Variance-Based Sensitivity Analysis of Fitting Parameters to Impact on Cycling Durability of Polymer Electrolyte Fuel Cells
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
AST | accelerated stress test |
C | carbon |
CL | catalyst layer |
FC | fuel cell |
GDL | gas diffusion layer |
PCC | Pearson correlation coefficient |
Pt | platinum |
PtO | platinum oxide |
Pt | platinum ion |
PEM | polymer electrolyte membrane |
References
- Eikerling, M.; Kulikovsky, A. Polymer Electrolyte Fuel Cells: Physical Principles of Materials and Operation; Elsevier: Amsterdam, The Netherlands, 2017. [Google Scholar]
- Hacker, V.; Mitsushima, S. (Eds.) Fuel Cells and Hydrogen: From Fundamentals to Applied Research; Elsevier: Amsterdam, The Netherlands, 2018. [Google Scholar]
- Kulikovsky, A.; Berg, T. Positioning of a reference electrode in a PEM fuel cell. J. Electrochem. Soc. 2011, 162, F843–F848. [Google Scholar] [CrossRef]
- Karpenko-Jereb, L.; Araki, T. Modeling of polymer electrolyte fuel cells. In Fuel Cells and Hydrogen: From Fundamentals to Applied Research; Hacker, V., Mitsushima, S., Eds.; Elsevier: Amsterdam, The Netherlands, 2018; pp. 41–62. [Google Scholar]
- Karpenko-Jereb, L.; Sternig, C.; Fink, C.; Tatschl, R. Membrane degradation model for 3D CFD analysis of fuel cell performance as a function of time. Int. J. Hydrogen Energy 2016, 41, 13644–13656. [Google Scholar] [CrossRef] [Green Version]
- Pandy, A.; Yang, Z.; Gummalla, M.; Atrazhev, V.V.; Kuzminyh, N.Y.; Sultanov, V.I.; Burlatsky, S. A carbon corrosion model to evaluate the effect of steady state and transient operation of a polymer electrolyte membrane fuel cell. J. Electrochem. Soc. 2013, 160, F972–F979. [Google Scholar] [CrossRef] [Green Version]
- Fellner, K.; Kovtunenko, V.A. A singularly perturbed nonlinear Poisson–Boltzmann equation: Uniform and super-asymptotic expansions. Math. Meth. Appl. Sci. 2015, 38, 3575–3586. [Google Scholar] [CrossRef]
- Fellner, K.; Kovtunenko, V.A. A discontinuous Poisson–Boltzmann equation with interfacial transfer: Homogenisation and residual error estimate. Appl. Anal. 2016, 95, 2661–2682. [Google Scholar] [CrossRef] [Green Version]
- González Granada, J.R.; Kovtunenko, V.A. Entropy method for generalized Poisson–Nernst–Planck equations. Anal. Math. Phys. 2018, 8, 603–619. [Google Scholar] [CrossRef] [Green Version]
- Dreyer, W.; Guhlke, C.; Müller, R. A new perspective on the electron transfer: Recovering the Butler–Volmer equation in non-equilibrium thermodynamics. Phys. Chem. Chem. Phys. 2016, 18, 24966–24983. [Google Scholar] [CrossRef]
- Kovtunenko, V.A.; Reichelt, S.; Zubkova, A.V. Corrector estimates in homogenization of a nonlinear transmission problem for diffusion equations in connected domains. Math. Meth. Appl. Sci. 2020, 43, 1838–1856. [Google Scholar] [CrossRef] [Green Version]
- Kovtunenko, V.A.; Zubkova, A.V. On generalized Poisson–Nernst–Planck equations with inhomogeneous boundary conditions: A-priori estimates and stability. Math. Meth. Appl. Sci. 2017, 40, 2284–2299. [Google Scholar] [CrossRef]
