Predictive Voltage Control in Multi-Modular Matrix Converters under Load Variation and Fault Scenario
Abstract
:1. Introduction
2. Proposed Predictive Voltage Control
2.1. Finite-State Model of the MC
2.2. Discrete-Time Model of the LC Output Filter
2.3. Prediction Model
2.4. Cost Function
2.5. Control Process and Switching State Selection Procedure
- 1.
- Start: The process begins at the Start block, marking the starting point of the control process and switching state selection procedure.
- 2.
- Measurement: At the beginning of each sampling instant (k), the algorithm measures various parameters such as input voltage , output filter currents and , and output voltage for each phase . These measurements are then transformed into the subspace to simplify calculations. After transformation, the values are discretized for processing.
- 3.
- 4.
- Variable initialization: The variables and are initialized to infinity (∞). This is a preparatory step for later optimization.
- 5.
- Initial iteration: Set , indicating the start of an iteration cycle that will be key for optimization.
- 6.
- Increment j: The counter j is incremented in each iteration, moving to the next set of values to be evaluated.
- 7.
- Output vector calculation: The voltage vector is calculated using the value from the current iteration.
- 8.
- Future current and voltage calculation: With calculated, the predicted values of the current and the voltage for the next step are determined.
- 9.
- Objective functions calculation: The objective functions and are calculated, which will be used to determine how optimal the calculated voltage vector is.
- 10.
- Evaluation and update of : If is less than , then update and save as , along with the voltage .
- 11.
- Evaluation sand update of : Similarly, if is less than , then update , as , and .
- 12.
- Iteration limit check: Check if the counter j has reached the value 27, which would indicate that all possible combinations have been evaluated.
- 13.
- Application of optimal vector: If the limit has been reached, apply the optimal vector , which is selected from and , depending on which better minimizes the objective functions.
- 14.
- Wait for next cycle: The process stops and waits until the next sampling time, at which point the entire cycle will be repeated for a new prediction and optimization.
- The described process is iterative; key system variables are measured, predictions are made for future voltage and current values, and the best control option is selected through an optimization process. The flow diagram corresponding to the described control strategy is presented in Figure 3.
3. Results
4. Discussion
4.1. Output Voltage Waveform Behavior
4.2. Transient Response Analysis
4.3. Load Variation Performance
4.4. Fault Tolerance
4.5. Complexity and Cost of the M-MMC Topology
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
AFE | Active front end |
FCS-MPC | Finite control set model predictive control |
M-MMC | Multi-modular matrix converter |
MOSFET | Metal-oxide-semiconductor field-effect transistor |
NPC | Neutral point clamped |
PVC | Predictive voltage control |
PWM | Pulse with modulation |
SiC | Silicon carbide |
SVM | Space vector modulation |
References
- Abdelsattar, M.; Ismeil, M.A.; Aly, M.M.; Abu-Elwfa, S.S. Energy Management of Microgrid with Renewable Energy Sources: A Case Study in Hurghada Egypt. IEEE Access 2024, 12, 19500–19509. [Google Scholar] [CrossRef]
- Akhtar, I.; Altamimi, A.; Khan, Z.A.; Alojaiman, B.; Alghassab, M.; Kirmani, S. Reliability Analysis and Economic Prospect of Wind Energy Sources Incorporated Microgrid System for Smart Buildings Environment. IEEE Access 2023, 11, 62013–62027. [Google Scholar] [CrossRef]
