Double Gold/Nitrogen Nanosecond-Laser-Doping of Gold-Coated Silicon Wafer Surfaces in Liquid Nitrogen
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussions
3.1. Surface Topography and Chemical Composition
3.2. XPS Depth Profiling of Chemical States for Si and Its Dopants
3.3. Raman and FT-IR Spectroscopic Characterization
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Huang, C.; Fujisawa, S.; de Lima, T.F.; Tait, A.N.; Blow, E.C.; Tian, Y.; Bilodeau, S.; Jha, A.; Yaman, F.; Peng, H.T.; et al. A silicon photonic–electronic neural network for fibre nonlinearity compensation. Nat. Electron. 2021, 4, 837–844. [Google Scholar] [CrossRef]
- Xiang, C.; Jin, W.; Huang, D.; Tran, M.A.; Guo, J.; Wan, Y.; Xie, W.; Kurczveil, G.; Netherton, A.M.; Liang, D.; et al. High-performance silicon photonics using heterogeneous integration. IEEE J. Sel. Top. Quantum Electron. 2021, 28, 8200515. [Google Scholar] [CrossRef]
- Carroll, L.; Lee, J.S.; Scarcella, C.; Gradkowski, K.; Duperron, M.; Lu, H.; Zhao, Y.; Eason, C.; Morrissey, P.; Rensing, M.; et al. Photonic packaging: Transforming silicon photonic integrated circuits into photonic devices. Appl. Sci. 2016, 6, 426. [Google Scholar] [CrossRef]
- Tong, Z.; Bu, M.; Zhang, Y.; Yang, D.; Pi, X. Hyperdoped silicon: Processing, properties, and devices. J. Semicond. 2022, 43, 093101. [Google Scholar] [CrossRef]
- Recht, D.; Smith, M.J.; Charnvanichborikarn, S.; Sullivan, J.T.; Winkler, M.T.; Mathews, J.; Warrender, J.M.; Buonassisi, T.; Williams, J.S.; Gradečak, S.; et al. Supersaturating silicon with transition metals by ion implantation and pulsed laser melting. J. Appl. Phys. 2013, 114, 124903. [Google Scholar] [CrossRef]
- Lim, S.Q.; Williams, J.S. Electrical and Optical Doping of Silicon by Pulsed-Laser Melting. Micro 2021, 2, 1–22. [Google Scholar] [CrossRef]
- Fu, J.; Yang, D.; Yu, X. Hyperdoped crystalline silicon for infrared photodetectors by pulsed laser melting: A review. Phys. Status Solidi 2022, 219, 2100772. [Google Scholar] [CrossRef]
- Kudryashov, S.I.; Nguyen, L.V.; Kirilenko, D.A.; Brunkov, P.N.; Rudenko, A.A.; Busleev, N.I.; Shakhmin, A.L.; Semencha, A.V.; Khmelnitsky, R.A.; Melnik, N.N.; et al. Large-scale laser fabrication of antifouling silicon-surface nanosheet arrays via nanoplasmonic ablative self-organization in liquid CS2 tracked by a sulfur dopant. ACS Appl. Nano Mater. 2018, 1, 2461–2468. [Google Scholar] [CrossRef]
- Kudryashov, S.; Nastulyavichus, A.; Kirilenko, D.; Brunkov, P.; Shakhmin, A.; Rudenko, A.; Melnik, N.; Khmelnitskii, R.; Martovitskii, V.; Uspenskaya, M.; et al. Mid-Ir-sensitive n/p-J.unction fabricated on p-type Si surface via ultrashort pulse laser n-type hyperdoping and high-temperature annealing. ACS Appl. Electron. Mater. 2021, 3, 769–777. [Google Scholar] [CrossRef]
- Shimabayashi, M.; Kaneko, T.; Sasaki, K. Nitriding of 4H-SiC by irradiation of fourth harmonics of Nd: YAG laser pulses in liquid nitrogen. SN Appl. Sci. 2020, 2, 1167. [Google Scholar] [CrossRef]