- Kovtunenko, V.A.; Zubkova, A.V. Mathematical modeling of a discontinuous solution of the generalized Poisson–Nernst–Planck problem in a two-phase medium. Kinet. Relat. Mod. 2018, 11, 119–135. [Google Scholar] [CrossRef]
- Kovtunenko, V.A.; Zubkova, A.V. Homogenization of the generalized Poisson–Nernst–Planck problem in a two-phase medium: Correctors and estimates. Appl. Anal. 2021, 100, 253–274. [Google Scholar] [CrossRef] [Green Version]
- Kovtunenko, V.A.; Zubkova, A.V. Existence and two-scale convergence of the generalised Poisson–Nernst–Planck problem with non-linear interface conditions. Eur. J. Appl. Math. 2021, 32, 683–710. [Google Scholar] [CrossRef]
- Khludnev, A.M.; Kovtunenko, V.A. Analysis of Cracks in Solids; WIT-Press: Boston, MA, USA, 2000. [Google Scholar]
- Holby, E.F.; Morgan, D. Application of Pt nanoparticle dissolution and oxidation modeling to understanding degradation in PEM fuel cells. J. Electrochem. Soc. 2012, 159, B578–B591. [Google Scholar] [CrossRef]
- Li, Y.; Moriyama, K.; Gu, W.; Arisetty, S.; Wang, C.Y. A one-dimensional Pt degradation model for polymer electrolyte fuel cells. J. Electrochem. Soc. 2015, 162, F834–F842. [Google Scholar] [CrossRef] [Green Version]
- Kannan, R.; Kim, A.R.; Kim, J.S.; Yoo, D.J. 3D graphene-mixed metal oxide-supported carbonsingle bondpalladium quantum dot nanoarchitectures—A facile bifunctional electrocatalyst for direct ethylene glycol fuel cells and oxygen evolution reactions. Int. J. Hydrogen Energy 2016, 41, 18033–18043. [Google Scholar] [CrossRef]
- Kumar, T.R.; Yoo, D.J.; Kim, A.R.; Kumar, G.G. Green synthesis of Pt–Pd bimetallic nanoparticle decorated reduced graphene oxide and its robust catalytic activity for efficient ethylene glycol electrooxidation. New J. Chem. 2018, 42, 14386–14393. [Google Scholar] [CrossRef]
- Kovtunenko, V.A.; Karpenko-Jereb, L. Study of voltage cycling conditions on Pt oxidation and dissolution in polymer electrolyte fuel cells. J. Power Source 2021, 493, 229693. [Google Scholar] [CrossRef]
- Kovtunenko, V.A.; Karpenko-Jereb, L. Lifetime of catalyst under voltage cycling in polymer electrolyte fuel cell due to platinum oxidation and dissolution. Technologies 2021, 9, 80. [Google Scholar] [CrossRef]
- Pivac, I.; Barbir, F. Impact of shutdown procedures on recovery phenomena of proton exchange membrane fuel cells. Fuel Cells 2020, 160, 185–195. [Google Scholar] [CrossRef]
- Jayakumar, A.; Madheswaran, D.K.; Kumar, N.M. A critical assessment on functional attributes and degradation mechanism of membrane electrode assembly components in direct methanol fuel cells. Sustainability 2021, 13, 13938. [Google Scholar] [CrossRef]
- Wang, X.Z.; Zhang, M.M.; Shi, D.D.; Zhang, S.C.; Wu, Y.M.; Gong, W.J.; Fan, H.Q. Long-term polarization accelerated degradation of nano-thin C/Ti coated SS316L bipolar plates used in polymer electrolyte membrane fuel cells. Int. J. Hydrogen Energy 2022, 47, 8974–8992. [Google Scholar] [CrossRef]
- Testa, E.; Maggiore, P.; Pace, L.; Dalla Vedova, M.D.L. Sensitivity analysis for a PEM fuel cell model aimed to optimization. WSEAS Trans. Power Syst. 2015, 10, 171–179. [Google Scholar]
