Enhancement of Handshake Attraction through Tactile, Visual, and Auditory Multimodal Stimulation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Grip Force Evaluation Device
2.3. Sensory Evaluation
2.4. Physical Evaluation
2.5. Statistical Analysis
3. Results
3.1. Sensory Evaluation
3.2. Grip Force
3.3. Physical Evaluation
3.4. Dominant Factors of Attraction in Handshaking with Pop Idols under TVA Condition
3.5. Dominant Tactile Factors of Attraction in Handshaking under the T Condition
3.6. Handshake Attraction and Behavior
3.7. Factors Influencing Tactile Feel
4. Discussion
4.1. Handshakes and Attraction
4.2. The Physical Origin of Humanity
4.3. Effects of Multimodal Stimulation on Handshake Attraction
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ueda, Y. Introduction to idol entertainment (1) Idol phase transition as digital disruption looms. Bull. Edogawa Univ. 2019, 29, 79–107. [Google Scholar]
- Burgoon, J.K.; Walther, J.B. Nonverbal expectancies and the evaluative consequences of violations. Hum. Commun. Res. 1990, 17, 232–265. [Google Scholar] [CrossRef]
- Burgoon, J.K. Relational message interpretations of touch, conversational distance, and posture. J. Nonverbal Behav. 1991, 15, 233–259. [Google Scholar] [CrossRef]
- Chaplin, W.F.; Jeffrey, B.B.; Jonathan, D.C.; Nancy, R.S.; Jennifer, L. Handshaking, gender, personality, and first impressions. J. Personal. Soc. Psychol. 2000, 79, 110–117. [Google Scholar] [CrossRef]
- Jenkins, M. The meaning of the handshake towards the end of the consultation. Br. J. Gen. Pract. 2007, 57, 324. [Google Scholar]
- Stewart, G.L.; Dustin, S.L.; Barrick, M.R.; Darnold, T.C. Exploring the handshake in employment interviews. J. Appl. Psychol. 2008, 93, 1139–1146. [Google Scholar] [CrossRef] [Green Version]
- Levav, J.; Argo, J.J. Physical contact and financial risk taking. Psychol. Sci. 2010, 21, 804–810. [Google Scholar] [CrossRef]
- Dolcos, S.; Sung, K.; Argo, J.J.; Flor-Henry, S.; Dolcos, F. The power of a handshake: Neural correlates of evaluative judgments in observed social interactions. J. Cogn. Neurosci. 2012, 24, 2292–2305. [Google Scholar] [CrossRef]
- Shipps, E.M.; Freeman, H.R. Handshake: Its relation to first impressions and measured personality traits. Psi Chi J. Undergrad. Res. 2003, 8, 144–148. [Google Scholar] [CrossRef]
- Williams, L.E.; Bargh, J.A. Experiencing physical warmth promotes interpersonal warmth. Science 2008, 322, 606–607. [Google Scholar] [CrossRef] [Green Version]
- Nakamura, A. Dictionary of Word Sensation for Japanese; Iwanami Shoten Publishers: Tokyo, Japan, 2010; p. 799. [Google Scholar]
- Kumagai, T.; Sakamoto, M.; Nonomura, Y. Recognition mechanism of nukumori feel under sliding motion. J. Jpn. Soc. Colour Mater. 2020, 93, 2–8. [Google Scholar] [CrossRef]
- Guest, S.; Essick, G.; Dessirier, J.M.; Blot, K.; Lopetcharat, K.; McGlone, F. Sensory and affective judgments of skin during inter-and intrapersonal touch. Acta Psychol. 2009, 130, 115–126. [Google Scholar] [CrossRef]
- Egawa, M.; Oguri, M.; Hirao, T.; Takahashi, M.; Miyakawa, M. The evaluation of skin friction using a frictional feel analyzer. Ski. Res. Technol. 2002, 8, 41–51. [Google Scholar] [CrossRef]
- Shirado, H.; Nonomura, Y.; Maeno, T. Realization of human skin-like texture by emulating surface shape pattern and elastic structure. In Proceedings of the 2006 14th Symposium on Haptic Interfaces for Virtual Environment and Teleoperator Systems, Alexandria, VA, USA, 25–26 March 2006; pp. 295–296. [Google Scholar]
