Channel Estimation and Data Detection Using Machine Learning for MIMO 5G Communication Systems in Fading Channel
Abstract
:1. Introduction
2. Materials and Methods
2.1. Multiuser MIMO-OFDM System
2.1.1. System Model
2.1.2. Model for the Optimization Problem
2.2. Proposed Joint CE and Turbo MUD
2.2.1. Sparse Based k-NN for Active User Detection
2.2.2. Cat Swarm Optimization (CSO) Based Channel Estimation (CE)
Algorithm 1: Pseudo code for the CSO based optimal pilot pattern for reducing the largest element in mutual coherence. | |
Initialization. Let different parameters for the population size be Ps = 100, the length of all the individuals is Len = P − 1 and the maximum generation is Mg. Create the initial population randomly Φi, where i = 1, 2, … Ps. After this, compute the fitness for the initial population individually. | |
1: Produce N-cats, which represents pilot symbols. | |
2: Cats have M-dimensional space and arbitrarily gives a range of values for the maximum velocity of each cat. | |
3: By applying the position of cats in the fitness function, evaluate the fitness value for each cat. It represents the finest position of the cat (xbest) by calculating the mutual coherence of each pilot sequence. | |
4: Move the cat according to their modes, apply the process of the seeking mode if the cat is in seeking mode. Otherwise, use the tracing mode process. | |
5: Activate the tracing mode process again by selecting the number of cats and according to the MR, the seeking mode can be applied to other cats. | |
6: To terminate the program, check if the termination condition is satisfied. Otherwise, repeat step 3 to step 6. | |
Output: The optimal pilot pattern Ψ. |
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Abebe, A.T.; Kang, C.G. Overlaying machine-to-machine (M2M) traffic over human-to-human (H2H) traffic in OFDMA system: Compressive-sensing approach. In Proceedings of the 2016 International Conference on Selected Topics in Mobile & Wireless Networking (MoWNeT), Cairo, Egypt, 11–13 April 2016; pp. 1–6. [Google Scholar] [CrossRef]
- Shariatmadari, H.; Ratasuk, R.; Iraj, S.; Laya, A.; Taleb, T.; Jantti, R.; Ghosh, A. Machine-type communications: Current status and future perspectives toward 5G systems. IEEE Commun. Mag. 2015, 53, 10–17. [Google Scholar] [CrossRef]
- Bhave, P.; Fines, P. System Behavior and Improvements for M2M Devices Using an Experimental Satellite Network. In Proceedings of the IEEE Region 10 Symposium, Ahmedabad, India, 13–15 May 2015; pp. 13–16. [Google Scholar] [CrossRef]
- Ksairi, N.; Tomasin, S.; Debbah, M. A multi-service oriented multiple-access scheme for next-generation mobile networks. In Proceedings of the 2016 European Conference on Networks and Communications (EuCNC), Athens, Greece, 27–30 June 2016; pp. 355–359. [Google Scholar] [CrossRef]
- Monsees, F.; Woltering, M.; Bockelmann, C.; Dekorsy, A. Compressive Sensing Multi-user Detection for Multicarrier Systems in Sporadic Machine Type Communication. In Proceedings of the IEEE 81st Vehicular Technology Conference (VTC Spring), Glasgow, UK, 11–14 May 2015; pp. 1–5. [Google Scholar] [CrossRef]
- Beyene, Y.; Boyd, C.; Ruttik, K.; Bockelmann, C.; Tirkkonen, O.; Jäntti, R. Compressive Sensing for MTC in new LTE uplink multi-user random access channel. In Proceedings of the IEEE AFRICON 2015, Addis Ababa, Ethiopia, 14–17 September 2015; pp. 1–5. [Google Scholar] [CrossRef]
- Wang, S.; Li, Y.; Wang, J. Multiuser detection in Massive Spatial Modulation MIMO with Low-Resolution ADCs. IEEE Trans. Wirel. Commun. 2015, 14, 2156–2168. [Google Scholar] [CrossRef]
