Formaldehyde Detection by a Combination of Formaldehyde Dehydrogenase and Chitosan on a Sensor Based on an Organic Field-Effect Transistor
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Fabrication of an OFET Device
2.3. Preparation of a Sensor Chip with an Enzyme Electrode
2.4. Observation of the Formaldehyde Detection on OFET
3. Results and Discussion
3.1. Observation of the Transfer Characteristic Curve of the OFET for Formaldehyde Detection
3.2. Dependence of Curve Shift on Formaldehyde Concentration
3.3. Limit of Detection in Formaldehyde Sensing Using the OFET Device
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- International Agency for Research on Cancer (IARC). IARC Monographs on the Evaluation of Carcinogenic Risks to Humans, Formaldehyde, 2-Butoxyethanol and 1-tert-Butoxypropan-2-ol; IARC: Lyon, France, 2006; Volume 88, pp. 37–325. [Google Scholar]
- US Environmental Protection Agency. National Air Quality and Emissions Trends Report: Chapter 5, Air Toxics; US Environmental Protection Agency: Research Triangle Park, NC, USA, 1996.
- World Health Organization (WHO). Environmental Health Criteria 89, Formaldehyde; WHO: Geneva, Switzerland, 1989. [Google Scholar]
- Organization or a Committee. EUR-Lex, Commission Regulation (EU) 2016/1179 of 19 July 2016. Off. J. Eur. Union 2016, 59, 11–25. [Google Scholar]
- World Health Organization (WHO). Air Quality Guidelines for Europe, 2nd ed.; Regional Office for Europe: Copenhagen, Denmark, 2000; pp. 87–91. [Google Scholar]
- Tanabe, S.; Yukinaka, S.; Yoshida, H. Basic study on indoor air pollution by HCHO and VOCs in residential buildings. Tech. Pap. Annu. Meet Soc. Heat. Air-Conditioning Sanit. Eng. Jpn. 1997, 49–52. (In Japanese) [Google Scholar]
- Muntuta-Kinyanta, C.; Hardy, J.K. Permeation-solid adsorbent sampling and GC analysis of formaldehyde. Talanta 1991, 38, 1381–1386. [Google Scholar] [CrossRef]
- Nash, T. The colorimetric estimation of formaldehyde by means of the Hantzsch reaction. Biochem. J. 1953, 55, 416–421. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maruo, Y.Y.; Nakamura, J.; Uchiyama, M. Development of formaldehyde sensing element using porous glass impregnated with β-diketone. Talanta 2008, 74, 1141–1147. [Google Scholar] [CrossRef] [PubMed]
- Gavin, M.; Crump, D.R.; Brown, V.M. Appropriate Sampling Strategies for the Measurement of Formaldehyde in Indoor Air. Environ. Technol. 1995, 16, 579–586. [Google Scholar] [CrossRef]
- Shimomura, T.; Itoh, T.; Sumiya, T.; Mizukami, F.; Ono, M. Electrochemical biosensor for the detection of formaldehyde based on enzyme immobilization in mesoporous silica materials. Sens. Actuators B 2008, 135, 268–275. [Google Scholar] [CrossRef]
- Shiwaku, R.; Matsui, H.; Nagamine, K.; Uematsu, M.; Mano, T.; Maruyama, Y.; Nomura, A.; Tsuchiya, K.; Hayasaka, K.; Takeda, Y.; et al. A Printed Organic Circuit System for Wearable Amperometric Electrochemical Sensors. Sci. Rep. 2018, 8, 6368. [Google Scholar] [CrossRef] [PubMed]
- Grieshaber, D.; MacKenzie, R.; Vörös, J.; Reimhult, E. Electrochemical Biosensors - Sensor Principles and Architectures. Sensors 2008, 8, 1400–1458. [Google Scholar] [CrossRef] [PubMed]
