Research on the Effect of Road Height Profile on Fuel Consumption during Vehicle Acceleration
Abstract
:1. Introduction
2. Data and Methods
- volume of consumed fuel [mL];
- vehicle speed [km/h];
- engine speed [min−1];
- throttle position [%];
- volume of air [g/s];
- engine power [kW];
- engine torque [Nm].
- volume concentration of CO, HC, NOx, CO2 [%];
- production of CO, HC, NOx, CO2 [g/0.05 s];
- production of CO, HC, NOx, CO2 [g].
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ait Ouallane, A.; Bakali, A.; Bahnasse, A.; Broumi, S.; Talea, M. Fusion of engineering insights and emerging trends: Intelligent urban traffic management system. Inf. Fusion 2022, 88, 218–248. [Google Scholar] [CrossRef]
- E, J.; Zhao, X.; Qiu, L.; Wei, K.; Zhang, Z.; Deng, Y.; Han, D.; Liu, G. Experimental investigation on performance and economy characteristics of a diesel engine with variable nozzle turbocharger and its application in urban bus. Energy Convers. Manag. 2019, 193, 149–161. [Google Scholar] [CrossRef]
- Vedula, S.; Pandey, N.K.; Nese, R. An adaptive neuro-fuzzy logic based systematic approach of modelling virtual driver for real world driving. In Proceedings of the IEEE International Transportation Electrification Conference, ITEC-India 2015, Chennai, India, 27–29 August 2015. [Google Scholar] [CrossRef]
- Wang, S.; Yu, P.; Shi, D.; Yu, C.; Yin, C. Research on eco-driving optimization of hybrid electric vehicle queue considering the driving style. J. Clean. Prod. 2022, 343, 130985. [Google Scholar] [CrossRef]
- Fischer, S.; Gluck, P. An exercise in vehicle kinematics and energetics. Phys. Teach. 2009, 47, 137–141. [Google Scholar] [CrossRef]
- Hydén, C.; Várhelyi, A. The effects on safety, time consumption and environment of large scale use of roundabouts in an urban area: A case study. Accid. Anal. Prev. 2000, 32, 11–23. [Google Scholar] [CrossRef] [PubMed]
- Lv, C.; Liu, J.; Zhang, X. Research on intelligent vehicle detection and tracking method based on multivision information fusion. Mob. Inf. Syst. 2022, 2022, 6230713. [Google Scholar] [CrossRef]
- Eichlseder, W.; Raab, G.; Krisper, G. Calculation of driving performance, fuel consumption and emissions of military trucks by driving simulation. SAE Tech. Pap. 1993. [Google Scholar] [CrossRef]
- Tong, H.Y.; Hung, W.T.; Cheung, C.S. On-Road Motor Vehicle Emissions and Fuel Consumption in Urban Driving Conditions. J. Air Waste Manag. Assoc. 2000, 50, 543–554. [Google Scholar] [CrossRef] [Green Version]
- Ericsson, E. The relation between vehicular fuel consumption and exhaust emission and the characteristics of driving patterns. Trans. Built Environ. 1999, 41, 137–147. [Google Scholar]
- Wang, H.; Fu, L.; Zhou, Y.; Li, H. Modelling of the fuel consumption for passenger cars regarding driving characteristics. Transp. Res. Part D Transp. Environ. 2008, 13, 479–482. [Google Scholar] [CrossRef]
- Ben-Chaim, M.; Shmerling, E.; Kuperman, A. Analytic Modeling of Vehicle Fuel Consumption. Energies 2013, 6, 117–127. [Google Scholar] [CrossRef]