- Miyashita, T.; Maeno, T.; Nonomura, Y. How do we recognize biological materials by touch? Colloids Surf. B Biointerfaces 2010, 80, 176–179. [Google Scholar] [CrossRef]
- Nowak, K.L.; Rauh, C. The influence of the avatar on online perceptions of anthropomorphism, androgyny, credibility, homophily, and attraction. J. Comput.-Mediat. Commun. 2005, 11, 153–178. [Google Scholar] [CrossRef] [Green Version]
- Garlin, F.V.; Owen, K. Setting the tone with the tune: A meta-analytic review of the effects of background music in retail settings. J. Bus. Res. 2006, 59, 755–764. [Google Scholar] [CrossRef]
- Shimojo, S.; Simion, C.; Shimojo, E.; Scheier, C. Gaze bias both reflects and influences preference. Nat. Neurosci. 2003, 6, 1317–1322. [Google Scholar] [CrossRef]
- Milliman, R.E. Using background music to affect the behavior of supermarket shoppers. J. Mark. 1982, 46, 86–91. [Google Scholar] [CrossRef] [Green Version]
- Rizzolatti, G.; Scandolara, C.; Matelli, M.; Gentilucci, M. Afferent properties of periarcuate neurons in macaque monkeys. II. Visual responses. Behav. Brain Res. 1981, 2, 147–163. [Google Scholar] [CrossRef]
- Graziano, M.S.; Yaps, G.S.; Gross, C.G. Coding visual space by premotor neurons. Science 1994, 266, 1054–1057. [Google Scholar] [CrossRef]
- Làdavas, E.; Serino, A. Action–dependent plasticity in peripersonal space representations. Cogn. Neuropsychol. 2008, 25, 1099–1113. [Google Scholar] [CrossRef]
- Botvinick, M.; Cohen, J. Rubber hands ‘feel’ touch that eyes see. Nature 1998, 391, 756. [Google Scholar] [CrossRef]
- Japan Society of Thermophysical Properties. Handbook of Thermophysical Properties, New Edition; Yokendo Ltd.: Bunkyo-ku, Japan, 2008; Chapters B and C. [Google Scholar]
- The Chemical Society of Japan (Ed.). Handbook of Chemistry, Basic Section II, 5th ed.; Maruzen: Tokyo, Japan, 2004. [Google Scholar]
- Brandrup, J.; Immergut, E.H. Polymer Handbook Forth Edition; John Wiley & Sons: Hoboken, NJ, USA, 2000; Chapter VI. [Google Scholar]
- Hara, S.; Ikemiya, N.; Ogino, K. Surface Tensions and Densities of Molten Al2O3 and Ti2O3. Tetsu-to-Hagané 1990, 12, 2114–2151. [Google Scholar]
- Sakuma, A.; Tani, M.; Shinomiya, M. Evaluation of thickness and Young’s modulus of soft materials by using spherical indentation testing. Trans. JSME 2009, 75, 125–132. [Google Scholar]
- Canzoneri, E.; Magosso, E.; Serino, A. Dynamic sounds capture the boundaries of peripersonal space representation in humans. PLoS ONE 2012, 7, 0044306. [Google Scholar] [CrossRef] [Green Version]
- Okamoto, S.; Nagano, H.; Yamada, Y. Psychophysical dimensions of tactile perception of textures. IEEE Trans. Haptics 2013, 6, 81–93. [Google Scholar] [CrossRef]
- Langlois, J.H.; Roggman, L.A.; Casey, R.J.; Ritter, J.M.; Rieser-Danner, L.A.; Jenkins, V.Y. Infant preferences for attractive faces: Rudiments of a stereotype? Dev. Psychol. 1987, 23, 363–369. [Google Scholar] [CrossRef]
- Aharon, I.; Etcoff, N.; Ariely, D.; Chabris, C.F.; O’Connor, E.; Breiter, H.C. Beautiful faces have variable reward value: fMRI and behavioral evidence. Neuron 2001, 32, 537–551. [Google Scholar] [CrossRef] [Green Version]
- Westerman, D.; Tamborini, R.; Bowman, N.D. The effects of static avatars on impression formation across different contexts on social networking sites. Comput. Hum. Behav. 2015, 53, 111–117. [Google Scholar] [CrossRef]
- Green, R.D.; MacDorman, K.F.; Ho, C.C.; Vasudevan, S. Sensitivity to the proportions of faces that vary in human likeness. Comput. Hum. Behav. 2008, 24, 2456–2474. [Google Scholar] [CrossRef]