- Sher, M.-J.; Hemme, E.G. Hyperdoped silicon materials: From basic materials properties to sub-bandgap infrared photodetectors. Semicond. Sci. Technol. 2023, 38, 033001. [Google Scholar] [CrossRef]
- Ferdous, N.; Ertekin, E. Atomic scale origins of sub-band gap optical absorption in goldhyperdoped silicon. AIP Adv. 2018, 8, 055014. [Google Scholar] [CrossRef]
- Kudryashov, S.; Boldyrev, K.; Nastulyavichus, A.; Prikhod’ko, D.; Tarelkin, S.; Kirilenko, D.; Brunkov, P.; Shakhmin, A.; Khamidullin, K.; Krasin, G.; et al. Near-far IR photoconductivity damping in hyperdoped Si at low temperatures. Opt. Mater. Express 2021, 11, 3792–3800. [Google Scholar] [CrossRef]
- Sher, M.-J.; Mazur, E. Intermediate band conduction in femtosecond-laser hyperdoped silicon. Appl. Phys. Lett. 2014, 105, 032103. [Google Scholar] [CrossRef]
- Shao, H.; Liang, C.; Zhu, Z.; Ning, B.Y.; Dong, X.; Ning, X.J.; Zhao, L.; Zhuang, J. Hybrid functional studies on impurity-concentration-controlled band engineering of chalcogen-hyperdoped silicon. Appl. Phys. Express 2013, 6, 085801. [Google Scholar] [CrossRef]
- Ertekin, E.; Winkler, M.T.; Recht, D.; Said, A.J.; Aziz, M.J.; Buonassisi, T.; Grossman, J.C. Insulator-to-metal transition in selenium-hyperdoped silicon: Observation and origin. Phys. Rev. Lett. 2012, 108, 026401. [Google Scholar] [CrossRef]
- Vavilov, V.S.; Chelyadinskii, A.R. Impurity ion implantation into silicon single crystals: Efficiency and radiation damage. Phys. Uspekhi 1995, 38, 333–343. [Google Scholar] [CrossRef]
- Dissanayake, S.S.; Pallat, N.O.; Chow, P.K.; Lim, S.Q.; Liu, Y.; Yue, Q.; Fiutak, R.; Mathews, J.; Williams, J.S.; Warrender, J.M.; et al. Carrier lifetimes in gold–hyperdoped silicon—Influence of dopant incorporation methods and concentration profiles. APL Mater. 2022, 10, 111106. [Google Scholar] [CrossRef]
- Sher, M.J.; Simmons, C.B.; Krich, J.J.; Akey, A.J.; Winkler, M.T.; Recht, D.; Buonassisi, T.; Aziz, M.J.; Lindenberg, A.M. Picosecond carrier recombination dynamics in chalcogen-hyperdoped silicon. Appl. Phys. Lett. 2014, 105, 053905. [Google Scholar] [CrossRef]
- Newman, B.K.; Sher, M.J.; Mazur, E.; Buonassisi, T. Reactivation of sub-bandgap absorption in chalcogen-hyperdoped silicon. Appl. Phys. Lett. 2011, 98, 251905. [Google Scholar] [CrossRef]
- Kudryashov, S.; Nastulyavichus, A.; Krasin, G.; Khamidullin, K.; Boldyrev, K.; Kirilenko, D.; Yachmenev, A.; Ponomarev, D.; Komandin, G.; Lebedev, S.; et al. CMOS-compatible direct laser writing of sulfur-ultrahyperdoped silicon: Breakthrough pre-requisite for UV-THz optoelectronic nano/microintegration. Opt. Laser Technol. 2023, 158, 108873. [Google Scholar] [CrossRef]
- Iori, F.; Degoli, E.; Palummo, M.; Ossicini, S. Novel optoelectronic properties of simultaneously n-and p-doped silicon nanostructures. Superlattice Microst. 2008, 44, 337–347. [Google Scholar] [CrossRef]
- Wang, L.Y.; Zhou, R.H.; Liu, Y.F.; Zheng, C.; Cai, J.F.; He, Y. Simulation and typical application of multi-step diffusion method for MEMS device layers. Key Eng. Mat. 2015, 645, 341–346. [Google Scholar] [CrossRef]
