Advanced Coatings by Thermal Spray Processes
Abstract
:1. Introduction
2. HVAF Coatings for Wear and Corrosion Applications
2.1. Corrosion Protection Coatings
2.2. Wear Resistant Coatings
3. SPS Coatings for TBC Applications
4. SPS Coatings for Non-TBC Applications
5. Prospects for Powder-Suspension ‘Hybrid’ Coatings
6. Summary
Funding
Acknowledgments
Conflicts of Interest
References
- Pawlowski, L. The Science and Engineering of Thermal Spray Coatings; John Wiley & Sons: Hoboken, NJ, USA, 2008. [Google Scholar]
- Milanti, A.; Matikainen, V.; Koivuluoto, H.; Bolelle, G.; Lusvarghi, L.; Vuoristo, P. Effect of spraying parameters on the microstructural and corrosion properties of HVAF-sprayed Fe–Cr–Ni–B–C coatings. Surf. Coat. Technol. 2015, 277, 81–90. [Google Scholar] [CrossRef]
- Fan, W.; Bai, Y. Review of suspension and solution precursor plasma sprayed thermal barrier coatings. Ceram. Int. 2016, 42, 14299–14312. [Google Scholar] [CrossRef]
- Tejero-Martin, R.D.; Rad, M.R.; McDonald, A.; Hussain, T. Beyond traditional coatings: A review on thermal-sprayed functional and smart coatings. J. Therm. Spray Technol. 2019, 28, 598–644. [Google Scholar] [CrossRef]
- Fauchais, R.P.; Vardelle, M.; Vardelle, A.; Goutier, S. What do we know, what are the current limitations of suspension plasma spraying? J. Therm. Spray Technol. 2015, 24, 1120–1129. [Google Scholar] [CrossRef]
- Gupta, M.; Dwivedi, G.; Nylén, P.; Vackel, A.; Sampath, S. An experimental study of microstructure-property relationships in thermal barrier coatings. J. Therm. Spray Technol. 2013, 22, 659–670. [Google Scholar] [CrossRef]
- Gupta, M.; Curry, N.; Nylén, P.; Markocsan, N.; Vaßen, R. Design of next generation thermal barrier coatings—experiments and modelling. Surf. Coat. Technol. 2013, 220, 20–26. [Google Scholar] [CrossRef]
- Curry, N.; Janikowski, W.; Pala, Z.; Vilémová, M.; Markocsan, N. Impact of impurity content on the sintering resistance and phase stability of dysprosia-and yttria-stabilized zirconia thermal barrier coatings. J. Therm. Spray Technol. 2014, 23, 160–169. [Google Scholar] [CrossRef]
- Curry, N.; Markocsan, N.; Östergren, L.; Li, X.-H.; Dorfman, M. Evaluation of the lifetime and thermal conductivity of dysprosia-stabilized thermal barrier coating systems. J. Therm. Spray Technol. 2013, 22, 864–872. [Google Scholar] [CrossRef]
- Lyphout, C.; Bjorklund, S. Internal Diameter HVAF Spraying for Wear and Corrosion Applications. J. Therm. Spray Technol. 2015, 24, 235–243. [Google Scholar] [CrossRef]
- Sadeghimeresht, E.; Eklund, J.; Simon, J.P.; Liske, J.; Markocsan, N.; Joshi, S. Effect of water vapor on the oxidation behavior of HVAF-sprayed NiCr and NiCrAlY coatings. Mater. Corros. 2018, 69, 1431–1440. [Google Scholar] [CrossRef]
- Lyphout, C.; Fasth, A.; Nylen, P. Mechanical Property of HVOF Inconel 718 Coating for Aeronautic Repair. J. Therm. Spray Technol. 2014, 23, 380–388. [Google Scholar] [CrossRef]
- Hameed, P.; Gopal, V.; Bjorklund, S.; Ganvir, A.; Sena, D.; Markocsan, N.; Manivasagam, G. Axial suspension plasma spraying: An ultimate technique to tailor Ti6Al4V surface with HAp for orthopaedic applications. Colloids Surf. B Biointerfaces 2019, 173, 806–815. [Google Scholar] [CrossRef] [PubMed]
- Vijay, S.; Roy, B.; Markocsan, N.; Lyphout, C. Wetting properties of ceramic reinforced metal matrix composites on varied roughness profiles. In Proceedings of the International Thermal Spray Conference, Dusseldorf, Germany, 7–9 June 2017; pp. 537–542. [Google Scholar]
