ||||||
---|---|---|---|---|---|---|
Column 1 | Column 2 | |||||
High-Tech Firms | Low-Tech Firms | |||||
Parameter | Estimate | Chi-Square | Pr > ChiSq | Estimate | Chi-Square | Pr > ChiSq |
Intercept | −0.677 *** | 12.15 | 0.001 | −0.338 ** | 4.60 | 0.032 |
CULTURE | −0.011 *** | 9.68 | 0.002 | −0.004 ** | 4.87 | 0.027 |
SIZE | 0.205 *** | 193.26 | <0.0001 | 0.159 *** | 193.47 | <0.0001 |
MTB | −0.005 ** | 4.35 | 0.037 | −0.012 *** | 18.80 | <0.0001 |
LEV | 0.917 *** | 66.49 | <0.0001 | 1.439 *** | 218.88 | <0.0001 |
ROA | −0.432 ** | 6.61 | 0.010 | −0.482 ** | 6.39 | 0.012 |
OCF | 1.044 *** | 33.21 | <0.0001 | 0.611 *** | 9.94 | 0.002 |
ZSCORE | −0.015 *** | 28.29 | <0.0001 | −0.025 *** | 35.98 | <0.0001 |
TACCRUAL | 0.042 *** | 9.77 | 0.002 | 0.006 | 0.04 | 0.836 |
WDP | 3.868 *** | 568.81 | <0.0001 | 3.404 *** | 923.71 | <0.0001 |
RCP | 4.692 *** | 913.90 | <0.0001 | 3.367 *** | 2018.42 | <0.0001 |
LOSS | 0.250 *** | 20.91 | <0.0001 | 0.448 *** | 81.08 | <0.0001 |
BIG4 | −0.082 | 2.44 | 0.119 | 0.083 * | 3.30 | 0.069 |
AGE | 0.094 *** | 8.40 | 0.004 | −0.001 | 0.00 | 0.954 |
Year Indicator | Yes | Yes | ||||
Industry Indicator | Yes | Yes | ||||
Observations | 20,808 | 34,815 | ||||
Pseudo R2 | 0.5047 | 0.4452 | ||||
Coefficient Comparison Test | ||||||
Coefficient on CULTURE of High-Tech Firms vs. Coefficient of CULTURE of Low-Tech Firms | ||||||
F-Stat. = 11.88; p-value = 0.0006 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, S.T.; Sun, L. Corporate Culture, Special Items, and Firm Performance. Int. J. Financial Stud. 2024, 12, 83. https://doi.org/10.3390/ijfs12030083
Kim ST, Sun L. Corporate Culture, Special Items, and Firm Performance. International Journal of Financial Studies. 2024; 12(3):83. https://doi.org/10.3390/ijfs12030083
Chicago/Turabian StyleKim, S. Thomas, and Li Sun. 2024. "Corporate Culture, Special Items, and Firm Performance" International Journal of Financial Studies 12, no. 3: 83. https://doi.org/10.3390/ijfs12030083
APA StyleKim, S. T., & Sun, L. (2024). Corporate Culture, Special Items, and Firm Performance. International Journal of Financial Studies, 12(3), 83. https://doi.org/10.3390/ijfs12030083