- Kudryashov, S.I.; Nastulyavichus, A.A.; Pryakhina, V.I.; Martovitsky, V.P.; Ulturgasheva, E.V.; Kovalev, M.S.; Podlesnykh, I.; Stsepuro, N.G.; Shakhnov, V.A. Nanosecond-laser nitridation and nitrogen doping of silicon wafer surface in liquid nitrogen. Ceram. Int. 2024; submitted. [Google Scholar] [CrossRef]
- Yang, D.; Ma, X.; Fan, R.; Zhang, J.; Li, L.; Que, D. Oxygen precipitation in nitrogen-doped Czochralski silicon. Phys. B Condens. Matter. 1999, 273, 308–311. [Google Scholar] [CrossRef]
- Akatsuka, M.; Sueoka, K. Pinning effect of punched-out dislocations in carbon-, nitrogen-or boron-doped silicon wafers. Jpn. J. Appl. Phys. 2001, 40, 1240. [Google Scholar] [CrossRef]
- Yang, D.; Chu, J.; Xu, J.; Que, D. Behavior of oxidation-induced stacking faults in annealed Czochralski silicon doped by nitrogen. J. Appl. Phys. 2003, 93, 8926–8929. [Google Scholar] [CrossRef]
- Ammon, W.; Hölzl, R.; Virbulis, J.; Dornberger, E.; Schmolke, R.; Gräf, D. The impact of nitrogen on the defect aggregation in silicon. J. Cryst. Growth. 2001, 226, 19–30. [Google Scholar] [CrossRef]
- Yu, X.; Yang, D.; Hoshikawa, K. Investigation of nitrogen behaviors during Czochralski silicon crystal growth. J. Cryst. Growth 2011, 318, 178–182. [Google Scholar] [CrossRef]
- Masuda, A.; Itoh, K.I.; Matsuda, K.; Yonezawa, Y.; Kumeda, M.; Shimizu, T. Nitrogen-doping effects on electrical, optical, and structural properties in hydrogenated amorphous silicon. J. Appl. Phys. 1997, 81, 6729–6737. [Google Scholar] [CrossRef]
- Sgourou, E.N.; Angeletos, T.; Chroneos, A.; Londos, C.A. Infrared study of defects in nitrogen-doped electron irradiated silicon. J. Mater. Sci. Mater. Electron. 2016, 27, 2054–2061. [Google Scholar] [CrossRef]
- Platonenko, A.; Gentile, F.S.; Pascale, F.; Ferrari, A.M.; D’amore, M.; Dovesi, R. Nitrogen substitutional defects in silicon. A quantum mechanical investigation of the structural, electronic and vibrational properties. Phys. Chem. Chem. Phys. 2019, 21, 20939–20950. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Ma, S.X.; Liu, X.; Zhao, Y.; Li, H.; Li, Y.; Ning, X.; Zhao, L.; Zhuang, J. NO2 gas sensor with excellent performance based on thermally modified nitrogen-hyperdoped silicon. Sens. Actuators B Chem. 2022, 354, 131193. [Google Scholar] [CrossRef]
- Potsidi, M.S.; Kuganathan, N.; Christopoulos, S.-R.G.; Sarlis, N.V.; Chroneos, A.; Londos, C.A. Theoretical investigation of nitrogen-vacancy defects in silicon. AIP Adv. 2022, 12, 025112. [Google Scholar] [CrossRef]
- Yatsurugi, Y.; Akiyama, N.; Endo, Y.; Nozaki, T. Concentration, solubility, and equilibrium distribution coefficient of nitrogen and oxygen in semiconductor silicon. J. Electrochem. Soc. 1973, 120, 975–979. [Google Scholar] [CrossRef]
- Belli, M.; Fanciulli, M. Electron Spin–Lattice Relaxation of Substitutional Nitrogen in Silicon: The Role of Disorder and Motional Effects. Nanomaterials 2023, 14, 21. [Google Scholar] [CrossRef]
