Factors Affecting the Performance of Recommender Systems in a Smart TV Environment
Abstract
:1. Introduction
- To investigate the issues and challenges in existing group recommender systems for content recommendations on Smart TV.
- To identify the factors that affect the performance of a recommender system in the context of smart TV watching scenarios.
- A subjective study for validating the factors by analyzing the watching behavior of smart TV viewers.
2. Literature Review
3. Potential Factors
3.1. Smart TV is a Shared Device
3.2. Limitations of Recommendation Approaches
3.3. Watching Behavior on Smart TV
3.4. TV Channel as an App
3.5. Smart TV User Interfaces
3.6. Profile-Based Recommendations
4. Validating the Factors
4.1. Methods and Material
5. Results
5.1. Type of Smart TV
5.2. Watching Activities
5.3. Privacy Concerns
5.4. Primary Communication Device with Smart TVs
5.5. Device Registration Via Email
6. Analysis
6.1. Primary Activity on Smart TV
6.2. Passive Feedbacks
6.3. Personalized Recommendations and Privacy Concerns
6.4. Primary Communication Device with Smart TV
7. Discussion and Future Work
8. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Alam, I.; Khusro, S.; Naeem, M. A review of smart TV: Past, present, and future. In Proceedings of the International Conference on Open Source Systems and Technologies (ICOSST’ 2017), Lahore, Pakistan, 18–20 December 2017; pp. 35–41. [Google Scholar]
- Privitera, D.; Shahriar, H. Design and development of smart TV protector. In Proceedings of the National Cyber Summit (NCS’18), Huntsville, AL, USA, 5–7 June 2018; pp. 45–52. [Google Scholar]
- Alam, I.; Khan, M.A.; Naeem, M.; Khusro, S. There is no such thing as free Lunch: An Investigation of Bloatware Effects on Smart Devices. J. Inf. Commun. Tech. Robot. Appl. 2017, 8, 20–30. [Google Scholar]
- Jeong, J.-W.; Lee, D.-H. Inferring search intents from remote control movement patterns: A new content search method for smart TV. IEEE Trans. Consum. Electron. 2014, 60, 92–98. [Google Scholar] [CrossRef]
- Yu, C.; Ding, H.; Cao, H.; Liu, Y.; Yang, C. Follow me: Personalized IPTV channel switching guide. In Proceedings of the 8th (2017)ACM on Multimedia Systems Conference, Taipei, Taiwan, 20–23 June 2017; pp. 147–157. [Google Scholar]
- Gorgoglione, M.; Panniello, U.; Tuzhilin, A. Recommendation strategies in personalization applications. Inf. Manag. 2019. In Press. [Google Scholar] [CrossRef]
- Roy, A.; Banerjee, S.; Bhatt, C.; Badr, Y.; Mallik, S. Hybrid Group Recommendation Using Modified Termite Colony Algorithm: A Context Towards Big Data. J. Inf. Knowl. Manag. 2018, 17, 1850019. [Google Scholar] [CrossRef]
- Isinkaye, F.; Folajimi, Y.; Ojokoh, B. Recommendation systems: Principles, methods and evaluation. Egypt. Inform. J. 2015, 16, 261–273. [Google Scholar] [CrossRef] [Green Version]
- Hamada, M.; Hassan, M. Artificial Neural Networks and Particle Swarm Optimization Algorithms for Preference Prediction in Multi-Criteria Recommender Systems. Informatics 2018, 5, 25. [Google Scholar] [CrossRef]
- Reusens, M.; Lemahieu, W.; Baesens, B.; Sels, L. A note on explicit versus implicit information for job recommendation. Decis. Support Syst. 2017, 98, 26–35. [Google Scholar] [CrossRef]
