Comparison of Shallow (−20 °C) and Deep Cryogenic Treatment (−196 °C) to Enhance the Properties of a Mg/2wt.%CeO2 Nanocomposite
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials Processing
2.2. Characterization
2.2.1. Density and Porosity
2.2.2. Microstructure
2.2.3. Thermal Properties
2.2.4. Mechanical Properties
3. Results and Discussion
3.1. Density and Porosity Measurements
3.2. Microstructure
3.3. Thermal Response
Composition | Ignition Temperature (°C) |
---|---|
Pure Mg | 580 |
Mg-2CeO2 (AE) | 636 |
Mg-2CeO2 (RF) | 635 (↓1) |
Mg-2CeO2 (LN) | 674 (↑38) |
AZ31 a | 628 |
AZ61 a | 559 |
WE43 a | 644 |
AZ91 a | 600 |
ZK40A a | 500 |
ZK60A a | 499 |
AM50 a | 585 |
AZ81A a | 543 |
3.4. Mechanical Response
Composition/ Treatment | 0.2 CYS (MPa) | UCS (MPa) | Fracture Strain (%) | Energy Absorbed (MJ/mm3) |
---|---|---|---|---|
Pure Mg | 63 ± 4 | 278 ± 5 | 24 ± 1 | 45 |
Mg-2CeO2 (AE) | 178 ± 19 | 473 ± 16 | 16.5 ± 0.7 | 44 ± 2 |
Mg-2CeO2 (RF) | 186 ± 17(↑5%) | 441 ± 12(↓7%) | 29.1 ± 1.0 (↑76%) | 73 ± 4 (↑65%) |
Mg-2CeO2 (LN) | 203 ± 5 (↑14%) | 452 ± 15 (↓4%) | 29.7 ± 1.2 (↑80%) | 76 ± 6 (↑72%) |
Mg-2Nd-4Zn a | 242 | 502 | 8 | NA |
AM50 | 110 | 312 | 11.5 | |
AZ91D | 130 | 300 | 12.4 | |
AZ31 | NR | 250 | 28 | |
Mg-5Zn/5BG | NR | 112.8 | NR | |
WE43 | 261 ± 16 | 420 ± 13 | 16.3 ± 1.0 | |
WE43 + Apatite | 229 ± 6 | 380.1 ± 9.0 | 11.7 ± 0.5 | |
ME21 | 87 | 260 | 25 | |
WE54 | 210 | 325 | 27 | |
ZK60 | 159 | 472 | 12.4 | |
Mg4Zn3Gd1Ca | 260 ± 3 | 585 ± 18 | 12.6 ± 0.3 | |
Mg4Zn3Gd1Ca-ZnO | 355 ± 5 | 703 ± 40 | 10.6 ± 0.3 |
4. Conclusions
- The porosity reduction of ~10.4% and ~43.3% was observed when compared with the AE samples when the samples were exposed to −20 °C (RF) and −196 °C (LN), respectively.
- The DSC studies revealed the release of residual stresses in the case of the LN samples but not for the AE and RF samples.
- The ignition temperature of the LN samples improved by 38 °C but decreased by only 1 °C for the RF samples when compared to the AE samples.
- When exposed to shallow cryogenic treatment (−20 °C), the Mg-2CeO2 nanocomposite showed a ~5%, ~76%, and ~65% increment in the 0.2 CYS, fracture strain, and energy absorption values, respectively, as compared to the untreated samples. By comparison, when exposed to deep cryogenic treatment (−196 °C), the Mg-2CeO2 nanocomposite showed a ~14%, ~80%, and ~72% increment in the 0.2 CYS, fracture strain, and energy absorption values, respectively, as compared to the untreated samples. Overall, the UCS values for both conditions were slightly lower than the untreated conditions.
- The fracture surfaces of the AE, RF, and LN samples did not reveal any noticeable difference at the visual level (45 ° shear fracture). The RF and LN samples showed a higher degree of surface roughness, indicating a higher fracture strain when compared to the AE samples.