- Murakami, K.; Itoh, H.; Takita, K.; Masuda, K. Substitutional nitrogen impurities in pulsed-laser annealed silicon. Appl. Phys. Lett. 1984, 45, 176–178. [Google Scholar] [CrossRef]
- Jones, R.; Hahn, I.; Goss, J.P.; Briddon, P.R.; Oberg, S. Structure and Electronic Properties of Nitrogen Defects in Silicon. Solid State Phenom. 2003, 95–96, 93–98. [Google Scholar] [CrossRef]
- Dong, X.; Li, N.; Zhu, Z. A nitrogen-hyperdoped silicon material formed by femtosecond laser irradiation. Appl. Phys. Lett. 2014, 104, 091907. [Google Scholar] [CrossRef]
- Stein, H.J. Nitrogen in Crystalline Si. MRS Online Proc. Libr. 1985, 59, 523–535. [Google Scholar] [CrossRef]
- Stein, H.J. Nitrogen related donors in silicon. J. Electrochem. Soc. 1987, 134, 2592. [Google Scholar] [CrossRef]
- Kobayashi, S.I. IR spectroscopic study of silicon nitride films grown at a low substrate temperature using very high frequency plasma-enhanced chemical vapor deposition. World J. Condens. Matter Phys. 2016, 6, 287–293. [Google Scholar] [CrossRef]
- Mihailescu, I.N.; Litã, A.; Teodorescu, V.S.; Gyorgy, E.; Alexandrescu, R.; Luches, A.; Martino, M.; Barboricã, A. Synthesis and deposition of silicon nitride films by laser reactive ablation of silicon in low pressure ammonia: A parametric study. J. Vac. Sci. Technol. A 1996, 14, 1986–1994. [Google Scholar] [CrossRef]
- Blumenthal, D.J.; Heideman, R.; Geuzebroek, D.; Leinse, A.; Roeloffzen, C. Silicon nitride in silicon photonics. Proc. IEEE 2018, 106, 2209–2231. [Google Scholar] [CrossRef]
- Barkby, J.; Moro, F.; Perego, M.; Taglietti, F.; Lidorikis, E.; Kalfagiannis, N.; Koutsogeorgis, D.C.; Fanciulli, M. Fabrication of nitrogen-hyperdoped silicon by high-pressure gas immersion excimer laser doping. Sci. Rep. 2024, 14, 19640. [Google Scholar] [CrossRef] [PubMed]
- Ionin, A.A.; Kudryashov, S.I.; Seleznev, L.V. Near-critical phase explosion promoting breakdown plasma ignition during laser ablation of graphite. Phys. Rev. E—Stat. Nonlinear Soft Matter Phys. 2010, 82, 016404. [Google Scholar] [CrossRef]
- Kudryashov, S.I.; Samokhvalov, A.A.; Nastulyavichus, A.A.; Saraeva, I.N.; Mikhailovskii, V.Y.; Ionin, A.A.; Veiko, V.P. Nanosecond-laser generation of nanoparticles in liquids: From ablation through bubble dynamics to nanoparticle yield. Materials 2019, 12, 562. [Google Scholar] [CrossRef]
- Kanaya, K.; Okayama, S. Penetration and energy-loss theory of electrons in solid targets. J. Phys. D Appl. Phys. 1972, 5, 43. [Google Scholar] [CrossRef]
- Kudryashov, S.I.; Allen, S.D. Photoacoustic study of KrF laser heating of Si: Implications for laser particle removal. J. Appl. Phys. 2002, 92, 5627–5631. [Google Scholar] [CrossRef]
- Wada, N.; Solin, S.A.; Wong, J.; Prochazka, S. Raman and IR absorption spectroscopic studies on α, β, and amorphous Si3N4. J. Non-Cryst. Solids 1981, 43, 7–15. [Google Scholar] [CrossRef]
- NIST X-Ray Photoelectron Spectroscopy Database. Available online: https://srdata.nist.gov/xps/ElmComposition (accessed on 15 June 2024).