- Thomas, C.A.; Hartl, M.A.; Lee, Y.; Shea, T.J.; Adli, E.; Gjersdal, H.; Jaekel, M.R.; Rohne, O.; Joshi, S. Preliminary Measurement on Potential Luminescent Coating Material for the ESS Target Imaging Systems. In Proceedings of the IBIC 2016, Barcelona, Spain, 11–15 September 2016; pp. 559–562. [Google Scholar]
- Bobzin, K.; Öte, M.; Knoch, M.A.; Sommer, J. Novel Fe-based and HVAF-sprayed coating systems for large area applications. IOP Conf. Ser. Mater. Sci. Eng. 2019, 480, 012005. [Google Scholar] [CrossRef]
- Ganvir, A. Design of Suspension Plasma Sprayed Thermal Barrier Coatings. Ph.D. Thesis, University West, Trollhättan, Sweden, 2018. [Google Scholar]
- Joshi, S.V.; Sivakumar, G. Hybrid processing with powders and solutions: A novel approach to deposit composite coatings. J. Therm. Spray Technol. 2015, 24, 1166–1186. [Google Scholar] [CrossRef]
- Joshi, S.V.; Sivakumar, G.; Raghuveer, T.; Dusane, R.O. Hybrid plasma-sprayed thermal barrier coatings using powder and solution precursor feedstock. J. Therm. Spray Technol. 2014, 23, 616–624. [Google Scholar] [CrossRef]
- Lohia, A.; Sivakumar, G.; Ramakrishna, M.; Joshi, S.V. Deposition of nanocomposite coatings employing a hybrid APS+ SPPS technique. J. Therm. Spray Technol. 2014, 23, 1054–1064. [Google Scholar] [CrossRef]
- Goel, S. Hybrid Powder-Suspension Plasma Spraying for Diverse Function-Dependent Coating Architectures. Master’s Thesis, University West, Trollhättan, Sweden, 2016. [Google Scholar]
- Bjorklund, S.; Goel, S.; Joshi, S. Function-dependent coating architectures by hybrid powder-suspension plasma spraying: Injector design, processing and concept validation. Mater. Design 2018, 142, 56–65. [Google Scholar] [CrossRef]
- Lyphout, C.; Markocsan, N.; Nylén, P.; Berger, L.M.; Bolelli, G.; Börner, T.; Koivuluoto, H.; Lusvarghi, L.; Vuoristo, P.; Zimmermann, S. Sliding and abrasive wear behaviour of HVOF-and HVAF-sprayed Cr3C2–NiCr hardmetal coatings. Wear 2016, 358–359, 32–50. [Google Scholar]
- Lyphout, C.; Sato, K.; Houdkova, S.; Smazalova, E.; Lusvarghi, L.; Bolelli, G.; Sassatelli, P. Tribological properties of hard metal coatings sprayed by high-velocity air fuel process. J. Therm. Spray Technol. 2015, 25, 331. [Google Scholar] [CrossRef]
- Lyphout, C.; Bolelli, G.; Smazalova, E.; Sato, K.; Yamada, J.; Houdková, Š.; Lusvarghi, L.; Manfredini, T. Influence of hardmetal feedstock powder on the sliding wear and impact resistance of High Velocity Air-Fuel (HVAF) sprayed coatings. Wear 2019, 430–431, 340–354. [Google Scholar]
- Bolelli, G.; Berger, L.M.; Börner, T.; Koivuluoto, H.; Lusvarghi, L.; Lyphout, C.; Markocsan, N.; Matikainen, V.; Nylén, P.; Sassatelli, P.; et al. Tribology of HVOF-and HVAF-sprayed WC–10Co4Cr hardmetal coatings: A comparative assessment. Surf. Coat. Technol. 2015, 265, 125–144. [Google Scholar] [CrossRef]
- Lyphout, C.; Sato, K. Screening design of hard metal feedstock powders for supersonic air fuel processing. Surf. Coat. Technol. 2014, 258, 447–457. [Google Scholar] [CrossRef]
- Lyphout, C.; Björklund, S.; Karlsson, M.; Runte, M.; Reisel, G.; Boccaccio, P. Screening Design of Supersonic Air Fuel Processing for Hard Metal Coatings. J. Therm. Spray Technol. 2014, 23, 1323. [Google Scholar] [CrossRef]
- Renewable Energy Magazine. Available online: https://www.renewableenergymagazine.com/biomass/europe-remains-most-important-market-for-solid-20151125 (accessed on 25 November 2015).