- Hu, J.; Shan, Y.; Yang, Y.; Parisio, A.; Li, Y.; Amjady, N.; Islam, S.; Cheng, K.W.; Guerrero, J.M.; Rodríguez, J. Economic model predictive control for microgrid optimization: A review. IEEE Trans. Smart Grid 2023, 15, 472–484. [Google Scholar] [CrossRef]
- Faraji, H.; Hemmati, R.; Siano, P. Resilence Control of DC Microgrid Integrated with Multi-Nanogrids Considering Connected-Islanded States. CSEE J. Power Energy Syst. 2024, 10, 786–796. [Google Scholar] [CrossRef]
- Mirzaeva, G.; Miller, D. DC and AC Microgrids for Standalone Applications. IEEE Trans. Ind. Appl. 2023, 59, 7908–7918. [Google Scholar] [CrossRef]
- Huang, T.; Wu, D.; Ilić, M. Cyber-Resilient Automatic Generation Control for Systems of AC Microgrids. IEEE Trans. Smart Grid 2024, 15, 886–898. [Google Scholar] [CrossRef]
- Gomez-Redondo, M.; Rivera, M.; Muñoz, J.; Wheeler, P. A Systematic Literature Review on AC Microgrids. Designs 2024, 8, 77. [Google Scholar] [CrossRef]
- Liu, Y.; Li, P.; Xing, Z.; Han, X.; Fu, Q.; Jiang, Z. Research on Microgrid Superconductivity-Battery Energy Storage Control Strategy Based on Adaptive Dynamic Programming. IEEE Trans. Appl. Supercond. 2024, 34, 1–4. [Google Scholar] [CrossRef]
- Saude, B.; LaSart, N.; Blair, J.; Beik, O. Microgrid-Based Wind and Solar Power Generation on Moon and Mars. IEEE Trans. Smart Grid 2023, 14, 1329–1332. [Google Scholar] [CrossRef]
- Sepasi, S.; Talichet, C.; Pramanik, A.S. Power Quality in Microgrids: A Critical Review of Fundamentals, Standards, and Case Studies. IEEE Access 2023, 11, 108493–108531. [Google Scholar] [CrossRef]
- Puchalapalli, S.; Singh, B.; Das, S. Synchronizing Control of Wind Turbine Driven Doubly Fed Induction Generator System with DG in Remote Area Involving Solar PV-Battery Energy Storage. IEEE Trans. Ind. Appl. 2023, 59, 5774–5783. [Google Scholar] [CrossRef]
- Levi, E. Multiphase Electric Machines for Variable-Speed Applications. IEEE Trans. Ind. Electron. 2008, 55, 1893–1909. [Google Scholar] [CrossRef]
- Yepes, A.G.; Lopez, O.; Gonzalez-Prieto, I.; Duran, M.J.; Doval-Gandoy, J. A comprehensive survey on fault tolerance in multiphase ac drives, Part 1: General overview considering multiple fault types. Machines 2022, 10, 208. [Google Scholar] [CrossRef]
- Yepes, A.G.; Gonzalez-Prieto, I.; Lopez, O.; Duran, M.J.; Doval-Gandoy, J. A comprehensive survey on fault tolerance in multiphase ac drives, Part 2: Phase and switch open-circuit faults. Machines 2022, 10, 221. [Google Scholar] [CrossRef]
- Yepes, A.G.; Fonseca, D.S.B.; Antunes, H.R.P.; López, O.; Marques Cardoso, A.J.; Doval-Gandoy, J. Discrimination Between Eccentricity and Interturn Faults Using Current or Voltage-Reference Signature Analysis in Symmetrical Six-Phase Induction Machines. IEEE Trans. Power Electron. 2023, 38, 2421–2434. [Google Scholar] [CrossRef]
- Vancini, L.; Mengoni, M.; Rizzoli, G.; Zarri, L.; Tani, A. Local Demagnetization Detection in Six-Phase Permanent Magnet Synchronous Machines. IEEE Trans. Ind. Electron. 2024, 71, 5508–5518. [Google Scholar] [CrossRef]
- Gonzalez, O.; Doval-Gandoy, J.; Ayala, M.; Maidana, P.; Medina, C.; Rodas, J.; Romero, C.; Delorme, L.; Maciel, R.; Gregor, R. Model Predictive Torque Control based on Virtual Vectors for Six-Phase Induction Machines. In Proceedings of the 2024 IEEE Transportation Electrification Conference and Expo (ITEC), Chicago, IL, USA, 19–21 June 2024; pp. 1–6. [Google Scholar] [CrossRef]
- Li, Y.; Gao, J.; Zhang, Z.; Wang, Q. Model-Based and Model-Free Predictive Active Damping for LCL-Type Active-Front-End Rectifiers. IEEE Trans. Ind. Electron. 2024, 71, 11754–11765. [Google Scholar] [CrossRef]
- Chakraborty, S.; Chakrabarti, A.; Maiti, D.; Biswas, S.K. Transformer Isolated Fault Tolerant Three Phase Active Front End Converter for EV Charging. IEEE Trans. Transp. Electrif. 2024, 10, 2332–2341. [Google Scholar] [CrossRef]