- Lu, L.; Li, G.Y.; Swindlehurst, A.L.; Ashikhmin, A.; Zhang, R. An Overview of Massive MIMO: Benefits and Challenges. IEEE J. Sel. Top. Signal Process. 2014, 8, 742–758. [Google Scholar] [CrossRef]
- Chronopoulos, S.K.; Christofilakis, V.; Tatsis, G.; Kostarakis, P. Performance of turbo coded OFDM under the presence of various noise types. Wirel. Pers. Commun. 2016, 87, 1319–1336. [Google Scholar] [CrossRef]
- Chronopoulos, S.K.; Votis, C.; Raptis, V.; Tatsis, G.; Kostarakis, P. In depth analysis of noise effects in orthogonal frequency division multiplexing systems, utilising a large number of subcarriers. AIP Conf. Proc. 2010, 1203, 967–972. [Google Scholar] [CrossRef]
- Chronopoulos, S.K.; Tatsis, G.; Kostarakis, P. Turbo Coded OFDM with Large Number of Subcarriers. J. Signal Inf. Proc. 2012, 3, 161–168. [Google Scholar] [CrossRef]
- Park, S.; Choi, J.W.; Seol, J.Y.; Shim, B. Expectation-Maximization-Based Channel Estimation for Multiuser MIMO Systems. IEEE Trans. Commun. 2017, 65, 2397–2410. [Google Scholar] [CrossRef]
- Zhou, Z.; Fang, J.; Yang, L.; Li, H.; Chen, Z.; Blum, R.S. Low-Rank Tensor Decomposition-Aided Channel Estimation for Millimeter Wave MIMO-OFDM Systems. IEEE J. Sel. Areas Commun. 2017, 35, 1524–1538. [Google Scholar] [CrossRef]
- Bao, J.; Ma, Z.; Karagiannidis, G.K.; Xiao, M.; Zhu, Z. Joint multiuser detection of Multidimensional Constellations over Fading Channels. IEEE Trans Commun. 2017, 65, 161–172. [Google Scholar] [CrossRef]
- Olfat, E.; Bengtsson, M. Joint Channel and Clipping Level Estimation for OFDM in IoT-based Networks. IEEE Trans. Signal Process. 2017, 65, 4902–4911. [Google Scholar] [CrossRef]
- Bartoli, G.; Beaulieu, N.C.; Fantacci, R.; Marabissi, D. An Effective multiuser detection Scheme for MPR Random Access networks. IEEE Trans. Commun. 2017, 65, 1119–1130. [Google Scholar] [CrossRef]
- Zhang, J.; Chen, S.; Mu, X.; Hanzo, L. Evolutionary-Algorithm-Assisted Joint Channel estimation and Turbo Multiuser Detection/Decoding for OFDM/SDMA. IEEE Trans. Veh. Technol. 2014, 63, 1204–1222. [Google Scholar] [CrossRef]
- Suikkanen, E.; Juntti, M. Study of Adaptive Detection and Channel estimation for MIMO-OFDM Systems. Wirel. Pers. Commun. Intern. J. 2017, 93, 811–831. [Google Scholar] [CrossRef]
- Choi, Y.S.; Voltz, P.J.; Cassara, F.A. On Channel estimation and detection for multicarrier signals in fast and selective Rayleigh fading channels. IEEE Trans. Commun. 2001, 49, 1375–1387. [Google Scholar] [CrossRef]
- Xie, Z.; Shor, R.T.; Rushforth, C.K. A family of suboptimum detectors for coherent multiuser communications. IEEE J. Sel. Areas Commun. 1990, 8, 683–690. [Google Scholar] [CrossRef]
- Klein, A.; Kaleh, G.K.; Baier, P.W. Zero forcing and minimum mean-square-error equalization for multiuser detection in code-division multiple-access channels. IEEE Trans. Veh. Technol. 1996, 45, 276–287. [Google Scholar] [CrossRef]
- Zhu, H.; Giannakis, G.B. Exploiting Sparse User Activity in Multiuser Detection. IEEE Trans. Commun. 2011, 59, 454–465. [Google Scholar] [CrossRef]
- Zhang, X.; Liang, Y.C.; Fang, J. Novel Bayesian Inference Algorithms for Multiuser Detection in M2M Communications. IEEE Trans. Veh. Technol. 2017, 66, 7833–7848. [Google Scholar] [CrossRef]
- Jiang, F.; Zhang, Y.; Li, C.A. New SQRD-Based Soft Interference Cancelation Scheme in Multi-User MIMO SC-FDMA System. IEEE Commun. Lett. 2017, 21, 821–824. [Google Scholar] [CrossRef]
