Optical Properties of AgInS2 Quantum Dots Synthesized in a 3D-Printed Microfluidic Chip
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals
2.2. Quantum Dot Synthesis
2.3. Characterization Methods
3. Results and Discussion
3.1. Microfluidic Chip Formation
3.2. Synthesis of AIS Quantum Dots in a Microfluidic Chip
3.3. Dependence of QD Optical Properties on Synthesis Temperature
3.4. Impact of Synthesis Time on the Optical Properties of QDs
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
References
- Mi, W.; Tian, J.; Tian, W.; Dai, J.; Wang, X.; Liu, X. Temperature dependent synthesis and optical properties of CdSe quantum dots. Ceram. Int. 2012, 38, 5575–5583. [Google Scholar] [CrossRef]
- Bian, F.; Sun, L.; Cai, L.; Wang, Y.; Zhao, Y. Quantum dots from microfluidics for nanomedical application. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 2012, 11, 1567. [Google Scholar] [CrossRef]
- Abedini-Nassab, R.; Pouryosef Miandoab, M.; Şaşmaz, M. Microfluidic Synthesis, Control, and Sensing of Magnetic Nanoparticles: A Review. Micromachines 2021, 12, 768. [Google Scholar] [CrossRef]
- Shepherd, S.J.; Issadore, D.; Mitchell, M.J. Microfluidic formulation of nanoparticles for biomedical applications. Biomaterials 2021, 274, 120826. [Google Scholar] [CrossRef]
- Niculescu, A.-G.; Chircov, C.; Bîrcă, A.C.; Grumezescu, A.M. Nanomaterials Synthesis through Microfluidic Methods: An Updated Overview. Nanomaterials 2021, 11, 864. [Google Scholar] [CrossRef] [PubMed]
- Ma, J.; Lee, S.M.-Y.; Yi, C.; Li, C.-W. Controllable synthesis of functional nanoparticles by microfluidic platforms for biomedical applications—A review. Lab Chip 2017, 17, 209–226. [Google Scholar] [CrossRef]
- Lai, X.; Lu, B.; Zhang, P.; Zhang, X.; Pu, Z.; Yu, H.; Li, D. Sticker Microfluidics: A Method for Fabrication of Customized Monolithic Microfluidics. Acs Biomater. Sci. Eng. 2019, 5, 6801–6810. [Google Scholar] [CrossRef] [PubMed]
- Kajtez, J.; Buchmann, S.; Vasudevan, S.; Birtele, M.; Rocchetti, S.; Pless, C.J.; Heiskanen, A.; Barker, R.A.; Martínez-Serrano, A.; Parmar, M.; et al. 3D-Printed Soft Lithography for Complex Compartmentalized Microfluidic Neural Devices. Adv. Sci. 2020, 7, 2198–3844. [Google Scholar] [CrossRef] [PubMed]
- Ma, H.; Pan, L.; Wang, J.; Zhang, L.; Zhang, Z. Synthesis of AgInS2 QDs in droplet microreactors: Online fluorescence regulating through temperature control. Chin. Chem. Lett. 2019, 30, 79–82. [Google Scholar] [CrossRef]
- Weisgrab, G.; Ovsianikov, A.; Costa, P.F. Functional 3D Printing for Microfluidic Chips. Adv. Mater. Technol. 2019, 4, 1900275. [Google Scholar] [CrossRef] [Green Version]
- Cheng, Y.; Ling, S.D.; Geng, Y.; Wang, Y.; Xu, J. Microfluidic synthesis of quantum dots and their applications in bio-sensing and bio-imaging. Nanoscale Adv. 2021, 3, 2180–2195. [Google Scholar] [CrossRef] [PubMed]
- Girma, W.M.; Fahmi, M.Z.; Permadi, A.; Abate, M.A.; Chang, J.-Y. Synthetic strategies and biomedical applications of I–III–VI ternary quantum dots. J. Mater. Chem. 2021, 5, 6193–6216. [Google Scholar] [CrossRef]
- May, B.M.; Bambo, M.F.; Hosseini, S.S.; Sidwaba, U.; Nxumalo, E.N.; Mishra, A.K. A review on I–III–VI ternary quantum dots for fluorescence detection of heavy metals ions in water: Optical properties, synthesis and application. RSC Adv. 2022, 12, 11216–11232. [Google Scholar] [CrossRef] [PubMed]
- Baranov, K.; Kolesova, E.; Baranov, M.; Orlova, A. Generation of Reactive Oxygen Species by AgInS2/TiO2 Nanocomposites upon Exposure to UV and Visible Radiation. Opt. Spectrosc. 2022, 130, 1562–6911. [Google Scholar] [CrossRef]