- Wu, M.; Ding, L.; Xu, X.; Wang, K.; Lu, Q.; Li, Y.W. A Common-Mode Voltage Elimination Scheme by Reference Voltage Decomposition for Back-to-Back Two-Level Converters. IEEE Trans. Ind. Electron. 2024, 71, 4463–4473. [Google Scholar] [CrossRef]
- Lin, H.; Lin, C.; Xie, D.; Acuna, P.; Liu, W. A Counter-Based Open-Circuit Switch Fault Diagnostic Method for a Single-Phase Cascaded H-Bridge Multilevel Converter. IEEE Trans. Power Electron. 2024, 39, 814–825. [Google Scholar] [CrossRef]
- Solemanifard, S.; Chen, Y.X.; Lak, M.; Lee, T.L. A Novel Three-Step Commutation Method for Direct Matrix Converter Free from Inrush Current and Voltage Error. IEEE Access 2023, 11, 25020–25034. [Google Scholar] [CrossRef]
- Qazi, S.; Mir, T.N.; Bhat, A.H.; Singh, B. Predictive Algorithm for Control of Common Mode Voltage and Switching Frequency in Direct Matrix Converter Fed System. IEEE Trans. Ind. Electron. 2022, 69, 13316–13325. [Google Scholar] [CrossRef]
- Toledo, S.; Caballero, D.; Maqueda, E.; Cáceres, J.J.; Rivera, M.; Gregor, R.; Wheeler, P. Predictive Control Applied to Matrix Converters: A Systematic Literature Review. Energies 2022, 15, 7801. [Google Scholar] [CrossRef]
- Elmorshedy, M.F.; Xu, W.; El-Sousy, F.F.; Islam, M.R.; Ahmed, A.A. Recent achievements in model predictive control techniques for industrial motor: A comprehensive state-of-the-art. IEEE Access 2021, 9, 58170–58191. [Google Scholar]
- Maqueda, E.; Toledo, S.; Caballero, D.; Gavilan, F.; Rodas, J.; Ayala, M.; Delorme, L.; Gregor, R.; Rivera, M. Speed control of a six-phase im fed by a multi-modular matrix converter using an inner ptc with reduced computational burden. IEEE Access 2021, 9, 160035–160047. [Google Scholar]
- Toledo, S.; Maqueda, E.; Rivera, M.; Gregor, R.; Wheeler, P.; Romero, C. Improved predictive control in multi-modular matrix converter for six-phase generation systems. Energies 2020, 13, 2660. [Google Scholar] [CrossRef]
- Dan, H.; Zeng, P.; Xiong, W.; Wen, M.; Su, M.; Rivera, M. Model predictive control-based direct torque control for matrix converter-fed induction motor with reduced torque ripple. CES Trans. Electr. Mach. Syst. 2021, 5, 90–99. [Google Scholar]
- Zou, Y.; Zhang, L.; Xing, Y.; Zhang, Z.; Zhao, H.; Ge, H. Generalized Clarke Transformation and Enhanced Dual-Loop Control Scheme for Three-Phase PWM Converters Under the Unbalanced Utility Grid. IEEE Trans. Power Electron. 2022, 37, 8935–8947. [Google Scholar] [CrossRef]
- Ebrahimi, A. A Contribution to the Theory of Rotating Electrical Machines. IEEE Access 2021, 9, 113032–113039. [Google Scholar] [CrossRef]
- O’Rourke, C.J.; Qasim, M.M.; Overlin, M.R.; Kirtley, J.L. A Geometric Interpretation of Reference Frames and Transformations: dq0, Clarke, and Park. IEEE Trans. Energy Convers. 2019, 34, 2070–2083. [Google Scholar] [CrossRef]
- Kummerow, A.; Alramlawi, M.; Dirbas, M.; Nicolai, S.; Bretschneider, P. Clark-Park Transformation based Autoencoder for 3-Phase Electrical Signals. In Proceedings of the 2023 IEEE PES Innovative Smart Grid Technologies Europe (ISGT EUROPE), Grenoble, France, 23–26 October 2023; pp. 1–5. [Google Scholar] [CrossRef]
- Wei, Y.; Hossain, M.M.; Mantooth, A. Dynamic Characterizations of 650 V, 900 V and 1200 V SiC MOSFETs under Low Temperatures. In Proceedings of the 2022 IEEE Aerospace Conference (AERO), Big Sky, MT, USA, 5–12 March 2022; pp. 1–8. [Google Scholar] [CrossRef]
- Texas Instruments. ISO5500: Isolated IGBT/MOSFET Gate Driver with 2.5—A Output. 2008. Available online: https://www.ti.com/lit/ug/sllu136a/sllu136a.pdf (accessed on 15 September 2024).
- Minshen Wind Power. 5kW Horizontal Axis Pitch Control Systems Wind Turbine MSFD5000. Available online: https://minshenwindturbine.en.made-in-china.com/product/VqcEpYZUXMrj/China-5kw-Horizontal-Axis-Pitch-Control-Systems-Wind-Turbine-MSFD5000-.html (accessed on 15 September 2024).