- Manoli, K.; Magliulo, M.; Mulla, M.Y.; Singh, M.; Sabbatini, L.; Palazzo, G.; Torsi, L. Printable bioelectronics to investigate functional biological interfaces. Angew. Chem. Int. Ed. 2015, 54, 12562–12576. [Google Scholar] [CrossRef] [PubMed]
- Palazzo, G.; De Tullio, D.; Magliulo, M.; Mallardi, A.; Intranuovo, F.; Mulla, M.Y.; Favia, P.; Vikholm-Lundin, I.; Torsi, L. Detection beyond Debye’s length with an electrolyte-gated organic field-effect transistor. Adv. Mater. 2015, 27, 911–916. [Google Scholar] [CrossRef] [PubMed]
- Furusawa, H.; Ichimura, Y.; Harada, S.; Uematsu, M.; Xue, S.; Nagamine, K.; Tokito, S. Electric Charge Detection of Sparse Organic Acid Molecules Using an Organic Field-Effect Transistor (OFET)-Based Sensor. Bull. Chem. Soc. Jpn. 2018, 91, 1020–1025. [Google Scholar] [CrossRef]
- Furusawa, H.; Ichimura, Y.; Nagamine, K.; Shiwaku, R.; Matsui, H.; Tokito, S. Detection of 1,5-anhydroglucitol as a Biomarker for Diabetes Using an Organic Field-Effect Transistor-Based Biosensor. Technologies 2018, 8, 77. [Google Scholar] [CrossRef]
- Nagamine, K.; Mano, T.; Shiwaku, R.; Furusawa, H.; Matsui, H.; Kumaki, D.; Tokito, S. An L-lactate Biosensor Based on Printed Organic Inverter Circuitry and with a Tunable Detection Limit. Sens. Mater. 2019, 31, 1205–1213. [Google Scholar] [CrossRef]
- Sasaki, K.; Furusawa, H.; Nagamine, K.; Tokito, S. Charge-accumulative Potentiometric Measurements for Ammonia Detection Using an Enzymatic Cascade Reaction on a Prussian Blue Electrode. Chem. Lett. 2018, 47, 1412–1415. [Google Scholar] [CrossRef]
- Long, G.L.; Winefordner, J.D. Limit of detection. A closer look at the IUPAC definition. Anal. Chem. 1983, 55, 712A–724A. [Google Scholar]
- Vianello, F.; Stefani, A.; Di Paolo, M.L.; Rigo, A.; Lui, A.; Margesin, B.; Zen, M.; Scarpa, M.; Soncini, G. Potentiometric detection of formaldehyde in air by an aldehyde dehydrogenase FET. Sens. Actuators B 1996, 37, 49–54. [Google Scholar] [CrossRef]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tsuchiya, K.; Furusawa, H.; Nomura, A.; Matsui, H.; Nihei, M.; Tokito, S. Formaldehyde Detection by a Combination of Formaldehyde Dehydrogenase and Chitosan on a Sensor Based on an Organic Field-Effect Transistor. Technologies 2019, 7, 48. https://doi.org/10.3390/technologies7030048
Tsuchiya K, Furusawa H, Nomura A, Matsui H, Nihei M, Tokito S. Formaldehyde Detection by a Combination of Formaldehyde Dehydrogenase and Chitosan on a Sensor Based on an Organic Field-Effect Transistor. Technologies. 2019; 7(3):48. https://doi.org/10.3390/technologies7030048
Chicago/Turabian StyleTsuchiya, Kazuhiko, Hiroyuki Furusawa, Ayako Nomura, Hiroyuki Matsui, Mizuhisa Nihei, and Shizuo Tokito. 2019. "Formaldehyde Detection by a Combination of Formaldehyde Dehydrogenase and Chitosan on a Sensor Based on an Organic Field-Effect Transistor" Technologies 7, no. 3: 48. https://doi.org/10.3390/technologies7030048
APA StyleTsuchiya, K., Furusawa, H., Nomura, A., Matsui, H., Nihei, M., & Tokito, S. (2019). Formaldehyde Detection by a Combination of Formaldehyde Dehydrogenase and Chitosan on a Sensor Based on an Organic Field-Effect Transistor. Technologies, 7(3), 48. https://doi.org/10.3390/technologies7030048