- Nguyen, V.D.; Nguyen, H.V.; Shin, Y.; Lee, W.C.; Shin, O.S. Channel Estimation and Data Detection for Multicell Massive MIMO Systems in Correlated Channels. Wirel. Pers. Commun. 2016, 86, 1857–1877. [Google Scholar] [CrossRef]
Notation | Description |
---|---|
NR | Number of receiver antennae |
LA | Number of antennae |
Input data stream | |
Transmitting antenna | |
a | The bit stream after the forward error correction encoder |
Output bit stream from the interleaver I | |
Modulated data | |
Time domain (TD)-modulated signal | |
n | Orthogonal frequency-division multiplexing (OFDM) symbol index |
K | Number of subcarriers |
Transmitted user data | |
Cyclic prefix (CP) samples | |
Length of the channel impulse responses | |
Received signal for k-th subcarrier of the n-th orthogonal frequency-division multiplexing (OFDM) symbol | |
Received signals | |
Received pilot subcarriers | |
Frequency-Domain Channel Transfer Functions | |
Frequency-domain channel transfer function (FD-CHTF) coefficient of the link between the x-th user and the q-th receiver antenna in the k-th subcarrier of the n-th orthogonal frequency-division multiplexing symbol | |
Frequency-domain additive white Gaussian noise (AWGN) | |
K-sparse channel impulse vector | |
q-th receiver antenna element in the k-th subcarrier of the n-th orthogonal frequency-division multiplexing symbol | |
Mutual Coherence | |
Overall system’s Channel Impulse Response vector | |
Impulse vector for the K-sparse channel | |
Subcarrier-related signals | |
Diagonal elements | |
Partial FFT matrix | |
Impulse vector of K-sparse channel | |
Subcarriers position |
Parameters | Values |
---|---|
Users | 20, 100, 500 |
No. of cell | 7 |
No. of users per cell | 10 |
Number of transmitters | 4 |
Total pilots to each transmitter | 24 |
Cell radius | 1000 m |
Guard interval | ¼ |
Total receivers | 4 |
Number of Subcarriers N | 32, 128, 512 |
Cyclic prefix | 16 |
Signal Constellation | 16 QAM modulation |
Path loss exponent | 4 |
Bandwidth | 5 MHz |
Channel | Frequency selective Rayleigh fading |
FFT size | 2048 |
Operations (Per Iteration) | First Stage | Second Stage | Final Stage |
---|---|---|---|
Sparse k-NN algorithm | 0 | N–Np | N–Np |
CSO optimization algorithm | Np | 0 | 0 |
Channel estimation | 0 | 0 | O(n2) |
Total complexity for each stage | O(n) | O(n) | O(n2) |
Methods | Complexity | Description of Notations |
---|---|---|
EM | K-frequency subcarriers, L-OFDM symbols, -pilot symbols | |
CP | M-RF chain sub frames, T-time frames, K-subcarriers | |
JCCAE (Joint Channel and Clipping Amplitude Estimation) | N-symbols | |
Four Bayesian inference methods | N-received symbols, K-transmitted symbols | |
Proposed | n-symbols |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Motade, S.N.; Kulkarni, A.V. Channel Estimation and Data Detection Using Machine Learning for MIMO 5G Communication Systems in Fading Channel. Technologies 2018, 6, 72. https://doi.org/10.3390/technologies6030072
Motade SN, Kulkarni AV. Channel Estimation and Data Detection Using Machine Learning for MIMO 5G Communication Systems in Fading Channel. Technologies. 2018; 6(3):72. https://doi.org/10.3390/technologies6030072
Chicago/Turabian StyleMotade, Sumitra N., and Anju V. Kulkarni. 2018. "Channel Estimation and Data Detection Using Machine Learning for MIMO 5G Communication Systems in Fading Channel" Technologies 6, no. 3: 72. https://doi.org/10.3390/technologies6030072
APA StyleMotade, S. N., & Kulkarni, A. V. (2018). Channel Estimation and Data Detection Using Machine Learning for MIMO 5G Communication Systems in Fading Channel. Technologies, 6(3), 72. https://doi.org/10.3390/technologies6030072