- Badoni, M.; Singh, A.; Pandey, S.; Singh, B. Fractional-Order Notch Filter for Grid-Connected Solar PV System with Power Quality Improvement. IEEE Trans. Ind. Electron. 2022, 69, 429–439. [Google Scholar] [CrossRef]
- Raju, S.; Mohan, N. Switching Optimized Modulation for Direct Three-Level Matrix Converter. IEEE Trans. Power Electron. 2024, 39, 3313–3328. [Google Scholar] [CrossRef]
- Wu, D.; Wang, P.; Lyu, Y.; Andersen, M.A.E.; Ouyang, Z. A High-Efficiency and High-Power-Density Partial Power Buck-Boost Converter. IEEE J. Emerg. Sel. Top. Power Electron. 2024, 12, 3563–3573. [Google Scholar] [CrossRef]
- Carbone, L.; Marchesoni, M.; Passalacqua, M.; Vaccaro, L.; Formentini, A. H2-LMI-Based High Performance Control for Matrix Converter. IEEE Trans. Ind. Electron. 2024, 71, 10029–10038. [Google Scholar] [CrossRef]
Parameter | Symbol | Value | Unity |
---|---|---|---|
Input frequency | 50 | Hz | |
Input voltage peak | 150 | V | |
Input filter capacitor | 30 | F | |
Output filter inductor | 10 | mH | |
Output filter capacitor | 20 | F | |
Load resistance | R | 8–16 | |
Sampling time | 50 | s |
Element | General Features | Specifications |
---|---|---|
Matrix Converter | Manufacturer: Rohm Semiconductor. Kyoto, Japan | = 1200 [V], = 40 [A] |
Type: SiC-MOSFET. Model: SCH2080KE [33] | = 262 [W] | |
Manufacturer: TI. Dallas, Texas, U.S | = 2.5 [A], = 520 [kHz] | |
Type: Isolate gate driver. Model: ISO5500 [34] | = 592 [mW] | |
Generator | Manufacturer: Qingdao Minshen Wind Power | 20 [Hp]—Power. 750 [Vrms]—Voltage |
Technology Co., Ltd., Qingdao, China | 50 [Hz]—Frequency | |
Type: Permanent Magnet Synchronous [35] | 12—Pairs of Poles | |
Generator—(PMSG) | 8.7180 [Vs]—Magnetic Flux (per phase) | |
Waveform: Trapezoidal | 2.205 [Ohm]—Stator Resistance | |
0.0780 [H]—Stator Inductance | ||
Output Filter | Manufacturer: SIPCON SRL. Luque, Paraguay Inductor. Type: Iron Core | 10 [kW], 15 [A], 50 [Hz] |
Capacitor. Type: Non-polarized | 400 [VAC], 50/60 [Hz] | |
AC Variable Load Bank | Manufacturer: TE Conectivity. Schaffhausen, Switzerland | 20 [kW]—Max power |
Type: Tubular Ceramic Core Resistor | 380 [V], 3 Phase, 4 Wires | |
Control Unit | Manufacturer: dSPACE. Paderborn, Germany | Compatible with Matlab Simulink 2018b |
Type: MicroLabBox. Model: 1202 [36] | 2 GHz dual-core real-time processor | |
100 I/O channels, Ethernet interfaces |
Model | Voltage [V] | Current [A] | Price [USD] |
---|---|---|---|
SCT2450KEHRC11 | 1200 | 10 | 11.57 |
SCT3105KLHRC11 | 1200 | 24 | 13.43 |
SCT3080KLGC11 | 1200 | 31 | 20.3 |
SCT3040KLGC11 | 1200 | 55 | 26.87 |
SCT3030KLGC11 | 1200 | 72 | 77.99 |
SCT3022KLHRC11 | 1200 | 95 | 106.67 |
SCT3120ALGC11 | 650 | 21 | 8.8 |
SCT3080ALGC11 | 650 | 30 | 11.57 |
SCT3060ALHRC11 | 650 | 39 | 20.18 |
SCT3030ALHRC11 | 650 | 70 | 36.06 |
SCT3022ALHRC11 | 650 | 93 | 54.24 |
SCT3017ALHRC11 | 650 | 118 | 100.8 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Caballero, D.; Toledo, S.; Maqueda, E.; Ayala, M.; Gregor, R.; Rivera, M.; Wheeler, P. Predictive Voltage Control in Multi-Modular Matrix Converters under Load Variation and Fault Scenario. Technologies 2024, 12, 170. https://doi.org/10.3390/technologies12090170
Caballero D, Toledo S, Maqueda E, Ayala M, Gregor R, Rivera M, Wheeler P. Predictive Voltage Control in Multi-Modular Matrix Converters under Load Variation and Fault Scenario. Technologies. 2024; 12(9):170. https://doi.org/10.3390/technologies12090170
Chicago/Turabian StyleCaballero, David, Sergio Toledo, Edgar Maqueda, Magno Ayala, Raúl Gregor, Marco Rivera, and Patrick Wheeler. 2024. "Predictive Voltage Control in Multi-Modular Matrix Converters under Load Variation and Fault Scenario" Technologies 12, no. 9: 170. https://doi.org/10.3390/technologies12090170
APA StyleCaballero, D., Toledo, S., Maqueda, E., Ayala, M., Gregor, R., Rivera, M., & Wheeler, P. (2024). Predictive Voltage Control in Multi-Modular Matrix Converters under Load Variation and Fault Scenario. Technologies, 12(9), 170. https://doi.org/10.3390/technologies12090170