- The future outlook for the expansion of this field of research will be to focus in depth on the mechanism behind the improvement of the properties in a cryogenic setting and to identify suitable lightweight magnesium materials that can be suitable for such applications and to engineer them for high cryogenic performance.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sonar, T.; Lomte, S.; Gogte, C. Cryogenic Treatment of Metal—A Review. Mater. Today Proc. 2018, 5 Pt 3, 25219–25228. [Google Scholar] [CrossRef]
- Dieringa, H. Influence of Cryogenic Temperatures on the Microstructure and Mechanical Properties of Magnesium Alloys: A Review. Metals 2017, 7, 38. [Google Scholar] [CrossRef]
- Baldissera, P.; Delprete, C. Deep cryogenic treatment: A bibliographic review. Open Mech. Eng. J. 2008, 2, 1–11. [Google Scholar] [CrossRef]
- Das, D.; Ray, K.K.; Dutta, A.K. Influence of temperature of sub-zero treatments on the wear behaviour of die steel. Wear 2009, 267, 1361–1370. [Google Scholar] [CrossRef]
- Barron, R.F. Cryogenic treatment of metals to improve wear resistance. Cryogenics 1982, 22, 409–413. [Google Scholar] [CrossRef]
- Prasad, S.V.S.; Prasad, S.B.; Verma, K.; Mishra, R.K.; Kumar, V.; Singh, S. The role and significance of Magnesium in modern day research-A review. J. Magnes. Alloys 2022, 10, 1–61. [Google Scholar] [CrossRef]
- Liu, L.; Chen, X.; Pan, F. A review on electromagnetic shielding magnesium alloys. J. Magnes. Alloys 2021, 9, 1906–1921. [Google Scholar] [CrossRef]
- Shang, Y.; Pistidda, C.; Gizer, G.; Klassen, T.; Dornheim, M. Mg-based materials for hydrogen storage. J. Magnes. Alloys 2021, 9, 1837–1860. [Google Scholar] [CrossRef]
- Staiger, M.P.; Pietak, A.M.; Huadmai, J.; Dias, G. Magnesium and its alloys as orthopedic biomaterials: A review. Biomaterials 2006, 27, 1728–1734. [Google Scholar] [CrossRef]
- Kujur, M.S.; Manakari, V.; Parande, G.; Prasadh, S.; Wong, R.; Mallick, A.; Gupta, M. Effect of samarium oxide nanoparticles on degradation and invitro biocompatibility of magnesium. Mater. Today Commun. 2021, 26, 102171. [Google Scholar] [CrossRef]
- Teo, Z.M.B.; Parande, G.; Manakari, V.; Gupta, M. Using low-temperature sinterless powder method to develop exceptionally high amount of zinc containing Mg–Zn–Ca alloy and Mg–Zn–Ca/SiO2 nanocomposite. J. Alloys Compd. 2021, 853, 156957. [Google Scholar] [CrossRef]
- Bupesh Raja, V.K.; Parande, G.; Kannan, S.; Sonawwanay, P.D.; Selvarani, V.; Ramasubramanian, S.; Ramachandran, D.; Jeremiah, A.; Akash Sundaraeswar, K.; Satheeshwaran, S.; et al. Influence of Laser Treatment Medium on the Surface Topography Characteristics of Laser Surface-Modified Resorbable Mg3Zn Alloy and Mg3Zn1HA Nanocomposite. Metals 2023, 13, 850. [Google Scholar] [CrossRef]
- Parande, G.; Tun, K.S.; Neo, H.J.N.; Gupta, M. An Investigation into the Effect of Length Scale (Nano to Micron) of Cerium Oxide Particles on the Mechanical and Flammability Response of Magnesium. J. Mater. Eng. Perform. 2022, 32, 2710–2722. [Google Scholar] [CrossRef]
- Wei, J.; He, C.; Qie, M.; Li, Y.; Tian, N.; Qin, G.; Zuo, L. Achieving high performance of wire arc additive manufactured Mg–Y–Nd alloy assisted by interlayer friction stir processing. J. Mater. Process. Technol. 2023, 311, 117809. [Google Scholar] [CrossRef]
- Lopes, V.; Puga, H.; Gomes, I.V.; Peixinho, N.; Teixeira, J.C.; Barbosa, J. Magnesium stents manufacturing: Experimental application of a novel hybrid thin-walled investment casting approach. J. Mater. Process. Technol. 2022, 299, 117339. [Google Scholar] [CrossRef]
- Yu, Z.; Chen, J.; Yan, H.; Xia, W.; Su, B.; Gong, X.; Guo, H. Degradation, stress corrosion cracking behavior and cytocompatibility of high strain rate rolled Mg-Zn-Sr alloys. Mater. Lett. 2020, 260, 126920. [Google Scholar] [CrossRef]
- Maier, P.; Hort, N. Magnesium Alloys for Biomedical Applications; MDPI: Basel, Switzerland, 2020; Volume 10, p. 1328. [Google Scholar]
- Joost, W.J.; Krajewski, P.E. Towards magnesium alloys for high-volume automotive applications. Scr. Mater. 2017, 128, 107–112. [Google Scholar] [CrossRef]
