A Three-Level Service Quality Index System for Wind Turbine Groups Based on Fuzzy Comprehensive Evaluation
Abstract
:1. Introduction
2. The Three-Level Service Quality Index System for Wind Turbine Groups
2.1. Establishment of Index System
2.2. Selection of Tertiary Indicators
2.3. Selection of Secondary Indicators
3. Fuzzy Comprehensive Evaluation Model
3.1. Normalization of Evaluation Indicators
3.1.1. The Smaller the Factor, the Better the Type
3.1.2. Intermediate Factors
3.2. Calculation of Indicator Weights
3.3. Analysis of Membership Function
4. Case Study
4.1. Data Preprocessing
4.2. Normalization Processing Calculates Degradation Degree
4.3. Entropy Weight Method for Determining Weights
4.4. Membership Calculation
4.5. Fuzzy Evaluation to Obtain Evaluation Results
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Fuser, A.; Fontaine, F.; Copper, J. Data Quality, Consistency, and Interpretation Management for Wind Farms by Using Neural Networks. In Proceedings of the 2014 IEEE International Parallel & Distributed Processing Symposium Workshops, Phoenix, AZ, USA, 19–23 May 2014. [Google Scholar]
- Shu, J.; Jia, Y. Offshore Wind Energy Assessment Considering Different Wake Effect Models. In Proceedings of the 2023 2nd Asian Conference on Frontiers of Power and Energy (ACFPE), Chengdu, China, 20–22 October 2023. [Google Scholar]
- Han, G.; Zhang, K.; Tang, A.; Wang, T.; Li, X.; Yang, H. Risk Assessment of Composite Transmission and Substation System with Multi-State Wind Farms. In Proceedings of the 2024 IEEE 7th Advanced Information Technology, Electronic and Automation Control Conference (IAEAC), Chongqing, China, 15–17 March 2024. [Google Scholar]
- Wu, X.; Hu, F. Analysis of ecological carrying capacity using a fuzzy comprehensive evaluation method. Ecol. Indic. 2020, 113, 106243. [Google Scholar] [CrossRef]
- Zheng, X.; Li, M. Health state evaluation based on wavelet packet and PCHMM for vulnerable components of wind turbines. Taiyangneng Xuebao/Acta Energiae Solaris Sin. 2019, 40, 370–379. [Google Scholar]
- Zhang, Z.; Lu, H. Research on Power Spot Market Comprehensive Index System and Evaluation Method. In Proceedings of the 2020 IEEE 4th Conference on Energy Internet and Energy System Integration, Wuhan, China, 30 October–1 November 2020. [Google Scholar]
- Dong, X.; Gao, D.; Li, J.; Li, S. Evaluation model on uncertainty of the wind turbine state. Sustain. Energy Technol. Assess. 2021, 46, 101303. [Google Scholar] [CrossRef]
- Sun, Z.; Sun, H. Health Status Assessment for Wind Turbine with Recurrent Neural Networks. Math. Probl. Eng. 2018, 2018, 6972481. [Google Scholar] [CrossRef]
- Cheng, X.; Wei, J.; Peng, H.; Wang, J.; Hu, F.; Bo, L. Optimal power dispatch method for wind farms considering service quality and available power. IET Renew. Power Gener. 2024. [Google Scholar] [CrossRef]