- Kim, M.S.; Kim, S. Factors influencing willingness to provide personal information for personalized recommendations. Comput. Hum. Behav. 2018, 88, 143–152. [Google Scholar] [CrossRef]
- Véras, D.; Prota, T.; Bispo, A.; Prudêncio, R.; Ferraz, C. A literature review of recommender systems in the television domain. Expert Syst. Appl. 2015, 42, 9046–9076. [Google Scholar] [CrossRef]
- Hsu, S.H.; Wen, M.H.; Lin, H.C.; Lee, C.C.; Lee, C.H. AIMED-A personalized TV recommendation system. In Proceedings of the European Conference on Interactive Television (EuroITV 2007), Amsterdam, The Netherlands, 24–25 May 2007; pp. 166–174. [Google Scholar]
- Hanna, P. Considering Durations and Replays to Improve Music Recommender Systems. EAI Endorsed Trans. Artif. Intel. 2019, arXiv:1711.05237. [Google Scholar] [CrossRef]
- Li, H.; Zhu, H.; Ge, Y.; Fu, Y.; Ge, Y. Personalized TV Recommendation with Mixture Probabilistic Matrix Factorization. In Proceedings of the International Conference on Data Mining (SIAM’ 2015), Vancouver, BC, Canada, 30 April–2 May 2015; pp. 352–360. [Google Scholar]
- Burke, R. Hybrid recommender systems: Survey and experiments. User Model. User-adapted Interact. 2002, 12, 331–370. [Google Scholar] [CrossRef]
- Shin, J.; Park, Y.; Lee, D. Google TV or Apple TV?—The Reasons for Smart TV Failure and a User-Centered Strategy for the Success of Smart TV. Sustainability 2015, 7, 15955–15966. [Google Scholar] [CrossRef]
- Van Deventer, M.; de Wit, J.; Guelbahar, M.; Cheng, B.; Marmol, F.G.; Köbel, C.; Köhnen, C.; Rozinaj, G.; Stockleben, B. Towards next generation Hybrid broadcast broadband, results from FP7 and HbbTV 2.0. In Proceedings of the IBC 2013, Amsterdam, Netherlands, 13–17 September 2013. [Google Scholar]
- Michéle, B. Smart TV Security: Media Playback and Digital Video Broadcast; Springer: Cham, Switzerland, 2015. [Google Scholar]
- Perakakis, E.; Ghinea, G. Smart Enough for the Web? A Responsive Web Design Approach to Enhancing the User Web Browsing Experience on Smart TVs. IEEE Trans. Hum. Mach. Syst. 2017, 47, 860–872. [Google Scholar] [CrossRef]
- Soskic, N.; Vranic, N.; Lukic, N. Improving user experience with unique channel list on hybrid set-top boxes. In Proceedings of the IEEE International Workshop on Consumer Electronics (CEWS’15), Novi Sad, Serbia, 11 March 2015; pp. 46–47. [Google Scholar]
- Felfernig, A.; Boratto, L.; Stettinger, M.; Tkalčič, M. Group Recommender Systems: An Introduction; Springer: Boston, MA, USA, 2018. [Google Scholar]
- Akerkar, R. Recommendation Engines. In Artificial Intelligence for Business; Springer: Cham, Switzerland, 2019; pp. 41–52. [Google Scholar]
- Villavicencio, C.; Schiaffino, S.; Diaz-Pace, J.A.; Monteserin, A. Group recommender systems: A multi-agent solution. Knowl. Syst. 2019, 164, 436–458. [Google Scholar] [CrossRef]
- Sánchez, P.; Bellogín, A. Building user profiles based on sequences for content and collaborative filtering. Inf. Process. Manag. 2019, 56, 192–211. [Google Scholar] [CrossRef]
- WikiPedia. Televission. Available online: https://en.wikipedia.org/wiki/Television (accessed on 7 May 2019).