- Zhou, M.; Jin, H.; Wang, W. A review of vehicle fuel consumption models to evaluate eco-driving and eco-routing. Transp. Res. Part D Transp. Environ. 2016, 49, 203–218. [Google Scholar] [CrossRef]
- Evans, L. Driver behavior effects on fuel consumption in urban driving. In Proceedings of the Human Factor Society—22nd Annual Meeting 1978, Detroit, MI, USA, 16–19 October 1978; pp. 437–442. [Google Scholar] [CrossRef]
- Treiber, M.; Kesting, A.; Thiemann, C. How Much does Traffic Congestion Increase Fuel Consumption and Emissions? Applying a Fuel Consumption Model to the NGSIM Trajectory. In Proceedings of the 87th Annual Meeting of the Transportation Research Board, Washington, DC, USA, 13–17 January 2008; pp. 1–17. [Google Scholar]
- Pease, G.; Limebeer, D.; Fussey, P. Fuel Consumption Minimization, with Emissions Constraints, for Diesel Powered Cars. IEEE Trans. Control. Syst. Technol. 2020, 28, 1243–1257. [Google Scholar] [CrossRef]
- Amer, A.; Abdalla, A.; Noraziah, A.; Fauzi, A.A.C. Prediction of Vehicle Fuel Consumption Model Based on Artificial Neural Network. In Proceedings of the Power and Energy Systems III, Bangkok, Thailand, 23–24 November 2013; pp. 3–6. [Google Scholar] [CrossRef]
- Tomasikova, M.; Sojcak, D.; Nieoczym, A.; Brumercik, F. Experimental Data in Vehicle Modeling. LOGI–Sci. J. Transp. Logist. 2017, 8, 82–87. [Google Scholar] [CrossRef] [Green Version]
- Wang, M.; Daamen, W.; Hoogendoorn, S.; van Arem, B. Estimating Acceleration, Fuel Consumption, and Emissions from Macroscopic Traffic Flow Data. Transp. Res. Rec. J. Transp. Res. Board 2011, 2260, 123–132. [Google Scholar] [CrossRef]
- Fontaras, G.; Zacharof, N.G.; Ciuffo, B. Fuel consumption and CO2 emissions from passenger cars in Europe Laboratory versus real-world emissions. Prog. Energy Combust. Sci. 2017, 60, 97–131. [Google Scholar] [CrossRef]
- Van Mierlo, J.; Maggetto, G.; Van De Burgwal, E.; Gense, R. Driving style and traffic measures-Influence on vehicle emissions and fuel consumption. Proc. Inst. Mech. Eng. Part D J. Automob. Eng. 2004, 218, 43–50. [Google Scholar] [CrossRef]
- Rakha, H.A.; Ding, Y. Impact of Stops on Vehicle Fuel Consumption and Emissions. J. Transp. Eng. 2003, 129, 23–32. [Google Scholar] [CrossRef]
- Zheng, F.; Li, J.; Van Zuylen, H.; Lu, C. Influence of driver characteristics on emissions and fuel consumption. In Proceedings of the Transportation Research Procedia, Amsterdam, The Netherlands, 4–6 September 2017; Volume 27, pp. 624–631. [Google Scholar] [CrossRef]
- Huang, Y.; Surawski, N.C.; Organ, B.; Zhou, J.L.; Tang, O.H.H.; Chan, E.F.C. Fuel consumption and emissions performance under real driving: Comparison between hybrid and conventional vehicles. Sci. Total Environ. 2019, 659, 275–282. [Google Scholar] [CrossRef]
- Wang, Y.; Hao, C.; Ge, Y.; Hao, L.; Tan, J.; Wang, X.; Zhang, P.; Wang, Y.; Tian, W.; Lin, Z.; et al. Fuel consumption and emission performance from light-duty conventional/hybrid-electric vehicles over different cycles and real driving tests. Fuel 2020, 278, 118340. [Google Scholar] [CrossRef]