- Huang, S.; Yang, Y.; Wei, J.; Peng, H.; Wu, Q.; Cheng, X.; Ling, J. Hierarchical service quality regulation method in wind farms based on optimal generating strategy. IEEE Trans. Sustain. Energy 2024, 15, 1450–1461. [Google Scholar] [CrossRef]
- Cai, C.; Guo, J.; Song, X.; Zhang, Y.; Wu, J.; Tang, S.; Jia, Y.; Xing, Z.; Li, Q. Review of data-driven approaches for wind turbine blade icing detection. Sustainability 2023, 15, 1617. [Google Scholar] [CrossRef]
- Liu, J.; Wang, Z.; Zang, X.; Li, X.; Guo, L.; Meng, Q.; Wang, C. Data-driven dynamic assessment method of wind farm frequency characteristics based on state space mapping. CSEE J. Power Energy Syst. 2024. [Google Scholar]
- Li, L.; Jian, Q. Remaining useful life prediction of Wind Turbine Main-Bearing Based on LSTM Optimized Network. IEEE Sens. J. 2024, 24, 21143–21156. [Google Scholar] [CrossRef]
- Nahi, S.; Zare, K.; Faghihi, F. Estimation of restoration duration for reliability-based self-healing service by wind power plant. Energy Sources Part A Recovery Util. Environ. Eff. 2023, 45, 1241–1256. [Google Scholar] [CrossRef]
- Xu, X.; Yu, F.; Pedrycz, W.; Du, X. Multi-source fuzzy comprehensive evaluation. Appl. Soft Comput. 2023, 135, 110042. [Google Scholar] [CrossRef]
- Xiao, Y.; Wang, K.; He, G.; Sun, Y.; Yang, X. Fuzzy comprehensive evaluation for operating condition of large-scale wind turbines based on trend predication. Proc. Chin. Soc. Electr. Eng. 2014, 34, 2132–2139. [Google Scholar] [CrossRef]
- Cheng, W.; Xi, H.; Sindikubwabo, C.; Si, J.; Zhao, C.; Yu, T.; Li, A.; Wu, T. Ecosystem health assessment of desert nature reserve with entropy weight and fuzzy mathematics methods: A case study of Badain Jaran Desert. Ecol. Indic. 2020, 119, 106843. [Google Scholar] [CrossRef]
- Li, J.; Li, Z.; Zhou, Q.; Zhang, Y.; Xu, H. Improved scheme of membership function optimisation for fuzzy air-fuel ratio control of GDI engines. IET Intell. Transp. Syst. 2019, 13, 209–217. [Google Scholar] [CrossRef]
- Xu, S.; Hao, Z.; Zhu, Y.; Wang, Z.; Xiao, Y.; Liu, B. Semi-supervised fuzzy clustering algorithm based on prior membership degree matrix with expert preference. Expert Syst. Appl. 2024, 238, 121812. [Google Scholar] [CrossRef]
15 March 2024 | Phase Voltage | Phase Current | Active Power | Power Factor | Cabin Position | Pitch Angle | Impeller Speed | Generator Speed |
---|---|---|---|---|---|---|---|---|
00:00:00 | 618.9 | 840.5 | 954.2 | 89.7 | 435.2 | 7.8 | 1703.2 | 1805.7 |
02:00:00 | 620.1 | 783.5 | 889.1 | 89.8 | 447.2 | −0.4 | 1692.7 | 1784.3 |
04:00:00 | 616.0 | 108.5 | 124.6 | 91.6 | 436.9 | 1.0 | 1048.5 | 1121.6 |
06:00:00 | 613.2 | 0.8 | 0.0 | 91.6 | 469.0 | 85.6 | 6.9 | 15.0 |