- Lederman, S.J.; Taylor, M.M. Fingertip force, surface geometry, and the perception of roughness by active touch. Percept. Psychophys. 1972, 12, 401–408. [Google Scholar] [CrossRef] [Green Version]
- Lederman, S.J. Tactile roughness of grooved surfaces: The touching process and the effects of macro- and microsurface structure. Percept. Psychophys. 1974, 16, 385–395. [Google Scholar] [CrossRef] [Green Version]
- Hollins, M.; Risner, S.R. Evidence for the duplex theory of tactile texture. Percept. Psychophys. 2000, 6205, 695–697. [Google Scholar] [CrossRef] [Green Version]
- Skedung, L.; Danerlöv, K.; Olofsson, U.; Johannesson, M.C.; Aikala, M.; Kettle, J.; Arvidsson, M.; Berglund, B.; Rutland, M.W. Tactile perception: Finger friction, surface roughness and perceived coarseness. Tribol. Int. 2011, 44, 505–512. [Google Scholar] [CrossRef]
- Blake, D.T.; Hsiao, S.S.; Johnson, K.O. Neural coding mechanisms in tactile pattern recognition: The relative contributions of slowly and rapidly adapting mechanoreceptors to perceived roughness. J. Neurosci. 1997, 17, 7480–7489. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chapman, C.E.; Sutu, A.; Meftah, E.M. Physical determinants of the shape of the psychophysical curve relating tactile roughness to raised-dot spacing: Implications for neuronal coding of roughness. J. Neurophysiol. 2013, 109, 1403–1415. [Google Scholar]
- Kikegawa, K.; Kuhara, R.; Kwon, J.; Sakamoto, M.; Tsuchiya, R.; Nagatani, N.; Nonomura, Y. Physical origin of a complicated tactile sensation: “Shittori feel”. R. Soc. Open Sci. 2019, 6, 190039. [Google Scholar] [CrossRef] [Green Version]
- Kawasegi, N.; Fujii, M.; Shimizu, T.; Sekiguchi, N.; Sumioka, J.; Doi, Y. Physical properties and tactile sensory perception of microtextured molded plastics. Precis. Eng. 2014, 38, 292–299. [Google Scholar] [CrossRef]
- Shimizu, R.; Nonomura, Y. Preparation of artificial skin that mimics human skin surface and mechanical properties. J. Oleo Sci. 2018, 67, 47–54. [Google Scholar] [CrossRef] [Green Version]
- Zhou, Y.D.; Fuster, J.M. Visuo-tactile cross-modal associations in cortical somatosensory cells. Proc. Natl. Acad. Sci. USA 2000, 97, 9777–9782. [Google Scholar] [CrossRef] [PubMed]
- Brown, P. The characterization of bulk. Text. Res. J. 1969, 39, 395–412. [Google Scholar] [CrossRef]
- Guest, S.; Catmur, C.; Lloyd, D.; Spence, C. Audiotactile interactions in roughness perception. Exp. Brain Res. 2002, 146, 161–171. [Google Scholar] [CrossRef] [PubMed]
- Ho, H.N.; Van Doorn, G.H.; Kawabe, T.; Watanabe, J.; Spence, C. Colour-temperature correspondences: When reactions to thermal stimuli are influenced by colour. PLoS ONE 2014, 9, e91854. [Google Scholar] [CrossRef] [PubMed]
- Tsakiris, M.; Haggard, P. The rubber hand illusion revisited: Visuotactile integration and self-attribution. J. Exp. Psychol. Hum. Percept. Perform. 2005, 31, 80–91. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hermans, D.; Houwer, J.D.; Eelen, P. A time course analysis of the affective priming effect. Cogn. Emot. 2010, 15, 143–165. [Google Scholar] [CrossRef]
- Logeswaran, N.; Bhattacharya, J. Crossmodal transfer of emotion by music. Neurosci. Lett. 2009, 455, 129–133. [Google Scholar] [CrossRef] [Green Version]
- Kritikos, J.; Caravas, P.; Tzannetos, G.; Douloudi, M.; Koutsouris, D. Emotional stimulation during motor exercise: An integration to the holistic rehabilitation framework. In Proceedings of the 2019 41st Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Berlin, Germany, 23–27 July 2019; pp. 4604–4610. [Google Scholar]