Symbol | Value | Units | Description |
---|---|---|---|
L | cm | CL thickness | |
cm | Pt particle diameter | ||
cm | Pt particle volume | ||
21.45 | g/cm | Pt particles density on carbon support | |
g/cm | Pt particles loading on carbon support | ||
0.02 | Pt volume fraction across CL | ||
1/cm | Pt number concentration in CL | ||
0.2 | volume fraction of ionomer increment in cathode | ||
T | 353.15 | K | temperature |
Symbol | Value | Units | Description |
---|---|---|---|
Hz | dissolution attempt frequency | ||
Hz | backward dissolution rate factor | ||
0.5 | Butler–Volmer transfer coefficient for Pt dissolution | ||
n | 2 | electrons transferred during Pt dissolution | |
9.09 | cm/mol | molar volume of Pt | |
J/cm | Pt [1 1 1] surface tension | ||
cm/s | diffusion coefficient of Pt ion in the membrane | ||
0 | potential of hydrogen ions (protons) | ||
Hz | forward Pt oxide formation rate constant | ||
Hz | backward Pt oxide formation rate constant | ||
mol/cm | Pt surface site density | ||
0.5 | Butler–Volmer transfer coefficient for PtO formation | ||
2 | electrons transferred during Pt oxide formation | ||
J/mol | Pt oxide dependent kinetic barrier constant | ||
J/mol | Pt oxide-oxide interaction energy |
Symbol | Value | Units | Description |
---|---|---|---|
1.118 | V | Pt dissolution bulk equilibrium voltage | |
1 | mol/cm | reference Pt ion concentration | |
J/mol | Pt dissolution activation enthalpy | ||
0.8 | V | Pt oxide formation bulk equilibrium voltage | |
J/mol | partial molar oxide formation activation enthalpy |
Symbol | Pt loss Rate (1/cycle) | Cycles Prognosis (#) | Work Prognosis (h) |
---|---|---|---|
, (V), , | 237.89 | 4203 | 47 |
(V) | 11.85 | 84,354 | 937 |
(V) | 77.82 | 12,850 | 143 |
(V) | 142.42 | 7021 | 78 |
(V) | 264.84 | 3776 | 42 |
(V) | 293.61 | 3405 | 38 |
(V) | 324.27 | 3084 | 34 |
(J/mol) | 0.07 | 13,736,300 | 152,625 |
(J/mol) | 16.48 | 60,677 | 674 |
(J/mol) | 331.58 | 3015 | 34 |
(mol/cm) | 192.29 | 5200 | 58 |
(mol/cm) | 240.89 | 4151 | 46 |
(mol/cm) | 241.98 | 4132 | 46 |
Parameter | |||
---|---|---|---|
5.31 | 6.96 | −0.96 | |
9.94 | 2.02 | −0.83 | |
1.11 | 4.33 | 0.78 | |
3.12 | 1.04 | 0.99 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kovtunenko, V.A. Variance-Based Sensitivity Analysis of Fitting Parameters to Impact on Cycling Durability of Polymer Electrolyte Fuel Cells. Technologies 2022, 10, 111. https://doi.org/10.3390/technologies10060111
Kovtunenko VA. Variance-Based Sensitivity Analysis of Fitting Parameters to Impact on Cycling Durability of Polymer Electrolyte Fuel Cells. Technologies. 2022; 10(6):111. https://doi.org/10.3390/technologies10060111
Chicago/Turabian StyleKovtunenko, Victor A. 2022. "Variance-Based Sensitivity Analysis of Fitting Parameters to Impact on Cycling Durability of Polymer Electrolyte Fuel Cells" Technologies 10, no. 6: 111. https://doi.org/10.3390/technologies10060111
APA StyleKovtunenko, V. A. (2022). Variance-Based Sensitivity Analysis of Fitting Parameters to Impact on Cycling Durability of Polymer Electrolyte Fuel Cells. Technologies, 10(6), 111. https://doi.org/10.3390/technologies10060111