- Prasadh, S.; Manakari, V.; Parande, G.; Wong, R.C.W.; Gupta, M. Hollow silica reinforced magnesium nanocomposites with enhanced mechanical and biological properties with computational modeling analysis for mandibular reconstruction. Int. J. Oral Sci. 2020, 12, 31. [Google Scholar] [CrossRef]
- Huang, H.; Zhang, J. Microstructure and mechanical properties of AZ31 magnesium alloy processed by multi-directional forging at different temperatures. Mater. Sci. Eng. A 2016, 674, 52–58. [Google Scholar] [CrossRef]
- Jiang, Y.; Chen, D.; Chen, Z.; Liu, J. Effect of Cryogenic Treatment on the Microstructure and Mechanical Properties of AZ31 Magnesium Alloy. Mater. Manuf. Process. 2010, 25, 837–841. [Google Scholar] [CrossRef]
- Gupta, S.; Parande, G.; Tun, K.S.; Gupta, M. Enhancing the Physical, Thermal, and Mechanical Responses of a Mg/2wt.% CeO2 Nanocomposite Using Deep Cryogenic Treatment. Metals 2023, 13, 660. [Google Scholar] [CrossRef]
- Kogure, Y.; Hiki, Y. Effect of dislocations on low-temperature thermal conductivity and specific heat of copper-aluminum alloy crystals. J. Phys. Soc. Jpn. 1975, 39, 698–707. [Google Scholar] [CrossRef]
- Tekumalla, S.; Gupta, M. An insight into ignition factors and mechanisms of magnesium based materials: A review. Mater. Des. 2017, 113, 84–98. [Google Scholar] [CrossRef]
- Dieter, G.E.; Bacon, D. Mechanical Metallurgy; McGraw-Hill New York: New York, NY, USA, 1976; Volume 3. [Google Scholar]
- Dong, N.; Sun, L.; Ma, H.; Jin, P. Effects of cryogenic treatment on microstructures and mechanical properties of Mg-2Nd-4Zn alloy. Mater. Lett. 2021, 305, 130699. [Google Scholar] [CrossRef]
- Wang, J.; Xie, J.; Ma, D.; Mao, Z.; Liang, T.; Ying, P.; Wang, A.; Wang, W. Effect of deep cryogenic treatment on the microstructure and mechanical properties of Al–Cu–Mg–Ag alloy. J. Mater. Res. Technol. 2023, 25, 6880–6885. [Google Scholar] [CrossRef]
- Jia, J.; Meng, M.; Zhang, Z.; Yang, X.; Lei, G.; Zhang, H. Effect of deep cryogenic treatment on the microstructure and tensile property of Mg-9Gd-4Y–2Zn-0.5Zr alloy. J. Mater. Res. Technol. 2022, 16, 74–87. [Google Scholar] [CrossRef]
Material | Theoretical Density (g·cm−3) | Before CT | After CT | |||
---|---|---|---|---|---|---|
Experimental Density (g·cm−3) | Porosity (%) | Experimental Density (g·cm−3) | Porosity (%) | Change in Porosity (%) | ||
Pure Mg a | 1.7380 | 1.732 ± 0.0005 | 0.3190 | – | – | |
Mg-2CeO2 (AE) | 1.7648 | 1.745 ± 0.002 | 1.099 | – | – | |
Mg-2CeO2 (RF) | 1.7648 | 1.7454 ± 0.008 | 1.102 | 1.7474 ± 0.001 | 0.9875 | ↓10.4 |
Mg-2CeO2 (LN) | 1.7648 | 1.7476 ± 0.0009 | 0.9764 | 1.755 ± 0.002 | 0.5445 | ↓43.3 |
Composition | Grain Size (µm) | Aspect Ratio |
---|---|---|
Pure Mg | 21 ± 0.8 | 1.4 ± 0.2 |
Mg-2CeO2 (AE) | 2 ± 0.6 | 1.4 ± 0.3 |
Mg-2CeO2 (RF) | 2.9 ± 1.0 | 1.3 ± 0.2 |
Mg-2CeO2 (LN) | 2.8 ± 0.6 | 1.2 ± 0.3 |
Composition/Treatment | Microhardness (HV) |
---|---|
Pure Mg | 55 ± 3 |
Mg-2CeO2 (AE) | 74 ± 3 |
Mg-2CeO2 (RF) | 89 ± 5 (↑20%) |
Mg-2CeO2 (LN) | 92 ± 4 (↑24%) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gupta, S.; Parande, G.; Gupta, M. Comparison of Shallow (−20 °C) and Deep Cryogenic Treatment (−196 °C) to Enhance the Properties of a Mg/2wt.%CeO2 Nanocomposite. Technologies 2024, 12, 14. https://doi.org/10.3390/technologies12020014
Gupta S, Parande G, Gupta M. Comparison of Shallow (−20 °C) and Deep Cryogenic Treatment (−196 °C) to Enhance the Properties of a Mg/2wt.%CeO2 Nanocomposite. Technologies. 2024; 12(2):14. https://doi.org/10.3390/technologies12020014
Chicago/Turabian StyleGupta, Shwetabh, Gururaj Parande, and Manoj Gupta. 2024. "Comparison of Shallow (−20 °C) and Deep Cryogenic Treatment (−196 °C) to Enhance the Properties of a Mg/2wt.%CeO2 Nanocomposite" Technologies 12, no. 2: 14. https://doi.org/10.3390/technologies12020014
APA StyleGupta, S., Parande, G., & Gupta, M. (2024). Comparison of Shallow (−20 °C) and Deep Cryogenic Treatment (−196 °C) to Enhance the Properties of a Mg/2wt.%CeO2 Nanocomposite. Technologies, 12(2), 14. https://doi.org/10.3390/technologies12020014