- Yoong, S.; López, G.; Guerrero, L.A. Smart Device-Based Notifications: A Survey on User’s Satisfaction of Traditional Notification Mechanisms. In Proceedings of the International Conference on Applied Human Factors and Ergonomics (2017), Los Angeles, CA, USA, 17–21 July 2017; pp. 104–114. [Google Scholar]
- Mela, Y.D.; Carl, F. TV Viewing and Advertising Targeting. J. Market. Res. 2018, 55, 99–118. [Google Scholar] [CrossRef]
- Michéle, B.; Karpow, A. Watch and be watched: Compromising all smart tv generations. In Proceedings of the 2014 IEEE 11th Consumer Communications and Networking Conference (CCNC), Las Vegas, NV, USA, 10–13 January 2014; pp. 351–356. [Google Scholar]
- Ricci, F.; Rokach, L.; Shapira, B. Recommender systems: Introduction and challenges. In Recommender Systems Handbook; Springer: Boston, MA, USA, 2015; pp. 1–34. [Google Scholar]
- Krauss, C.; George, L.; Arbanowski, S. TV Predictor: Personalized Program Recommendations to be displayed on SmartTVs. In Proceedings of the 2nd International Workshop on Big Data, Streams and Heterogeneous Source Mining: Algorithms, Systems, Programming Models and Applications (2013), Chicago, IL, USA, 11 August 2013; pp. 63–70. [Google Scholar]
- Giorgi, G.; La Marra, A.; Martinelli, F.; Mori, P.; Saracino, A. Smart Parental Advisory: A Usage Control and Deep Learning-Based Framework for Dynamic Parental Control on Smart TV. In Proceedings of the International Workshop on Security and Trust Management (2017), Oslo, Norway, 14–15 September 2017; pp. 118–133. [Google Scholar]
- Lee, W.O.; Kim, Y.G.; Hong, H.G.; Park, K.R. Face recognition system for set-top box-based intelligent TV. Sensors 2014, 14, 21726–21749. [Google Scholar] [CrossRef]
- De Pessemier, T.; Verlee, D.; Martens, L. Enhancing recommender systems for TV by face recognition. In Proceedings of the 12th International Conference on Web Information Systems and Technologies (WEBIST 2016), Rome, Italy, 23–25 April 2016; pp. 243–250. [Google Scholar]
- Yu, Z.; Zhou, X.; Hao, Y.; Gu, J. TV program recommendation for multiple viewers based on user profile merging. User Model. User-Adapted Interact. 2006, 16, 63–82. [Google Scholar] [CrossRef]
- Park, Y.; Oh, J.; Yu, H. Rectime: Real-time recommender system for online broadcasting. Inf. Sci. 2017, 409, 1–16. [Google Scholar] [CrossRef]
- Smyth, B.; Cotter, P. A personalised TV listings service for the digital TV age. Knowl. Syst. 2000, 13, 53–59. [Google Scholar] [CrossRef]
- Pyo, S.; Kim, E.; Kim, M. Automatic and personalized recommendation of TV program contents using sequential pattern mining for smart TV user interaction. Multimed. Syst. 2013, 19, 527–542. [Google Scholar] [CrossRef]
- Yang, Y.; Liu, C.; Li, C.; Hu, Y.; Niu, Y.; Li, L. The recommendation systems for smart tv. In Proceedings of the International conference on Computing, Communication and Networking Technologies (ICCCNT’14), Hefei, China, 11–13 July 2014; pp. 1–6. [Google Scholar]
- Kwon, H.J.; Hong, K.S. Personalized smart TV program recommender based on collaborative filtering and a novel similarity method. IEEE Trans. Consum. Electron. 2011, 57, 1416–1423. [Google Scholar] [CrossRef]
- Schelp, K.; Zheng, D. Linear Sales Automation and Data Insight As a Step Towards Programmatic TV. In Proceedings of the Embracing Connective Media (SMPTE’17), Sydney, Australia, 18–20 July 2017; pp. 1–12. [Google Scholar]
