Do Local Fiscal Expenditures Promote the Growth of Profit-Seeking Enterprise Numbers in Neighboring Areas?
Abstract
:1. Introduction
2. Literature Review
3. Methodology
3.1. Setting of the Spatial Econometric Model
3.2. Data and Sample
3.3. Spatial Weight Matrix
4. Results
4.1. Descriptive Statistics
4.2. Test of Spatial Autocorrelation
4.3. Selection of the Spatial Econometric Model
4.4. Estimation Results of Various SDMs
4.5. Decomposition Results of Direct Effects and Spillover Effects Based on SDM with Random Effects
4.6. Competitive Strategy of Environmental Regulation
5. Conclusions
5.1. Conclusions and Policy Implications
5.2. Limitations and Future Directions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Akaike, Hirotogu. 1973. Information theory and an extension of the maximum likelihood principle. In 2nd International Symposium on Information Theory. Edited by Boris Nikolaevic Petrov and Frigyes Csáki. Budapest: Akademiai Kiado, pp. 199–213. [Google Scholar] [CrossRef]
- Anselin, Luc. 1988. Spatial Econometrics: Methods and Models. Dordrecht: Kluwer Academic. [Google Scholar] [CrossRef] [Green Version]
- Anselin, Luc. 2003. Spatial Econometrics. In A Companion to Theoretical Econometrics. Edited by Badi Hani Baltagi. New York: Wiley, pp. 310–30. [Google Scholar] [CrossRef]
- Arrow, Kenneth J., and Mordecai Kurz. 2011. Public Investment, the Rate of Return, and Optimal Fiscal Policy. Baltimore: Johns Hopkins University Press. [Google Scholar] [CrossRef]
- Barro, Robert J. 1990. Government spending in a simple model of endogenous growth. Journal of Political Economy 98: S103–S25. [Google Scholar] [CrossRef] [Green Version]
- Bernat, George Andrew. 1996. Does manufacturing matter? A spatial econometric view of Kaldor’s laws. Journal of Regional Science 36: 463–77. [Google Scholar] [CrossRef]
- Boarnet, Marlon G. 1998. Spillovers and the locational effects of public infrastructure. Journal of Regional Science 38: 381–400. [Google Scholar] [CrossRef]
- Carruthers, John I., and Gudmundur F. Úlfarsson. 2008. Does ‘smart growth’ matter to public finance? Urban Studies 45: 1791–823. [Google Scholar] [CrossRef] [Green Version]
- Cheng, Xiao, and Yanping Pu. 2017. Effective tax rates, spatial spillover, and economic growth in China: An empirical study based on the spatial Durbin model. Annals of Economics and Finance 18: 73–97. Available online: https://ideas.repec.org/a/cuf/journl/y2017v18i1cheng.html (accessed on 26 October 2020).
- Cliff, Andrew, and Keith Ord. 1973. Spatial Autocorrelation. London: Pion. [Google Scholar] [CrossRef]
- Cliff, Andrew, and Keith Ord. 1981. Spatial Processes-Models and Applications. London: Pion. [Google Scholar]
- Cohen, Jeffrey P., and Catherine J. Morrison Paul. 2004. Public infrastructure investment, interstate spatial spillovers, and manufacturing costs. Review of Economic and Statistics 86: 551–60. Available online: http://www.jstor.org/stable/3211646 (accessed on 13 January 2020). [CrossRef]
- De Siano, Rita, and Marcella D’Uva. 2017. Fiscal decentralization and spillover effects of local government public spending: The case of Italy. Regional Studies 51: 1507–17. [Google Scholar] [CrossRef]
- Easterly, William, and Sergio Rebelo. 1993. Fiscal policy and economic growth: An empirical investigation. Journal of Monetary Economics 32: 417–58. [Google Scholar] [CrossRef]
- Elhorst, J. Paul. 2001. Dynamic models in space and time. Geographical Analysis 33: 119–40. [Google Scholar] [CrossRef] [Green Version]