- Slavin, V.; Shuba, Y.; Caban, J.; Matijosius, J.; Rimkus, A.; Korpach, A.; Gutarevych, S. The Performance of a Car with Various Engine Power Systems—Part I. LOGI—Sci. J. Transp. Logist. 2022, 13, 130–140. [Google Scholar] [CrossRef]
- Jurkovic, M.; Kalina, T.; Skrucany, T.; Gorzelańczyk, P.; Ľupták, V. Environmental Impacts of Introducing LNG as Alternative Fuel for Urban Buses—Case Study in Slovakia. Promet-Traffic Transp. 2020, 32, 837–847. [Google Scholar] [CrossRef]
- Goodwin, P.; Dargay, J.; Hanly, M. Elasticies of Road Traffic and Fuel Consumption with Respect to Price and Income: A Review. Transp. Rev. 2004, 24, 275–292. [Google Scholar] [CrossRef]
- Sarkan, B.; Holesa, L.; Caban, J. Measurement of Fuel Consumption of a Road Motor Vehicle by Outdoor Driving Testing. Adv. Sci. Technol. Res. J. 2013, 7, 70–74. [Google Scholar] [CrossRef]
- Kuranc, A.; Caban, J.; Šarkan, B.; Dudziak, A.; Stoma, M. Emission of selected exhaust gas components and fuel consumption in different driving cycles. Communic.–Sci. Lett. Univ. Žil. 2021, 23, B265–B277. [Google Scholar] [CrossRef]
- Gajek, A.; Pieniążek, W.; Janczur, R.; Wolak, S. Verification of Sensors for Yaw Rate and Lateral Acceleration in Car ESP System. Arch. Automot. Eng. Arch. Motoryz. 2020, 88, 61–67. [Google Scholar] [CrossRef]
- Tucki, K.; Orynycz, O.; Wasiak, A.; Świć, A.; Mruk, R.; Botwińska, K. Estimation of carbon dioxide emissions from a diesel engine powered by lignocellulose derived fuel for better management of fuel production. Energies 2020, 13, 561. [Google Scholar] [CrossRef]
- Pukalskas, S.; Kriaučiūnas, D.; Rimkus, A.; Przybyła, G.; Droździel, P.; Barta, D. Effect of hydrogen addition on the energetic and ecologic parameters of an SI engine fueled by biogas. Appl. Sci. 2021, 11, 742. [Google Scholar] [CrossRef]
- Zainuri, F.; Sumarsono, D.A.; Adhitya, M.; Siregar, R.; Prasetya, S.; Heryana, G.; Nazaruddine; Susanto, I.; Subarkah, R.; Ihsanudin. Analysis and optimization of electric vehicle conversion performance. J. Mech. Eng. Res. Dev. 2021, 44, 128–137. [Google Scholar]
- Warianek, M.G.; Lejda, K. The Environmental Safety of the Fiat 0.9 TwinAir Compressed Natural Gas Engine. Arch. Automot. Eng. Arch. Motoryz. 2020, 88, 47–60. [Google Scholar] [CrossRef]
- Pateraki, S.; Manousakas, M.; Bairachtari, K.; Kantarelou, V.; Eleftheriadis, K.; Vasilakos, C.; Assimakopoulos, V.D.; Maggos, T. The traffic signature on the vertical PM profile: Environmental and health risks within an urban roadside environment. Sci. Total Environ. 2019, 646, 448–459. [Google Scholar] [CrossRef] [PubMed]
- Ondruš, J.; Vrábel, J.; Kolla, E. The influence of the vehicle weight on the selected vehicle braking characteristics. In Proceedings of the 22nd International Scientific on Conference Transport Means 2018, Trakai, Lithuania, 3–5 October 2018; pp. 384–390. [Google Scholar]
Commercial Name of Vehicle | Kia Ceed | Engine Code | G4FC |
---|---|---|---|
Engine displacement | 1591 cm3 | Length | 4265 mm |
Fuel | gasoline | Width | 1790 mm |
Number of cylinders | 4 | Height | 1480 mm |
Max. power | 90 k/6200 rpm | Allowed weight | 1163 kg |
Max. torque | 154 Nm/4200 rpm | Total weight | 1710 kg |
Max. speed | 192 km/h |