- Nielsen, H.P.; Frandsen, F.J.; Dam-Johansen, K.; Baxter, L.L. The implications of chlorine-associated corrosion on the operation of biomass-fired boilers. Prog. Energy Combust. Sci. 2000, 26, 283–298. [Google Scholar] [CrossRef]
- Lindberg, D.; Becidan, M.; Sørum, L. High Efficiency Waste-to-Energy Plants− Effect of Ash Deposit Chemistry on Corrosion at Increased Superheater Temperatures. Energy Fuels 2010, 24, 5387–5395. [Google Scholar] [CrossRef]
- Talus, A.; Norling, R.; Wickström, L.; Hjörnhede, A. Effect of lead content in used wood fuel on furnace wall corrosion of 16Mo3, 304L and alloy 625. Oxid. Met. 2017, 87, 813–824. [Google Scholar] [CrossRef]
- Fujikawa, H.; Makiura, H.; Nishiyama, Y. Corrosion behavior of various steels in black liquor recovery boiler environment. Mater. Corros. 1999, 50, 154–161. [Google Scholar] [CrossRef]
- Szymański, K.; Hernas, A.; Moskal, G.; Myalska, H. Thermally sprayed coatings resistant to erosion and corrosion for power plant boilers—A review. Surf. Coat. Technol. 2015, 268, 153–164. [Google Scholar] [CrossRef]
- Lee, S.H.; Themelis, N.J.; Castaldi, M.J. High-Temperature Corrosion in Waste-to-Energy Boilers. J. Therm. Spray Technol. 2007, 16, 104–110. [Google Scholar] [CrossRef] [Green Version]
- Sadeghimeresht, E.; Reddy, L.; Hussain, T.; Huhtakangas, M.; Markocsan, N.; Joshi, S. Influence of KCl and HCl on high temperature corrosion of HVAF-sprayed NiCrAlY and NiCrMo coatings. Mater. Design 2018, 148, 17–29. [Google Scholar] [CrossRef]
- Sadeghi, E.; Markocsan, N.; Hussain, T.; Huhtakangas, M.; Joshi, S. Effect of SiO2 Dispersion on Chlorine-Induced High-Temperature Corrosion of High-Velocity Air-Fuel Sprayed NiCrMo Coating. Corrosion 2018, 74, 984–1000. [Google Scholar] [CrossRef]
- Sadeghimeresht, E.; Reddy, L.; Hussain, T.; Markocsan, N.; Joshi, S. Chlorine-induced high temperature corrosion of HVAF-sprayed Ni-based alumina and chromia forming coatings. Corros. Sci. 2018, 132, 170–184. [Google Scholar] [CrossRef]
- Jafari, R.; Sadeghimeresht, E.; Farahani, T.S.; Huhtakangas, M.; Markocsan, N.; Joshi, S.J. KCl-induced high-temperature corrosion behavior of HVAF-sprayed Ni-based coatings in ambient air. J. Therm. Spray Technol. 2017, 27, 500–511. [Google Scholar] [CrossRef]
- Sadeghi, E.; Joshi, S. Chlorine-induced high-temperature corrosion and erosion-corrosion of HVAF and HVOF-sprayed amorphous Fe-based coatings. Surf. Coat. Technol. 2019, 371, 20–35. [Google Scholar] [CrossRef]
- Eklund, J.; Phother, J.; Sadeghi, E.; Joshi, S.; Liske, J. High-Temperature Corrosion of HVAF-Sprayed Ni-Based Coatings for Boiler Applications. Oxid. Met. 2019, 91, 729–747. [Google Scholar] [CrossRef] [Green Version]
- Homberg, K.; Erdemir, A. Influence of tribology on global energy consumption, costs and emissions. Friction 2017, 5, 263–284. [Google Scholar] [CrossRef]