- Wang, G.; Jin, W.; Qasim, A.M.; Gao, A.; Peng, X.; Li, W.; Feng, H.; Chu, P.K. Antibacterial effects of titanium embedded with silver nanoparticles based on electron-transfer-induced reactive oxygen species. Biomaterials 2017, 124, 25–34. [Google Scholar] [CrossRef]
- Mir, I.A.; Radhakrishanan, V.S.; Rawat, K.; Prasad, T.; Bohidar, H.B. Bandgap Tunable AgInS based Quantum Dots for High Contrast Cell Imaging with Enhanced Photodynamic and Antifungal Applications. Sci. Rep. 2018, 8, 9322. [Google Scholar] [CrossRef] [Green Version]
- Raevskaya, A.; Lesnyak, V.; Haubold, D.; Dzhagan, V.; Stroyuk, O.; Gaponik, N.; Zahn, D.R.T.; Eychmüller, A. A Fine Size Selection of Brightly Luminescent Water-Soluble Ag-In-S and Ag-In-S/ZnS Quantum Dots. J. Phys. Chem. 2017, 121, 9032–9042. [Google Scholar] [CrossRef] [Green Version]
- Qin, L.; Li, D.; Zhang, Z.; Wang, K.; Ding, H.; Xie, R.; Yang, W. The determination of extinction coefficient of CuInS2, and ZnCuInS3 multinary nanocrystals. Nanoscale 2012, 4, 6360. [Google Scholar] [CrossRef]
- Hu, X.; Chen, T.; Xu, Y.; Wang, M.; Jiang, W.; Jiang, W. Hydrothermal synthesis of bright and stable AgInS2 quantum dots with tunable visible emission. J. Lumin. 2018, 200, 189–195. [Google Scholar] [CrossRef]
- May, B.M.M.; Parani, S.; Oluwafemi, O.S. Detection of Ascorbic Acid using Green Synthesized AgInS2 Quantum Dots. Mater. Lett. 2018, 236, 432–435. [Google Scholar] [CrossRef]
- Zang, H.; Li, H.; Makarov, N.S.; Velizhanin, K.A.; Wu, K.; Park, Y.-S.; Klimov, V.I. Thick-Shell CuInS2/ZnS Quantum Dots with Suppressed “Blinking” and Narrow Single-Particle Emission Line Widths. Nano Lett. 2017, 17, 1787–1795. [Google Scholar] [CrossRef]
- Fu, M.; Luan, W.; Tu, S.-T.; Mleczko, L. Optimization of the recipe for the synthesis of CuInS2/ZnS nanocrystals supported by mechanistic considerations. Green Process. Synth. 2017, 6, 133–146. [Google Scholar] [CrossRef]
- Zikalala, N.; Parani, S.; Tsolekile, N.; Oluwafemi, O.S. Facile green synthesis of ZnInS quantum dots: Temporal evolution of their optical properties and cell viability against normal and cancerous cells. J. Mater. Chem. 2020, 8, 9329–9336. [Google Scholar] [CrossRef]
- Mahmoud, W.E.; Yaghmour, S.J. The temporal evolution of the structure and luminescence properties of CdSe semiconductor quantum dots grown at low temperatures. J. Lumin. 2012, 132, 2447–2451. [Google Scholar] [CrossRef]
- Tonti, D.; van Mourik, F.; Chergui, M. On the Excitation Wavelength Dependence of the Luminescence Yield of Colloidal CdSe Quantum Dots. Nano Lett. 2014, 4, 2483–2487. [Google Scholar] [CrossRef]
- Stroyuk, O.; Raievska, O.; Kupfer, C.; Solonenko, D.; Osvet, A.; Batentschuk, M.; Brabec, C.J.; Zahn, D.R.T. High-Throughput Time-Resolved Photoluminescence Study of Composition- and Size-Selected Aqueous Ag-In-S Quantum Dots. J. Phys. Chem. 2021, 125, 12185–12197. [Google Scholar] [CrossRef]
- Cheng, O.H.-C.; Qiao, T.; Sheldon, M.T.; Son, D.H. Size- and Temperature-dependent Photoluminescence Spectra of Strongly Confined CsPbBr3 Quantum Dots. Nanoscale 2020, 12, 13113–13118. [Google Scholar] [CrossRef]
- Song, Y.; Hormes, J.; Kumar, C.S.S.R. Size- and Temperature-dependent Microfluidic Synthesis of Nanomaterials. Small 2008, 4, 698–711. [Google Scholar] [CrossRef]
- Moodelly, D.; Kowalik, P.; Bujak, P.; Pron, A.; Reiss, P. Synthesis, photophysical properties and surface chemistry of chalcopyrite-type semiconductor nanocrystals. J. Mater. Chem. 2019, 7, 11665–11709. [Google Scholar] [CrossRef]
- Kang, X.; Huang, L.; Yang, Y.; Pan, D. Scaling up the Aqueous Synthesis of Visible Light Emitting Multinary AgInS2/ZnS Core/Shell Quantum Dots. J. Phys. Chem. 2015, 119, 7933–7940. [Google Scholar] [CrossRef]