- Deventer, O.V.; Wit, J.D.; Vanattenhoven, J.; Guelbahar, M. Group recommendation in an Hybrid Broadcast Broadband Television context. In Proceedings of the 20th Conference on User Modeling, Adaptation, and Personalization (UMAP 2012), Montreal, QC, Canada, 16–20 July 2012. [Google Scholar]
- Connor, M.O.; Cosley, D.; Konstan, J.A.; Riedl, J. PolyLens: A Recommender System for Groups of Users. In Proceedings of the Seventh European Conference on Computer Supported Cooperative Work, Bonn, Germany, 16–20 September 2001. [Google Scholar]
- Yang, Q. A novel recommendation system based on semantics and context awareness. Computing 2018, 100, 809–823. [Google Scholar] [CrossRef]
- Redondo-Garcia, J.L.; Lozano-Tello, A. OntoTV: An ontology-based system for the management of information about television contents. Int. J. Semant. Comput. 2012, 6, 111–130. [Google Scholar] [CrossRef]
- Lai, C.-F.; Chang, J.-H.; Hu, C.-C.; Huang, Y.-M.; Chao, H.-C. CPRS: A cloud-based program recommendation system for digital TV platforms. Future Gener. Comput. Syst. 2011, 27, 823–835. [Google Scholar] [CrossRef]
- Kim, J.-M.; Yang, H.-D.; Chung, H.-S. Ontology-based recommender system of TV programmes for personalisation service in smart TV. Int. J. Web Grid Serv. 2015, 11, 283–302. [Google Scholar] [CrossRef]
- Masthoff, J. Group recommender systems: Combining individual models. In Recommender Systems Handbook; Springer: Boston, MA, USA, 2011; pp. 677–702. [Google Scholar]
- Kompan, M.; Bielikova, M. Group recommendations: Survey and perspectives. Comput. Inf. 2014, 33, 446–476. [Google Scholar]
- Pu, P.; Chen, L.; Hu, R. Evaluating recommender systems from the user’s perspective: Survey of the state of the art. User Model. User-Adapted Interact. 2012, 22, 317–355. [Google Scholar] [CrossRef]
- Jawaheer, G.; Szomszor, M.; Kostkova, P. Comparison of implicit and explicit feedback from an online music recommendation service. In Proceedings of the 1st international workshop on information heterogeneity and fusion in recommender systems, Barcelona, Spain, 26 September 2010; pp. 47–51. [Google Scholar]
- Lu, J.; Wu, D.; Mao, M.; Wang, W.; Zhang, G. Recommender system application developments: A survey. Decis. Support Syst. 2015, 74, 12–32. [Google Scholar] [CrossRef]
- Goren-Bar, D.; Glinansky, O. FIT-recommending TV programs to family members. Comput. Graph. 2004, 28, 149–156. [Google Scholar] [CrossRef]
- Velusamy, S.; Gopal, L.; Bhatnagar, S.; Varadarajan, S. An efficient ad recommendation system for TV programs. Multimed. Syst. 2008, 14, 73–87. [Google Scholar] [CrossRef]
- Sánchez, A. Digital Services in the 21st Century: A Strategic and Business Perspective; John Wiley & Sons: Hoboken, NJ, USA, 2017. [Google Scholar]
- Margaris, D.; Vassilakis, C. Exploiting Rating Abstention Intervals for Addressing Concept Drift in Social Network Recommender Systems. Informatics 2018, 5, 21. [Google Scholar] [CrossRef]
- Gorla, J.; Lathia, N.; Robertson, S.; Wang, J. Probabilistic group recommendation via information matching. In Proceedings of the 22nd international conference on World Wide Web (2013), Rio de Janeiro, Brazil, 13–17 May 2013; pp. 495–504. [Google Scholar]
- Shin, C.; Woo, W. Socially aware TV program recommender for multiple viewers. IEEE Trans. Consum. Electron. 2009, 55, 927–932. [Google Scholar] [CrossRef]