- Kritikos, J.; Tzannetos, G.; Zoitaki, C.; Poulopoulou, S.; Koutsouris, D. Anxiety detection from electrodermal activity sensor with movement & interaction during virtual reality simulation. In Proceedings of the 2019 9th International IEEE/EMBS Conference on Neural Engineering (NER), San Francisco, CA, USA, 20–23 March 2019. [Google Scholar] [CrossRef]
- Kritikos, J.; Zoitaki, C.; Tzannetos, G.; Mehmeti, A.; Douloudi, M.; Nikolaou, G.; Alevizopoulos, G.; Koutsouris, D. Comparison between full body motion recognition camera interaction and hand controllers. Sensors 2020, 20, 1244. [Google Scholar] [CrossRef] [Green Version]
- Kritikos, J.; Alevizopoulos, G.; Koutsouris, D. Personalized virtual reality human-computer interaction for psychiatric and neurological illnesses. Front. Hum. Neurosci. 2021, 12, 596980. [Google Scholar] [CrossRef]
Sample | Fzmax/N | Fzave/N | t/s | Sa/µm | Sz/µm | Young’s Modulus/kPa | Thermal Conductivity/ W mK−1 | q-max/W cm−2 | Surface Tension /mN m−1 |
---|---|---|---|---|---|---|---|---|---|
ST | 14 ± 11 | 3 ± 3 | 3.8 ± 1.8 | 13.51 ± 0.94 | 221.92 ± 26.40 | 228.5 ± 81.6 | 0.16~0.17 | 0.229 ± 0.004 | 36.3~39 |
FT | 10 ± 6 | 3 ± 2 | 3.4 ± 2.1 | 203.47 ± 32.96 | 2419.42 ± 461.83 | 2.5 ± 0.5 | 0.08~0.17 | 0.034 ± 0.001 | 44.6 |
AT | 10 ± 8 | 2 ± 2 | 3.4 ± 1.8 | 83.10 ± 16.54 | 936.87 ± 70.83 | 7603.2 ± 554.3 | 36.0 | 0.135 ± 0.004 | 606 |
STV | 14 ± 11 | 3 ± 3 | 4.3 ± 2.5 | 13.51 ± 0.94 | 221.92 ± 26.40 | 228.5 ± 81.6 | 0.16~0.17 | 0.229 ± 0.004 | 36.3~39 |
FTV | 10 ± 6 | 2 ± 2 | 3.8 ± 2.3 | 203.47 ± 32.96 | 2419.42 ± 461.83 | 2.5 ± 0.5 | 0.08~0.17 | 0.034 ± 0.001 | 44.6 |
ATV | 10 ± 7 | 2 ± 2 | 3.7 ± 2.5 | 83.10 ± 16.54 | 936.87 ± 70.83 | 7603.2 ± 554.3 | 36.0 | 0.135 ± 0.004 | 606 |
STA | 16 ± 15 | 3 ± 3 | 4.8 ± 3.0 | 13.51 ± 0.94 | 221.92 ± 26.40 | 228.5 ± 81.6 | 0.16~0.17 | 0.229 ± 0.004 | 36.3~39 |
FTA | 11 ± 7 | 2 ± 2 | 4.0 ± 2.3 | 203.47 ± 32.96 | 2419.42 ± 461.83 | 2.5 ± 0.5 | 0.08~0.17 | 0.034 ± 0.001 | 44.6 |
ATA | 12 ± 11 | 2 ± 2 | 3.5 ± 1.9 | 83.10 ± 16.54 | 936.87 ± 70.83 | 7603.2 ± 554.3 | 36.0 | 0.135 ± 0.004 | 606 |
STVA | 15 ± 11 | 3 ± 3 | 4.9 ± 2.8 | 13.51 ± 0.94 | 221.92 ± 26.40 | 228.5 ± 81.6 | 0.16~0.17 | 0.229 ± 0.004 | 36.3~39 |
FTVA | 12 ± 7 | 2 ± 2 | 3.9 ± 2.3 | 203.47 ± 32.96 | 2419.42 ± 461.83 | 2.5 ± 0.5 | 0.08~0.17 | 0.034 ± 0.001 | 44.6 |
ATVA | 12 ± 8 | 2 ± 2 | 3.3 ± 2.5 | 83.10 ± 16.54 | 936.87 ± 70.83 | 7603.2 ± 554.3 | 36.0 | 0.135 ± 0.004 | 606 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kumagai, T.; Nonomura, Y. Enhancement of Handshake Attraction through Tactile, Visual, and Auditory Multimodal Stimulation. Technologies 2023, 11, 86. https://doi.org/10.3390/technologies11040086
Kumagai T, Nonomura Y. Enhancement of Handshake Attraction through Tactile, Visual, and Auditory Multimodal Stimulation. Technologies. 2023; 11(4):86. https://doi.org/10.3390/technologies11040086
Chicago/Turabian StyleKumagai, Taishu, and Yoshimune Nonomura. 2023. "Enhancement of Handshake Attraction through Tactile, Visual, and Auditory Multimodal Stimulation" Technologies 11, no. 4: 86. https://doi.org/10.3390/technologies11040086
APA StyleKumagai, T., & Nonomura, Y. (2023). Enhancement of Handshake Attraction through Tactile, Visual, and Auditory Multimodal Stimulation. Technologies, 11(4), 86. https://doi.org/10.3390/technologies11040086