- Wang, J.; Shao, C.; Wang, Y.; Sun, L.; Zhao, Y. Microfluidics for Medical Additive Manufacturing. Engineering 2020, 6, 1244–1257. [Google Scholar] [CrossRef]
- Lazareva, A.A.; Reznik, I.A.; Dubavik, A.Y.; Veniaminov, A.V.; Orlova, A.O. Investigation of photoluminescence kinetics CuInS2/ZnS quantum dots. J. Phys. Conf. Ser. 2021, 2058, 012007. [Google Scholar] [CrossRef]
- Sun, J.; Ikezawa, M.; Wang, X.; Jing, P.; Li, H.; Zhao, J.; Masumoto, Y. Photocarrier recombination dynamics in ternary chalcogenide CuInS2 quantum dots. Phys. Chem. Chem. Phys. 2015, 17, 11981–11989. [Google Scholar] [CrossRef] [Green Version]
- Motevich, I.G.; Zenkevich, E.I.; Stroyuk, A.L.; Raevskaya, A.E.; Kulikova, O.M.; Sheinin, V.B.; Koifman, O.I.; Zahn, D.R.T.; Strekal, N.D. Effect of pH and Polyelectrolytes on the Spectral-Kinetic Properties of AIS/ZnS Semiconductor Quantum Dots in Aqueous Solutions. J. Appl. Spectrosc. 2021, 87, 1057–1066. [Google Scholar] [CrossRef]
- Empedocles, S.A.; Norris, D.J.; Bawendi, M.G. Photoluminescence Spectroscopy of Single CdSe Nanocrystallite Quantum Dots. Phys. Rev. Lett. 1996, 77, 3873–3876. [Google Scholar] [CrossRef]
- Yu, W.W.; Qu, L.; Guo, W.; Peng, X. Experimental Determination of the Extinction Coefficient of CdTe, CdSe, and CdS Nanocrystals. Chem. Mater. 2003, 15, 2854–2860. [Google Scholar] [CrossRef]
- Liu, L.; Hu, R.; Law, W.-C.; Roy, I.; Zhu, J.; Ye, L.; Hu, S.; Zhang, X.; Yong, K.-T. Optimizing the synthesis of red- and near-infrared CuInS2 and AgInS2 semiconductor nanocrystals for bioimaging. Analyst 2013, 138, 6140. [Google Scholar] [CrossRef]
Type of Synthesis | Time of Synthesis, s | , ns | , ns | , ns | , % | , % | , % |
---|---|---|---|---|---|---|---|
Classical | 18 | 35 ± 3 | 273 ± 13 | 818 ± 21 | 39.3 | 41.5 | 39.2 |
Classical | 180 | 42 ± 3 | 219 ± 9 | 810 ± 13 | 31.5 | 46.1 | 22.4 |
Classical | 1800 | 55 ± 5 | 370 ± 11 | 1026 ± 35 | 24.3 | 52.6 | 23.1 |
Microfluidic | 18 | 32 ± 2 | 276 ± 10 | 911 ± 25 | 36.4 | 43.9 | 19.8 |
Microfluidic | 180 | 40 ± 3 | 287 ± 6 | 915 ± 12 | 35.3 | 45.6 | 19.1 |
Microfluidic | 1800 | 28 ± 1 | 249 ± 5 | 993 ± 15 | 46.2 | 38.6 | 15.3 |
Type of Synthesis | Time of Synthesis, s | ABP, nm | MEC, | Optical Density | Concentration, M |
---|---|---|---|---|---|
Classical | 18 | 465 | 0.12692 | 0.063 | 4.9 |
Classical | 180 | 455 | 0.10944 | 0.088 | 8.6 |
Classical | 1800 | 460 | 0.13753 | 0.097 | 7.1 |
Microfluidic | 18 | 455 | 0.10944 | 0.057 | 5.2 |
Microfluidic | 180 | 470 | 0.13217 | 0.049 | 3.7 |
Microfluidic | 1800 | 435 | 0.09269 | 0.105 | 11.3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Baranov, K.; Reznik, I.; Karamysheva, S.; Swart, J.W.; Moshkalev, S.; Orlova, A. Optical Properties of AgInS2 Quantum Dots Synthesized in a 3D-Printed Microfluidic Chip. Technologies 2023, 11, 93. https://doi.org/10.3390/technologies11040093
Baranov K, Reznik I, Karamysheva S, Swart JW, Moshkalev S, Orlova A. Optical Properties of AgInS2 Quantum Dots Synthesized in a 3D-Printed Microfluidic Chip. Technologies. 2023; 11(4):93. https://doi.org/10.3390/technologies11040093
Chicago/Turabian StyleBaranov, Konstantin, Ivan Reznik, Sofia Karamysheva, Jacobus W. Swart, Stanislav Moshkalev, and Anna Orlova. 2023. "Optical Properties of AgInS2 Quantum Dots Synthesized in a 3D-Printed Microfluidic Chip" Technologies 11, no. 4: 93. https://doi.org/10.3390/technologies11040093
APA StyleBaranov, K., Reznik, I., Karamysheva, S., Swart, J. W., Moshkalev, S., & Orlova, A. (2023). Optical Properties of AgInS2 Quantum Dots Synthesized in a 3D-Printed Microfluidic Chip. Technologies, 11(4), 93. https://doi.org/10.3390/technologies11040093