- Elhorst, J. Paul. 2010. Applied spatial econometrics: Raising the bar. Spatial Economic Analysis 5: 9–28. [Google Scholar] [CrossRef]
- Fingleton, Bernard, Danilo Camargo Igliori, and Barry Moore. 2004. Employment growth of small high-technology firms and the role of horizontal clustering: Evidence from computing services and R&D in Great Britain, 1991–2000. Urban Studies 41: 773–99. [Google Scholar] [CrossRef]
- Goodchild, Michael F. 1987. A spatial analytical perspective on geographic information system. International Journal of Geographical Information System 1: 327–34. [Google Scholar] [CrossRef]
- Goodchild, Michael F., Luc Anselin, Richard P. Appelbaum, and Barbara Herr Harthorn. 2000. Toward spatially integrated social science. International Regional Science Review 23: 139–59. [Google Scholar] [CrossRef]
- Hausman, Jerry Allen. 1978. Specification tests in econometrics. Econometrica 46: 1251–71. [Google Scholar] [CrossRef] [Green Version]
- He, Ming, Yang Chen, and Ron Schramm. 2018. Technological spillovers in space and firm productivity: Evidence from China’s electric apparatus industry. Urban Studies 55: 2522–41. [Google Scholar] [CrossRef]
- Helms, Loyd Jay. 1985. The effect of state and local taxes on economic growth: A time series cross section approach. The Review of Economics and Statistics 67: 574–82. [Google Scholar] [CrossRef]
- Jiang, Lei, Haifeng Zhou, and Shixiong He. 2020. The role of governments in mitigating SO2 pollution in China: A perspective of fiscal expenditure. Environmental Science and Pollution Research 27: 33951–64. [Google Scholar] [CrossRef]
- LeSage, James, and Robbet Kelly Pace. 2009. Introduction to Spatial Econometrics. New York: CRC Press, Taylor & Francis Group. [Google Scholar] [CrossRef] [Green Version]
- Lin, Shuanglin, and Shunfeng Song. 2002. Urban economic growth in China: Theory and evidence. Urban Studies 39: 2251–66. [Google Scholar] [CrossRef]
- Morenoff, Jeffery D., and Robert J. Sampson. 1997. Violent crime and the spatial dynamics of neighborhood transition: Chicago, 1970–1990. Social Forces 76: 31–64. [Google Scholar] [CrossRef]
- Oyun, Gerel. 2017. Interstate spillovers, fiscal decentralization, and public spending on Medicaid home- and community-based services. Public Administration Review 77: 566–78. [Google Scholar] [CrossRef]
- Pan, Xiongfeng, Mengna Li, Shucen Guo, and Chenxi Pu. 2020. Research on the competitive effect of local government’s environmental expenditure in China. Science of the Total Environment 718: 137238. [Google Scholar] [CrossRef] [PubMed]
- Pereirã, Alfredo Marvão, and Oriol Roca-Sagalés. 2003. Spillovers effects of public capital formation: Evidence from the Spanish regions. Journal of Urban Economics 53: 238–56. [Google Scholar] [CrossRef] [Green Version]
- Que, Wei, Yabin Zhang, and Shaobo Liu. 2018. The spatial spillover effect of fiscal decentralization on local public provision: Mathematical application and empirical estimation. Applied Mathematics and Computation 331: 416–29. [Google Scholar] [CrossRef]
- Rey, Sergio J., and Brett Montouri. 1999. US regional income convergence: A spatial econometric perspective. Regional Studies 33: 143–56. [Google Scholar] [CrossRef]
- Sawada, Michael. 2004. Global Spatial Autocorrelation Indices- Moran’s I, Geary’s C and the General Cross-Product Statistic. Ottawa: University of Ottawa, Available online: http://www.lpc.uottawa.ca/publications/moransi/moran.htm (accessed on 21 June 2020).