08:00:00 | 623.8 | 754.3 | 853.7 | 89.9 | 213.1 | 10.8 | 1696.7 | 1800.0 |
10:00:00 | 625.0 | 838.5 | 935.0 | 89.9 | 215.9 | 4.6 | 1690.4 | 1800.4 |
12:00:00 | 622.5 | 527.0 | 596.8 | 89.3 | 215.8 | 1.2 | 1684.1 | 1802.8 |
14:00:00 | 617.1 | 495.3 | 567.6 | 89.4 | 203.6 | 2.1 | 1686.7 | 1805.0 |
16:00:00 | 615.4 | 772.0 | 883.0 | 89.8 | 201.5 | −0.4 | 1702.3 | 1798.0 |
18:00:00 | 616.1 | 360.3 | 408.6 | 89.7 | 203.8 | −0.5 | 1472.8 | 1575.0 |
20:00:00 | 616.6 | 734.8 | 826.2 | 92.3 | 232.0 | 2.3 | 1702.6 | 1793.6 |
22:00:00 | 619.8 | 326.0 | 367.8 | 95.0 | 248.0 | −0.5 | 1422.1 | 1528.0 |
15 March 2024 | Gearbox Oil Temperature | Gearbox Bearing Temperature | Drive-End Bearing Temperature | Non-Drive-End Bearing Temperature | Cabin Temperature |
---|---|---|---|---|---|
00:00:00 | 50.9 | 63.4 | 54.6 | 70.5 | 25.9 |
02:00:00 | 54.7 | 67.2 | 56.1 | 69.2 | 27.5 |
04:00:00 | 51.9 | 63.0 | 50.2 | 55.5 | 26.4 |
06:00:00 | 48.7 | 53.4 | 44.8 | 50.5 | 18.6 |
08:00:00 | 50.7 | 62.5 | 52.9 | 68.8 | 24.1 |
10:00:00 | 51.7 | 62.5 | 55.8 | 70.6 | 25.7 |
12:00:00 | 53.8 | 66.0 | 56.6 | 66.5 | 28.1 |
14:00:00 | 52.7 | 65.2 | 54.5 | 59.8 | 24.7 |
16:00:00 | 51.2 | 64.3 | 51.5 | 54.6 | 22.2 |
18:00:00 | 54.0 | 66.8 | 48.7 | 52.2 | 24.3 |
20:00:00 | 54.4 | 66.9 | 49.7 | 52.4 | 24.0 |
22:00:00 | 52.4 | 65.9 | 48.9 | 52.2 | 23.6 |
15 March 2024 | Phase Voltage | Phase Current | Active Power | Power Factor | Cabin Position | Pitch Angle | Impeller Speed | Generator Speed |
---|---|---|---|---|---|---|---|---|
00:00:00 | 0.00 | 0.61 | 0.60 | 0.05 | 0.93 | 0.47 | 0.50 | 0.28 |
02:00:00 | 0.00 | 0.49 | 0.48 | 0.00 | 0.98 | 0.59 | 0.24 | 0.00 |
04:00:00 | 0.33 | 0.75 | 0.74 | 0.20 | 0.93 | 0.00 | 0.98 | 0.99 |
06:00:00 | 0.71 | 1.00 | 1.00 | 0.20 | 1.00 | 1.00 | 1.00 | 1.00 |
08:00:00 | 0.41 | 0.42 | 0.41 | 0.00 | 0.13 | 0.70 | 0.33 | 0.12 |
10:00:00 | 0.55 | 0.61 | 0.56 | 0.00 | 0.00 | 0.24 | 0.18 | 0.13 |
12:00:00 | 0.26 | 0.00 | 0.00 | 0.47 | 0.00 | 0.00 | 0.02 | 0.20 |
14:00:00 | 0.18 | 0.00 | 0.00 | 0.32 | 0.63 | 0.05 | 0.09 | 0.26 |
16:00:00 | 0.41 | 0.46 | 0.47 | 0.00 | 0.74 | 0.59 | 0.47 | 0.07 |
18:00:00 | 0.31 | 0.09 | 0.07 | 0.04 | 0.62 | 0.59 | 0.30 | 0.28 |
20:00:00 | 0.25 | 0.38 | 0.36 | 0.27 | 0.05 | 0.06 | 0.48 | 0.00 |
22:00:00 | 0.00 | 0.18 | 0.17 | 0.60 | 0.11 | 0.59 | 0.38 | 0.35 |
15 March 2024 | Gearbox Oil Temperature | Gearbox Bearing Temperature | Drive-End Bearing Temperature | Non-Drive-End Bearing Temperature | Cabin Temperature |
---|---|---|---|---|---|
00:00:00 | 0.56 | 0.63 | 0.83 | 0.92 | 0.83 |
02:00:00 | 0.97 | 0.92 | 0.95 | 0.86 | 0.95 |
04:00:00 | 0.67 | 0.60 | 0.48 | 0.29 | 0.86 |
06:00:00 | 0.32 | 0.00 | 0.06 | 0.08 | 0.28 |
08:00:00 | 0.54 | 0.56 | 0.70 | 0.85 | 0.69 |
10:00:00 | 0.65 | 0.56 | 0.92 | 0.92 | 0.81 |
12:00:00 | 0.87 | 0.83 | 0.98 | 0.75 | 0.99 |