Measured Gases | CO | CO2 | HC | O2 | NOx |
---|---|---|---|---|---|
Measuring ranges | 0–15.00 Vol % | 0–20.00 Vol % | 0–2000 ppm Vol (Hexan) 0–4000 ppm Vol (Propan) | 0–25.00 Vol % | 0–5000 ppm Vol |
The accuracy of measuring | 0.06 Vol % | 0.5 Vol % | 12 ppm | 0.1 Vol % | 32–120 ppm Vol |
Measurement principle | infrared | infrared | infrared | electrochemical | electrochemical |
Resolution of values | 0.001 | 0.01 | 0.1 | 0.01 | 1 |
Measuring range deviation | less than ± 0.6% of the final value of the measuring range | ||||
Flow | max. 3.5 L/min · min 1.5 L/min | ||||
Gas outlet | approx. 2.5 L/min | ||||
Condensate drain | automatically, continuously · approx. 1 L/min | ||||
Working pressure | 750–1100 mbar | ||||
Pressure fluctuations | max. error 0.2% with fluctuations of 5 kPa |
FLAT SURFACE | DOWNHILL | |
---|---|---|
Cumulative Fuel Consumption [mL] | Cumulative Fuel Consumption [mL] | |
1 | 8.04 | 6.15 |
2 | 8.81 | 6.18 |
3 | 8.64 | 5.14 |
4 | 8.07 | 6.27 |
5 | 8.11 | 6.18 |
6 | 8.03 | 6.16 |
7 | 9.29 | 6.16 |
8 | 8.61 | 5.50 |
9 | 8.30 | 5.75 |
10 | 8.20 | 6.27 |
11 | 8.19 | 4.73 |
12 | 8.19 | 6.47 |
13 | 9.01 | 4.28 |
14 | 8.53 | 5.50 |
15 | 9.19 | 7.56 |
16 | 8.90 | 5.80 |
17 | 8.59 | 6.10 |
18 | 8.92 | 6.08 |
19 | 8.50 | 5.86 |
20 | 8.80 | 5.84 |
Average fuel consumption | 8.55 | 5.90 |
FLAT SURFACE | ||||
---|---|---|---|---|
Measurement | CO [g] | CO2 [g] | HC [g] | NOx [g] |
1 | 0.457712 | 19.85580 | 0.005802 | 0.061980 |
2 | 0.293252 | 22.10695 | 0.002777 | 0.034336 |
3 | 0.299644 | 21.24636 | 0.002042 | 0.026315 |
4 | 0.186936 | 20.21060 | 0.001304 | 0.018689 |
5 | 0.199926 | 19.90695 | 0.001475 | 0.019384 |
SUM | 1.437470 | 103.326660 | 0.013400 | 0.160704 |
DOWNHILL | ||||
---|---|---|---|---|
Measurement | CO [g] | CO2 [g] | HC [g] | NOx [g] |
1 | 0.140013 | 16.25375 | 0.000550 | 0.012670 |
2 | 0.112270 | 16.20951 | 0.000455 | 0.008889 |
3 | 0.097872 | 13.62357 | 0.000396 | 0.009497 |
4 | 0.124116 | 16.32171 | 0.000452 | 0.009675 |
5 | 0.089670 | 16.09551 | 0.000434 | 0.010221 |
SUM | 0.563941 | 78.504050 | 0.002287 | 0.050952 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hanzl, J.; Pečman, J.; Bartuška, L.; Stopka, O.; Šarkan, B. Research on the Effect of Road Height Profile on Fuel Consumption during Vehicle Acceleration. Technologies 2022, 10, 128. https://doi.org/10.3390/technologies10060128
Hanzl J, Pečman J, Bartuška L, Stopka O, Šarkan B. Research on the Effect of Road Height Profile on Fuel Consumption during Vehicle Acceleration. Technologies. 2022; 10(6):128. https://doi.org/10.3390/technologies10060128
Chicago/Turabian StyleHanzl, Jiří, Jan Pečman, Ladislav Bartuška, Ondrej Stopka, and Branislav Šarkan. 2022. "Research on the Effect of Road Height Profile on Fuel Consumption during Vehicle Acceleration" Technologies 10, no. 6: 128. https://doi.org/10.3390/technologies10060128
APA StyleHanzl, J., Pečman, J., Bartuška, L., Stopka, O., & Šarkan, B. (2022). Research on the Effect of Road Height Profile on Fuel Consumption during Vehicle Acceleration. Technologies, 10(6), 128. https://doi.org/10.3390/technologies10060128