Moisture Condensation on Epitaxial Graphene upon Cooling
Abstract
:1. Introduction
2. Experimental
2.1. Materials
2.2. Epitaxial Graphene Growth
2.3. Measurements
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Mondal, B.; Gogoi, P.K. Nanoscale Heterostructured Materials Based on Metal Oxides for a Chemiresistive Gas Sensor. ACS Appl. Electron. Mater. 2022, 4, 59–86. [Google Scholar] [CrossRef]
- Novoselov, K.S.; Geim, A.K.; Morozov, S.V.; Jiang, D.; Zhang, Y.; Dubonos, S.V.; Grigorieva, I.V.; Firsov, A.A. Electric field effect in atomically thin carbon films. Science 2004, 306, 666–669. [Google Scholar] [CrossRef] [PubMed]
- Ferrari, A.C.; Meyer, J.C.; Scardaci, V.; Casiraghi, C.; Lazzeri, M.; Mauri, F.; Piscanec, S.; Jiang, D.; Novoselov, K.S.; Roth, S.; et al. Raman Spectrum of Graphene and Graphene Layers. Phys. Rev. Lett. 2006, 97, 187401. [Google Scholar] [CrossRef] [PubMed]
- Amanatiadis, S.; Zygiridis, T.; Kantartzis, N. Radiation Efficiency Enhancement of Graphene Plasmonic Devices Using Matching Circuits. Technologies 2021, 9, 4. [Google Scholar] [CrossRef]
- Li, J.; Zeng, H.; Zeng, Z.; Zeng, Y.; Xie, T. Promising Graphene-Based Nanomaterials and Their Biomedical Applications and Potential Risks: A Comprehensive Review. ACS Biomater. Sci. Eng. 2021, 7, 5363–5396. [Google Scholar] [CrossRef] [PubMed]
- Bouhafs, C.; Stanishev, V.; Zakharov, A.A.; Hofmann, T.; Kühne, P.; Iakimov, T.; Yakimova, R.; Schubert, M.; Darakchieva, V. Decoupling and ordering of multilayer graphene on C-face 3C-SiC(111). Appl. Phys. Lett. 2016, 109, 203102. [Google Scholar] [CrossRef]
- Brzhezinskaya, M.; Kononenko, O.; Matveev, V.; Zotov, A.; Khodos, I.I.; Levashov, V.; Volkov, V.; Bozhko, S.I.; Chekmazov, S.V.; Roshchupkin, D. Engineering of Numerous Moiré Superlattices in Twisted Multilayer Graphene for Twistronics and Straintronics Applications. ACS Nano 2021, 15, 12358–12366. [Google Scholar] [CrossRef]
- Dien, N.T.; Hirai, Y.; Koshiba, J.; Sakai, S. Factors affecting multiple persistent organic pollutant concentrations in the air above Japan: A panel data analysis. Chemosphere 2021, 277, 130356. [Google Scholar] [CrossRef]
- Zhang, J.; Jia, K.; Huang, Y.; Liu, X.; Xu, Q.; Wang, W.; Zhang, R.; Liu, B.; Zheng, L.; Chen, H.; et al. Intrinsic Wettability in Pristine Graphene. Adv. Mater. 2022, 34, 2103620. [Google Scholar] [CrossRef]
- Belyaeva, L.A.; van Deursen, P.M.G.; Barbetsea, K.I.; Schneider, G.F. Hydrophilicity of Graphene in Water through Transparency to Polar and Dispersive Interactions. Adv. Mater. 2018, 30, 1703274. [Google Scholar] [CrossRef]
- Ni, Z.H.; Wang, H.M.; Luo, Z.Q.; Wang, Y.Y.; Yu, T.; Wu, Y.H.; Shen, Z.X. The effect of vacuum annealing on graphene. J. Raman Spectrosc. 2010, 41, 479–483. [Google Scholar] [CrossRef]
- Yazdi, G.R.; Akhtar, F.; Ivanov, I.G.; Schmidt, S.; Shtepliuk, I.; Zakharov, A.; Iakimov, T.; Yakimova, R. Effect of epitaxial graphene morphology on adsorption of ambient species. Appl. Surf. Sci. 2019, 486, 239–248. [Google Scholar] [CrossRef]
- Kögler, M.; Heilala, B. Time-gated Raman spectroscopy—A review. Meas. Sci. Technol. 2020, 32, 012002. [Google Scholar] [CrossRef]
- Craig, R.L.; Bondy, A.L.; Ault, A.P. Surface Enhanced Raman Spectroscopy Enables Observations of Previously Undetectable Secondary Organic Aerosol Components at the Individual Particle Level. Anal. Chem. 2015, 87, 7510–7514. [Google Scholar] [CrossRef] [PubMed]
- Doughty, D.C.; Hill, S.C. Raman spectra of atmospheric particles measured in Maryland, USA over 22.5 h using an automated aerosol Raman spectrometer. J. Quant. Spectrosc. Radiat. Transfer 2020, 244, 106839. [Google Scholar] [CrossRef]
