High Density Interconnect Microstrip Patch Antenna for 5G Base Stations with Integrated Filtering Performance
Abstract
:1. Introduction and Motivation
2. HDI-Based 5G Filtering Antenna Design
3. Full-Wave Validation
3.1. Single Embedded Element Assessment
3.2. Planar Array Assessment
4. Conclusions
- the exploitation of a spline modeling of the patch contour to easily fit both required in-band matching and out-of-band rejection;
- the synthesis of the single radiator already embedded within the final array (rather than isolated in free-space), such that all mutual coupling effects are taken into account in the evaluation of the resulting array radiation features.
Author Contributions
Acknowledgments
Conflicts of Interest
References
- Muirhead, D.; Imran, M.A.; Arshad, K. A survey of the challenges, opportunities and use of multiple antennas in current and future 5G small cell base stations. IEEE Access 2016, 4, 2952–2964. [Google Scholar] [CrossRef]
- Boccardi, F.; Heath, R.W.; Lozano, A.; Marzetta, T.L.; Popovski, P. Five disruptive technology directions for 5G. IEEE Commun. Mag. 2014, 52, 74–80. [Google Scholar] [CrossRef]
- Hong, W.; Jiang, Z.H.; Yu, C.; Zhou, J.; Chen, P.; Yu, Z.; Zhang, H.; Yang, B.; Pang, X.; Jiang, M.; et al. Multi-beam antenna technologies for 5G wireless communications. IEEE Trans. Antennas Propag. 2017, 65, 6231–6249. [Google Scholar] [CrossRef]
- Oliveri, G.; Gottardi, G.; Robol, F.; Polo, A.; Poli, L.; Salucci, M.; Chuan, M.; Massagrande, C.; Vinetti, P.; Mattivi, M.; et al. Co-design of unconventional array architectures and antenna elements for 5G base stations. IEEE Trans. Antennas Propag. 2017, 65, 6752–6767. [Google Scholar] [CrossRef]
- Rocca, P.; Oliveri, G.; Mailloux, R.J.; Massa, A. Unconventional phased array architectures and design methodologies—A review. Proc. IEEE 2016, 104, 544–560. [Google Scholar] [CrossRef]
- Ojaroudiparchin, N.; Shen, M.; Zhang, S.; Pedersen, G.F. A switchable 3-D-coverage-phased array antenna package for 5G mobile terminals. IEEE Antennas Wirel. Propag. Lett. 2016, 15, 1747–1750. [Google Scholar] [CrossRef]
- Chu, H.; Guo, Y.X. A filtering dual-polarized antenna subarray targeting for base stations in millimeter-wave 5G wireless communications. IEEE Trans. Compon. Packag. Manuf. Technol. 2017, 7, 964–973. [Google Scholar] [CrossRef]
- Park, S.J.; Shin, D.H.; Park, S.O. Low side-lobe substrate-integrated-waveguide antenna array using broadband unequal feeding network for millimeter-wave handset device. IEEE Trans. Antennas Propag. 2016, 64, 923–932. [Google Scholar] [CrossRef]
- Khalily, M.; Tafazolli, R.; Rahman, T.A.; Kamarudin, M.R. Design of phased arrays of series-fed patch antennas with reduced number of the controllers for 28-GHz mm-wave applications. IEEE Antennas Wirel. Propag. Lett. 2016, 15, 1305–1308. [Google Scholar] [CrossRef]
- Dadgarpour, A.; Sharifi Sorkherizi, M.; Kishk, A.A. Wideband low-loss magnetoelectric dipole antenna for 5G wireless network with gain enhancement using meta lens and gap waveguide technology feeding. IEEE Trans. Antennas Propag. 2016, 64, 5094–5101. [Google Scholar] [CrossRef]
- Hu, P.F.; Pan, Y.M.; Zhang, X.Y.; Zheng, S.Y. Broadband filtering dielectric resonator antenna with wide stopband. IEEE Trans. Antennas Propag. 2017, 65, 2079–2084. [Google Scholar] [CrossRef]
- Zhang, X.Y.; Duan, W.; Pan, Y.M. High-gain filtering patch antenna without extra circuit. IEEE Trans. Antennas Propag. 2015, 63, 5883–5888. [Google Scholar] [CrossRef]
- Cariou, M.; Potelon, B.; Quendo, C.; Cadiou, S.; Schlaffer, E.; Pessl, W.; Le Fevre, A. Compact X-band filter based on substrate integrated coaxial line stubs using advanced multilayer PCB technology. IEEE Trans. Microw. Theory Technol. 2017, 65, 496–503. [Google Scholar] [CrossRef]
- Chanchani, R.; Bethke, D.T.; Webb, D.B.; Sandoval, C.; Wouters, G.A. Development and RF characterization of high density integrated substrate technology. IEEE Trans. Compon. Packag. Technol. 2007, 30, 478–485. [Google Scholar] [CrossRef]