- Hoornaert, T.; Hua, Z.K.; Zhang, J.H. Hard Wear-Resistant Coatings: A Review. In Advanced Tribology; Luo, J., Meng, Y., Shao, T., Zhao, Q., Eds.; Springer: Berlin, Germany, 2019. [Google Scholar]
- Hajare, A.S.; Gogte, C.L. Comparative study of wear behaviour of Thermal Spray HVOF coating on 304 SS. Mater. Today Proc. 2018, 5, 6924–6933. [Google Scholar] [CrossRef]
- Ksiazek, M.; Boron, L.; Radecka, M.; Richert, M.; Tchorz, A. Mechanical and Tribological Properties of HVOF-Sprayed (Cr3C2-NiCr+Ni) Composite Coating on Ductile Cast Iron. J. Mater. Eng. Perform. 2016, 25, 3185–3193. [Google Scholar] [CrossRef]
- Sahraoui, T.; Fenineche, N.-E.; Montavon, G.; Coddet, C. Structure and wear behaviour of HVOF sprayed Cr3C2–NiCr and WC–Co coatings. Mater. Design 2003, 24, 309–313. [Google Scholar] [CrossRef]
- Liu, Y.; Liu, W.; Ma, Y.; Meng, S.; Liu, C.; Long, L.; Tang, S. A comparative study on wear and corrosion behaviour of HVOF-and HVAF-sprayed WC–10Co–4Cr coatings. Surf. Eng. 2017, 33, 63–71. [Google Scholar] [CrossRef]
- Matikainen, V.; Bolelli, G.; Koivuluoto, H.; Sassatelli, P.; Lusvarghi, L.; Vuoristo, P. Sliding wear behaviour of HVOF and HVAF sprayed Cr3C2-based coatings. Wear 2017, 388–389, 57–71. [Google Scholar] [CrossRef]
- Ganvir, A.; Calinas, R.F.; Markocsan, N.; Curry, N.; Joshi, S. Experimental visualization of microstructure evolution during suspension plasma spraying of thermal barrier coatings. J. Eur. Ceram. Soc. 2019, 39, 470–481. [Google Scholar] [CrossRef]
- Markocsan, N.; Gupta, M.; Joshi, S.; Nylén, P.; Li, X.-H.; Wigren, J. Liquid feedstock plasma spraying: An emerging process for advanced thermal barrier coatings. J. Therm. Spray Technol. 2017, 26, 1104–1114. [Google Scholar] [CrossRef]
- Vaßen, R.; Kaßner, H.; Mauer, G.; Stöver, D.J. Suspension Plasma Spraying: Process Characteristics and Applications. Therm. Spray Technol. 2009, 19, 219–225. [Google Scholar] [CrossRef]
- Ganvir, A.; Joshi, S.; Markocsan, N.; Vassen, R. Tailoring columnar microstructure of axial suspension plasma sprayed TBCs for superior thermal shock performance. Mater. Design 2018, 144, 192–208. [Google Scholar] [CrossRef]
- Vaßen, R.; Jarligo, M.O.; Steinke, T.; Mack, D.E. Stöver, D. Overview on advanced thermal barrier coatings. Surf. Coat. Technol. 2010, 205, 938–942. [Google Scholar] [CrossRef]
- Vaßen, R.; Stöver, D. New Thermal Barrier Coatings Based on Pyrochlore/YSZ Double Layer Systems. In Advances in Ceramic Coatings and Ceramic-Metal Systems: Ceramic Engineering and Science Proceedings; Zhu, D., Plucknett, K., Eds.; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2005; pp. 2–10. [Google Scholar]
- Mahade, S.; Curry, N.; Björklund, S.; Markocsan, N.; Nylén, P. Thermal conductivity and thermal cyclic fatigue of multilayered Gd2Zr2O7/YSZ thermal barrier coatings processed by suspension plasma spray. Surf. Coat. Technol. 2015, 283, 329–336. [Google Scholar] [CrossRef]