- Doughty, D.C.; Hill, S.C. Raman spectra of atmospheric aerosol particles: Clusters and time-series for a 22.5 hr sampling period. J. Quant. Spectrosc. Radiat. Transfer 2020, 248, 106907. [Google Scholar] [CrossRef]
- Moorchilot, V.S.; Aravind, U.K.; Menacherry, S.P.M.; Aravindakumar, C.T. Single-Particle Analysis of Atmospheric Aerosols: Applications of Raman Spectroscopy. Atmosphere 2022, 13, 1779. [Google Scholar] [CrossRef]
- Liu, Y.; Shi, Y.; Zhou, W.; Shi, W.; Dang, W.; Li, X.; Liang, B. The split-up of G band and 2D band in temperature-dependent Raman spectra of suspended graphene. Opt. Laser Technol. 2021, 139, 106960. [Google Scholar] [CrossRef]
- Yang, M.; Wang, L.; Qiao, X.; Liu, Y.; Liu, Y.; Shi, Y.; Wu, H.; Liang, B.; Li, X.; Zhao, X. Temperature Dependence of G and D’ Phonons in Monolayer to Few-Layer Graphene with Vacancies. Nanoscale Res. Lett. 2020, 15, 189. [Google Scholar] [CrossRef]
- Linas, S.; Magnin, Y.; Poinsot, B.; Boisron, O.; Förster, G.D.; Martinez, V.; Fulcrand, R.; Tournus, F.; Dupuis, V.; Rabilloud, F.; et al. Interplay between Raman shift and thermal expansion in graphene: Temperature-dependent measurements and analysis of substrate corrections. Phys. Rev. B 2015, 91, 075426. [Google Scholar] [CrossRef]
- Cunha, R.; Perea-López, N.; Elías, A.L.; Fujisawa, K.; Carozo, V.; Feng, S.; Lv, R.; dos Santos, M.C.; Terrones, M.; Araujo, P.T. Probing the interaction of noble gases with pristine and nitrogen-doped graphene through Raman spectroscopy. Phys. Rev. B 2018, 97, 195419. [Google Scholar] [CrossRef]
- Valeš, V.; Kovaříček, P.; Fridrichová, M.; Ji, X.; Ling, X.; Kong, J.; Dresselhaus, M.; Kalbác, M. Enhanced Raman scattering on functionalized graphene substrates. 2D Mater. 2017, 4, 025087. [Google Scholar] [CrossRef]
- Hung, Y.-J.; Hofmann, M.; Cheng, Y.-C.; Huang, C.-W.; Chang, K.-W.; Lee, J.-Y. Characterization of graphene edge functionalization by grating enhanced Raman spectroscopy. RSC Adv. 2016, 6, 12398–12401. [Google Scholar] [CrossRef]
- Yang, G.; Li, L.; Lee, W.B.; Ng, M.C. Structure of graphene and its disorders: A review. Sci. Technol. Adv. Mater. 2018, 19, 613–648. [Google Scholar] [CrossRef] [PubMed]
- Mazumder, M.; Das, R.; Sajib, M.S.J.; Gomes, A.J.; Islam, M.; Selvaratnam, T.; Rahman, A. Comparison of Different Hydrotalcite Solid Adsorbents on Adsorptive Desulfurization of Liquid Fuel Oil. Technologies 2020, 8, 22. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Saleem, M.F.; Khan, N.A.; Javid, M.; Ashraf, G.A.; Haleem, Y.A.; Iqbal, M.F.; Bilal, M.; Wang, P.; Ma, L. Moisture Condensation on Epitaxial Graphene upon Cooling. Technologies 2023, 11, 30. https://doi.org/10.3390/technologies11010030
Saleem MF, Khan NA, Javid M, Ashraf GA, Haleem YA, Iqbal MF, Bilal M, Wang P, Ma L. Moisture Condensation on Epitaxial Graphene upon Cooling. Technologies. 2023; 11(1):30. https://doi.org/10.3390/technologies11010030
Chicago/Turabian StyleSaleem, Muhammad Farooq, Niaz Ali Khan, Muhammad Javid, Ghulam Abbas Ashraf, Yasir A. Haleem, Muhammad Faisal Iqbal, Muhammad Bilal, Peijie Wang, and Lei Ma. 2023. "Moisture Condensation on Epitaxial Graphene upon Cooling" Technologies 11, no. 1: 30. https://doi.org/10.3390/technologies11010030
APA StyleSaleem, M. F., Khan, N. A., Javid, M., Ashraf, G. A., Haleem, Y. A., Iqbal, M. F., Bilal, M., Wang, P., & Ma, L. (2023). Moisture Condensation on Epitaxial Graphene upon Cooling. Technologies, 11(1), 30. https://doi.org/10.3390/technologies11010030