- Holden, H. The HDI Handbook; BR Publishing Inc.: Seaside, OR, USA, 2009. [Google Scholar]
- Lizzi, L.; Viani, F.; Azaro, R.; Massa, A. A PSO-driven spline-based shaping approach for ultra-wideband (UWB) antenna synthesis. IEEE Trans. Antennas Propag. 2008, 56, 2613–2621. [Google Scholar] [CrossRef]
- Rocca, P.; Benedetti, M.; Donelli, M.; Franceschini, D.; Massa, A. Evolutionary optimization as applied to inverse problems. Inverse Probl. 2009, 25, 1–41. [Google Scholar] [CrossRef]
- Robinson, J.; Rahmat-Samii, Y. Particle swarm optimization in electromagnetics. IEEE Trans. Antennas Propag. 2004, 52, 397–407. [Google Scholar] [CrossRef]
- Viani, F.; Robol, F.; Salucci, M.; Azaro, R. Automatic EMI filter design through particle swarm optimization. IEEE Trans. Electromagn. Compat. 2017, 59, 1079–1094. [Google Scholar] [CrossRef]
- Oliveri, G.; Viani, F.; Anselmi, N.; Massa, A. Synthesis of multi-layer WAIM coatings for planar phased arrays within the system-by-design framework. IEEE Trans. Antennas Propag. 2015, 63, 2482–2496. [Google Scholar] [CrossRef]
- Bayraktar, Z.; Werner, D.H.; Werner, P.L. Miniature meander-line dipole antenna arrays designed via an orthogonal-array-initialized hybrid particle-swarm optimizer. IEEE Antennas Propag. Mag. 2011, 53, 42–59. [Google Scholar] [CrossRef]
- Oliveri, G.; Salucci, M.; Anselmi, N.; Massa, A. Multiscale system-by-design synthesis of printed WAIMs for waveguide array enhancement. IEEE J. Multiscale Multiphys. Comp. Technol. 2017, 2, 84–96. [Google Scholar] [CrossRef]
- Anselmi, N.; Rocca, P.; Salucci, M.; Massa, A. Optimization of excitation tolerances for robust beamforming in linear arrays. IET Microw. Antennas Propag. 2016, 10, 208–214. [Google Scholar] [CrossRef]
- Viani, F.; Salucci, M.; Robol, F.; Massa, A. Multiband fractal Zigbee/WLAN antenna for ubiquitous wireless environments. J. Electromagn. Waves Appl. 2012, 26, 1554–1562. [Google Scholar] [CrossRef]
- Hansen, R. Phased Array Antennas; John Wiley & Sons: Hoboken, NJ, USA, 2009. [Google Scholar]
- Jasik, H. Antenna Engineering Handbook, 1st ed.; McGraw-Hill: New York, NY, USA, 1961. [Google Scholar]
Parameter | Requirement |
---|---|
Pass-Band | (GHz) |
Reflection Coefficient | dB, |
Stop-Bands | 1st Priority: (GHz) |
2nd Priority: (GHz) | |
Out-of-Band | 1st Priority: dB, |
Rejection | 2nd Priority: dB, |
Array Size | mm, mm |
Scan Cone | deg |
Realized Gain | dB |
Gain Ripple | dB |
Isolation | dB, , |
Azimuthal HPBW | deg |
Elevation HPBW | deg |
Polarization | Linear (Vertical) |
Axial Ratio | dB, (deg) ∪ (deg) |
Ellipticity Angle | deg |
Geometrical Descriptors (mm) | |||
---|---|---|---|
a | |||
b | |||
f (GHz) | (deg) | (deg) |
---|---|---|
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Salucci, M.; Castlunger, C.; Marcantonio, D.; Oliveri, G.; Robol, F.; Rosatti, P.; Tosato, L.; Zardi, F.; Massa, A. High Density Interconnect Microstrip Patch Antenna for 5G Base Stations with Integrated Filtering Performance. Technologies 2018, 6, 45. https://doi.org/10.3390/technologies6020045
Salucci M, Castlunger C, Marcantonio D, Oliveri G, Robol F, Rosatti P, Tosato L, Zardi F, Massa A. High Density Interconnect Microstrip Patch Antenna for 5G Base Stations with Integrated Filtering Performance. Technologies. 2018; 6(2):45. https://doi.org/10.3390/technologies6020045
Chicago/Turabian StyleSalucci, Marco, Cristian Castlunger, Davide Marcantonio, Giacomo Oliveri, Fabrizio Robol, Pietro Rosatti, Luciano Tosato, Francesco Zardi, and Andrea Massa. 2018. "High Density Interconnect Microstrip Patch Antenna for 5G Base Stations with Integrated Filtering Performance" Technologies 6, no. 2: 45. https://doi.org/10.3390/technologies6020045
APA StyleSalucci, M., Castlunger, C., Marcantonio, D., Oliveri, G., Robol, F., Rosatti, P., Tosato, L., Zardi, F., & Massa, A. (2018). High Density Interconnect Microstrip Patch Antenna for 5G Base Stations with Integrated Filtering Performance. Technologies, 6(2), 45. https://doi.org/10.3390/technologies6020045