- Mahade, S.; Curry, N.; Björklund, S.; Markocsan, N.; Nylén, P.; Vaßen, R. Functional performance of Gd2Zr2O7/YSZ multi-layered thermal barrier coatings deposited by suspension plasma spray. Surf. Coat. Technol. 2017, 318, 208–216. [Google Scholar] [CrossRef]
- Mahade, S.; Curry, N.; Björklund, S.; Markocsan, N.; Nylén, P. Failure analysis of Gd2Zr2O7/YSZ multi-layered thermal barrier coatings subjected to thermal cyclic fatigue. J. Alloys Compd. 2016, 689, 1011–1019. [Google Scholar] [CrossRef]
- Mahade, S.; Curry, N.; Björklund, S.; Markocsan, N.; Nylén, P.; Vaßen, R. Erosion performance of gadolinium zirconate-based thermal barrier coatings processed by suspension plasma spray. J. Therm. Spray Technol. 2016, 26, 108–115. [Google Scholar] [CrossRef]
- Mahade, S.; Curry, N.; Björklund, S.; Markocsan, N.; Nylen, P. Engineered thermal barrier coatings deposited by suspension plasma spray. Mater. Lett. 2017, 209, 517–521. [Google Scholar] [CrossRef]
- Curry, N.; VanEvery, K.; Snyder, T.; Susnjar, J.; Bjorklund, S. Performance testing of suspension plasma sprayed thermal barrier coatings produced with varied suspension parameters. Coatings 2015, 5, 338–356. [Google Scholar] [CrossRef]
- Curry, N.; Tang, Z.; Markocsan, N.; Nylén, P. Influence of bond coat surface roughness on the structure of axial suspension plasma spray thermal barrier coatings—Thermal and lifetime performance. Surf. Coat. Technol. 2015, 268, 15–23. [Google Scholar] [CrossRef]
- Ganvir, A.; Curry, N.; Björklund, S.; Markocsan, N.; Nylén, P. Characterization of Microstructure and Thermal Properties of YSZ Coatings Obtained by Axial Suspension Plasma Spraying (ASPS). J. Therm. Spray Technol. 2015, 24, 1195–1204. [Google Scholar] [CrossRef]
- Ganvir, A.; Curry, N.; Markocsan, N.; Nylén, P.; Joshi, S.; Vilemova, M.; Pala, Z. Influence of Microstructure on Thermal Properties of Axial Suspension Plasma-Sprayed YSZ Thermal Barrier Coatings. J. Therm. Spray Technol. 2015, 25, 202–212. [Google Scholar]
- Ganvir, A.; Markocsan, N.; Joshi, S. Influence of isothermal heat treatment on porosity and crystallite size in axial suspension plasma sprayed thermal barrier coatings for gas turbine applications. Coatings 2017, 7, 4. [Google Scholar] [CrossRef]
- Ganvir, A.; Vaidhyanathan, V.; Markocsan, N.; Gupta, M.; Pala, Z.; Lukac, F. Failure analysis of thermally cycled columnar thermal barrier coatings produced by high-velocity-air fuel and axial-suspension-plasma spraying: A design perspective. Ceram. Int. 2017, 44, 3161–3172. [Google Scholar] [CrossRef]
- Mahade, S. Functional Performance of Gadolinium Zirconate/Yttria Stabilized Zirconia Multi-Layered Thermal Barrier Coatings. Ph.D. Thesis, University West, Trollhättan, Sweden, 2018. [Google Scholar]