- Ermolieff, A.; Bernard, P.; Marthon, S.; Camargo da Costa, J. Nitridation of Si (100) made by radio frequency plasma as studied by in situ angular resolved x-ray photoelectron spectroscopy. J. Appl. Phys. 1986, 60, 3162–3166. [Google Scholar] [CrossRef]
- Peters, S.; Peredkov, S.; Neeb, M.; Eberhardt, W.; Al-Hada, M. Size-dependent XPS spectra of small supported Au-clusters. Surf. Sci. 2013, 608, 129–134. [Google Scholar] [CrossRef]
- Palik, E.D. Handbook of Optical Constants of Solids, 3rd ed.; Academic Press: San Diego, CA, USA, 1998; p. 1000. [Google Scholar]
- Goss, J.P.; Hahn, I.; Jones, R.; Briddon, P.R.; Öberg, S. Vibrational modes and electronic properties of nitrogen defects in silicon. Phys. Rev. B 2003, 67, 045206. [Google Scholar] [CrossRef]
- Tan, H.S.; Kuok, M.H.; Ng, S.C.; Ong, C.K.; Tang, S.H. Laser-induced lattice tensile strain in silicon. J. Appl. Phys. 1984, 5, 1116–1118. [Google Scholar] [CrossRef]
- Viera, G.; Huet, S.; Boufendi, L. Crystal size and temperature measurements in nanostructured silicon using Raman spectroscopy. J. Appl. Phys. 2001, 90, 4175–4183. [Google Scholar] [CrossRef]
- Ehara, T. Electron spin resonance study of nitrogen-doped microcrystalline silicon and amorphous silicon. Appl. Surf. Sci. 1997, 113, 126–129. [Google Scholar] [CrossRef]
- Luongo, J.P. IR study of amorphous silicon nitride films. Appl. Spectrosc. 1984, 38, 195–199. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kudryashov, S.; Nastulyavichus, A.; Pryakhina, V.; Ulturgasheva, E.; Kovalev, M.; Podlesnykh, I.; Stsepuro, N.; Shakhnov, V. Double Gold/Nitrogen Nanosecond-Laser-Doping of Gold-Coated Silicon Wafer Surfaces in Liquid Nitrogen. Technologies 2024, 12, 224. https://doi.org/10.3390/technologies12110224
Kudryashov S, Nastulyavichus A, Pryakhina V, Ulturgasheva E, Kovalev M, Podlesnykh I, Stsepuro N, Shakhnov V. Double Gold/Nitrogen Nanosecond-Laser-Doping of Gold-Coated Silicon Wafer Surfaces in Liquid Nitrogen. Technologies. 2024; 12(11):224. https://doi.org/10.3390/technologies12110224
Chicago/Turabian StyleKudryashov, Sergey, Alena Nastulyavichus, Victoria Pryakhina, Evgenia Ulturgasheva, Michael Kovalev, Ivan Podlesnykh, Nikita Stsepuro, and Vadim Shakhnov. 2024. "Double Gold/Nitrogen Nanosecond-Laser-Doping of Gold-Coated Silicon Wafer Surfaces in Liquid Nitrogen" Technologies 12, no. 11: 224. https://doi.org/10.3390/technologies12110224
APA StyleKudryashov, S., Nastulyavichus, A., Pryakhina, V., Ulturgasheva, E., Kovalev, M., Podlesnykh, I., Stsepuro, N., & Shakhnov, V. (2024). Double Gold/Nitrogen Nanosecond-Laser-Doping of Gold-Coated Silicon Wafer Surfaces in Liquid Nitrogen. Technologies, 12(11), 224. https://doi.org/10.3390/technologies12110224