Features | TV | Smart-TV/TV-Box | |
---|---|---|---|
Hardware perspectives | Infrared | ✓ | ✓ |
USB | X | ✓ | |
Wi-Fi | X | ✓ | |
Storage | X | ✓ | |
HDMI | X | ✓ | |
RJ45 | X | ✓ | |
VGA | X | ✓ | |
Software perspectives | Lean-back support | ✓ | ✓ |
Personalization | X | ✓ | |
Operating System | X | ✓ | |
Mobile | X | X | |
Interactive | X | ✓ | |
IP address | X | ✓ | |
History/Logs | X | ✓ | |
Third-party applications | X | ✓ | |
Browser | X | ✓ | |
Sensors support | X | ✓ |
Recommendation Techniques | Approaches | Some Common Algorithms | Issues |
---|---|---|---|
Content-based Filtering Techniques | Item description, user profile | Cosine similarity, decision tree, Bayesian network, neural network, clustering algorithms [12] | Smart TV is not the true representative of all viewers behind smart TV [57] |
Collaborative filtering techniques | Collective preferences of the crowd | Cosine similarity, Pearson-r correlation, Slope one, Singular value decomposition (SVD) [12] | Unpredictable feedbacks in case of smart TV watching scenarios |
Hybrid Approaches | Combining Both | Any combination of above | Same inherited issues |
Contextual Recommendations | Time. Place, location, Events | Contextual rules, Contextual ontologies [12] | Diverse interest of group members |
Participants | Demographics | Number of Participants | Percentage | SD |
---|---|---|---|---|
Gender | Female | 90 | 30 % | 84.85281 |
Male | 210 | 70 % | ||
Age group | 20 to 30 Years | 90 | 30 % | 33.41656 |
31 to 40 Years | 95 | 31.66 % | ||
41 to 50 Years | 90 | 30 % | ||
Others | 25 | 8.33 % | ||
Background | Educated | 260 | 86.66 % | 155.5635 |
Literate | 40 | 13.33 % | ||
Smart TV Usage Experience | 1 year | 110 | 36.66 % | 37.19319 |
2 years | 95 | 31.66 % | ||
3 years | 70 | 23.33 % | ||
Others | 25 | 8.33 % |
Cronbach’s Alpha | Cronbach’s Alpha Based on Standardized Items | No of Items |
---|---|---|
0.788 | 0.831 | 11 |
Mean | Std. Deviation | Analysis N | |
---|---|---|---|
Q5 | 1.4834 | 0.50065 | 271 |
Q6 | 1.5203 | 0.50051 | 271 |
Q7 | 1.4059 | 0.50681 | 271 |
Q8 | 1.5461 | 0.58110 | 271 |
Q9 | 2.1292 | 1.22396 | 271 |
Q10 | 1.8339 | 1.31871 | 271 |
Q11 | 1.3579 | 1.01156 | 271 |
Q12 | 1.0480 | 0.21410 | 271 |
Q13 | 1.8303 | 0.78926 | 271 |
Q14 | 1.7085 | 0.77929 | 271 |
Q15 | 1.4945 | 0.58923 | 271 |
Kaiser–Meyer–Olkin Measure of Sampling Adequacy | 0.836 | |
---|---|---|
Bartlett’s Test of Sphericity | Approx. Chi-Square | 1153.530 |
df. | 55 | |
Sig. | 0.000 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alam, I.; Khusro, S.; Khan, M. Factors Affecting the Performance of Recommender Systems in a Smart TV Environment. Technologies 2019, 7, 41. https://doi.org/10.3390/technologies7020041
Alam I, Khusro S, Khan M. Factors Affecting the Performance of Recommender Systems in a Smart TV Environment. Technologies. 2019; 7(2):41. https://doi.org/10.3390/technologies7020041
Chicago/Turabian StyleAlam, Iftikhar, Shah Khusro, and Mumtaz Khan. 2019. "Factors Affecting the Performance of Recommender Systems in a Smart TV Environment" Technologies 7, no. 2: 41. https://doi.org/10.3390/technologies7020041
APA StyleAlam, I., Khusro, S., & Khan, M. (2019). Factors Affecting the Performance of Recommender Systems in a Smart TV Environment. Technologies, 7(2), 41. https://doi.org/10.3390/technologies7020041