- Ganvir, A.; Curry, N.; Govindarajan, S.; Markocsan, N. Characterization of thermal barrier coatings produced by various thermal spray techniques using solid powder, suspension, and solution precursor feedstock material. Int. J. Appl. Ceram. Technol. 2016, 13, 324–332. [Google Scholar] [CrossRef]
- Goel, S.; Björklund, S.; Curry, N.; Wiklund, U.; Joshi, S. Axial suspension plasma spraying of Al2O3 coatings for superior tribological properties. Surf. Coat. Technol. 2017, 315, 80–87. [Google Scholar] [CrossRef]
- Bannier, E.; Darut, G.; Sánchez, E.; Denoirjean, A.; Bordes, M.C.; Salvador, M.D.; Rayón, E.; Ageorges, H. Microstructure and photocatalytic activity of suspension plasma sprayed TiO2 coatings on steel and glass substrates. Surf. Coat. Technol. 2011, 206, 378–386. [Google Scholar] [CrossRef]
- Bolelli, G.; Bellucci, D.; Cannillo, V.; Lusvarghi, L.; Sola, A.; Stiegler, N.; Müller, P.; Killinger, A.; Gadow, R.; Altomare, L.; et al. Suspension thermal spraying of hydroxyapatite: Microstructure and in vitro behaviour. Mater. Sci. Eng. C 2014, 34, 287–303. [Google Scholar] [CrossRef]
- Mahade, S.; Narayan, K.; Govindarajan, S.; Björklund, S.; Curry, N.; Joshi, S. Exploiting Suspension Plasma Spraying to Deposit Wear-Resistant Carbide Coatings. Materials 2019, 12, 2344. [Google Scholar] [CrossRef] [PubMed]
- Ganvir, A.; Björklund, S.; Yao, Y.; Vadali, S.V.S.S.; Klement, U.; Joshi, S. A Facile Approach to Deposit Graphenaceous Composite Coatings by Suspension Plasma Spraying. Coatings 2019, 9, 171. [Google Scholar] [CrossRef]
- Killinger, A.; Müller, P.; Gadow, R. What do we know, what are the current limitations of suspension HVOF spraying? J. Therm. Spray Technol. 2015, 24, 1130–1142. [Google Scholar] [CrossRef]
- Vardelle, A.; Moreau, C.; Themelis, N.J.; Chazelas, C. A perspective on plasma spray technology. Plasma Chem. Plasma Process. 2015, 35, 491–509. [Google Scholar] [CrossRef]
- Murray, J.W.; Leva, A.; Joshi, S.; Hussain, T. Microstructure and wear behaviour of powder and suspension hybrid Al2O3–YSZ coatings. Ceram. Int. 2018, 44, 8498–8504. [Google Scholar] [CrossRef]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Joshi, S.; Nylen, P. Advanced Coatings by Thermal Spray Processes. Technologies 2019, 7, 79. https://doi.org/10.3390/technologies7040079
Joshi S, Nylen P. Advanced Coatings by Thermal Spray Processes. Technologies. 2019; 7(4):79. https://doi.org/10.3390/technologies7040079
Chicago/Turabian StyleJoshi, Shrikant, and Per Nylen. 2019. "Advanced Coatings by Thermal Spray Processes" Technologies 7, no. 4: 79. https://doi.org/10.3390/technologies7040079
APA StyleJoshi, S., & Nylen, P. (2019). Advanced Coatings by Thermal Spray Processes. Technologies, 7(4), 79. https://doi.org/10.3390/technologies7040079