14:00:00 | 0.75 | 0.77 | 0.82 | 0.47 | 0.74 |
16:00:00 | 0.59 | 0.70 | 0.59 | 0.25 | 0.55 |
18:00:00 | 0.89 | 0.89 | 0.37 | 0.15 | 0.71 |
20:00:00 | 0.94 | 0.90 | 0.45 | 0.16 | 0.68 |
22:00:00 | 0.72 | 0.82 | 0.38 | 0.15 | 0.65 |
Index | Weight | Index | Weight |
---|---|---|---|
Phase voltage | 0.00000748 | Generator speed | 0.000250921 |
Phase current | 0.085211613 | Gearbox oil temperature | 0.000770457 |
Active power | 0.085266848 | Gearbox bearing temperature | 0.042690068 |
Power factor | 0.0000744 | Drive-end bearing temperature | 0.001083506 |
Power factor | 0.031073611 | Non-drive-end bearing temperature | 0.00402718 |
Cabin position | 0.703328461 | Cabin temperature | 0.002370901 |
Pitch angle | 0.043844593 |
15 March 2024 | Excellent | Good | Average | Poor | Extremely Poor |
---|---|---|---|---|---|
00:00:00 | 0.00 | 0.00 | 1.00 | 0.00 | 0.00 |
02:00:00 | 0.00 | 0.00 | 0.94 | 0.06 | 0.00 |
04:00:00 | 0.00 | 0.00 | 0.00 | 0.00 | 1.00 |
06:00:00 | 0.00 | 0.00 | 0.00 | 0.00 | 1.00 |
08:00:00 | 0.00 | 0.00 | 0.77 | 0.23 | 0.00 |
10:00:00 | 0.00 | 0.80 | 0.20 | 0.00 | 0.00 |
12:00:00 | 0.00 | 0.00 | 0.00 | 0.00 | 1.00 |
14:00:00 | 0.70 | 0.30 | 0.00 | 0.00 | 0.00 |
16:00:00 | 0.00 | 0.00 | 0.94 | 0.06 | 0.00 |
18:00:00 | 0.00 | 0.01 | 0.99 | 0.00 | 0.00 |
20:00:00 | 0.25 | 0.75 | 0.00 | 0.00 | 0.00 |
22:00:00 | 0.00 | 0.01 | 0.99 | 0.00 | 0.00 |
15 March 2024 | Health Grade | 15 March 2024 | Health Grade |
---|---|---|---|
00:00:00 | Average | 12:00:00 | Extremely poor |
02:00:00 | Average | 14:00:00 | Excellent |
04:00:00 | Extremely poor | 16:00:00 | Average |
06:00:00 | Extremely poor | 18:00:00 | Average |
08:00:00 | Average | 20:00:00 | Good |
10:00:00 | Good | 22:00:00 | Average |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cheng, X.; Hao, J.; Li, Y.; Wei, J.; Wang, W.; Lu, Y. A Three-Level Service Quality Index System for Wind Turbine Groups Based on Fuzzy Comprehensive Evaluation. Technologies 2024, 12, 234. https://doi.org/10.3390/technologies12110234
Cheng X, Hao J, Li Y, Wei J, Wang W, Lu Y. A Three-Level Service Quality Index System for Wind Turbine Groups Based on Fuzzy Comprehensive Evaluation. Technologies. 2024; 12(11):234. https://doi.org/10.3390/technologies12110234
Chicago/Turabian StyleCheng, Xueting, Jie Hao, Yuxiang Li, Juan Wei, Weiru Wang, and Yaohui Lu. 2024. "A Three-Level Service Quality Index System for Wind Turbine Groups Based on Fuzzy Comprehensive Evaluation" Technologies 12, no. 11: 234. https://doi.org/10.3390/technologies12110234
APA StyleCheng, X., Hao, J., Li, Y., Wei, J., Wang, W., & Lu, Y. (2024). A Three-Level Service Quality Index System for Wind Turbine Groups Based on Fuzzy Comprehensive Evaluation. Technologies, 12(11), 234. https://doi.org/10.3390/technologies12110234