- Schwarz, Gideon. 1978. Estimating the dimension of a model. The Annals of Statistics 6: 461–64. Available online: https://www.jstor.org/stable/2958889 (accessed on 1 August 2020). [CrossRef]
- Sokal, Robert R., Neal L. Oden, and Barbara A. Thomson. 1988. Local spatial autocorrelation in a biological model. Geographical Analysis 30: 331–54. [Google Scholar] [CrossRef]
- Tiebout, Charles M. 1956. A pure theory of local expenditure. Journal of Political Economy, 913–18. Available online: https://www.jstor.org/stable/1826343 (accessed on 16 January 2021). [CrossRef]
- Tobler, Waldo Rudolph. 1970. A computer movie simulating urban growth in the Detroit region. Economic Geography 46: 234–40. [Google Scholar] [CrossRef]
- Tyrrell, Timothy J., and Robert J. Johnston. 2009. An econometric analysis of the effects of tourism growth on municipal revenues and expenditures. Tourism Economics 15: 771–83. [Google Scholar] [CrossRef]
- Walter, Stephen. 1992. The analysis of regional patterns in health data. II. The power to detect environmental effects. American Journal of Epidemiology 136: 742–59. [Google Scholar] [CrossRef]
- Wang, Keliang, Shuang He, and Fuqin Zhang. 2021. Relationship between FDI, fiscal expenditure and green total-factor productivity in China: From the perspective of spatial spillover. PLoS ONE 16: e0250798. [Google Scholar] [CrossRef] [PubMed]
- Wu, Weiwei, and Jiandong Zhu. 2021. Are there demonstration effects of fiscal expenditures on higher education in China? An empirical investigation. International Journal of Educational Development 81: 102345. [Google Scholar] [CrossRef]
- Zhang, Jie, Yinxia Qu, Yun Zhang, Xiuzhen Li, and Xiao Miao. 2019. Effects of FDI on the Efficiency of Government Expenditure on Environmental Protection Under Fiscal Decentralization: A Spatial Econometric Analysis for China. International Journal of Environmental Research and Public Health 16: 2496. [Google Scholar] [CrossRef] [PubMed] [Green Version]
No. | Name | No. | Name | No. | Name | No. | Name |
---|---|---|---|---|---|---|---|
1 | Lienchiang County | 7 | Keelung City | 13 | Taoyuan City | 18 | Kinmen County |
2 | Yilan County | 8 | Hsinchu City | 14 | Miaoli County | 19 | Kaohsiung City |
3 | Changhua County | 9 | Taipei City | 15 | Hsinchu County | 20 | Taitung County |
4 | Nantou County | 10 | New Taipei City | 16 | Chiayi City | 21 | Hualien County |
5 | Yunlin County | 11 | Taichung City | 17 | Chiayi County | 22 | Penghu County |
6 | Pingtung County | 12 | Tainan City |
Variables | Obs. | Mean | Std. Dev. | Min. | 25th Percentile | Median | 75th Percentile | Max. |
---|---|---|---|---|---|---|---|---|
NPSE | 418 | 56,699.16 | 63,026.64 | 813 | 17,353 | 24,413 | 86,319 | 235,828 |
GGE | 418 | 4689.37 | 4995.12 | 314.69 | 1831.48 | 2417.02 | 5771.08 | 30,812.48 |
EDE | 418 | 7194.08 | 7441.14 | 881.11 | 2596.07 | 4359.20 | 8333.14 | 47,178.08 |
EESC | 418 | 15,098.66 | 16,282.09 | 463.52 | 4959.05 | 4959.04 | 19,860.31 | 65,587.43 |
ECDEP | 418 | 2369.52 | 3710.74 | 88.11 | 310.10 | 683.84 | 2026.77 | 16,149.67 |
NATC | 418 | 80,633,469.67 | 140,544,536.26 | 91,613.62 | 8,530,115 | 26,300,000 | 104,000,000 | 789,241,887.60 |
NLU | 418 | 557,416.83 | 540,259.25 | 3635 | 174,403 | 174,403 | 174,403 | 2,058,119 |
LFPR | 418 | 57.92 | 3.99 | 46 | 56.3 | 57.9 | 59.3 | 74.90 |
PEE | 418 | 37.38 | 12.81 | 9.74 | 28.81 | 36.01 | 44.49 | 81.05 |
PEA | 418 | 54.69 | 4.90 | 37.49 | 51.86 | 55.16 | 57.93 | 63.97 |
NPSE | GGE | EDE | ECE | CEE | ACN | LFP | LU | ESE | AEP | |
---|---|---|---|---|---|---|---|---|---|---|
NPSE | 1 | |||||||||
GGE | 0.865 *** | 1 | ||||||||
EDE | 0.869 *** | 0.837 *** | 1 | |||||||
EESC | 0.971 *** | 0.885 *** | 0.892 *** | 1 | ||||||
ECDEP | 0.911 *** | 0.866 *** | 0.859 *** | 0.930 *** | 1 | |||||
NATC | 0.794 *** | 0.690 *** | 0.738 *** | 0.855 *** | 0.815 *** | 1 | ||||
LFPR | 0.934 *** | 0.831 *** | 0.798 *** | 0.883 *** | 0.801 *** | 0.579 *** | 1 | |||
NLU | 0.050 | 0.066 | 0.031 | 0.043 | 0.018 | 0.005 | 0.103 * | 1 | ||
PEE | 0.491 *** | 0.493 *** | 0.452 *** | 0.536 *** | 0.563 *** | 0.647 *** | 0.321 *** | 0.127 ** | 1 | |
PEA | 0.225 *** | 0.072 | 0.093 | 0.177 *** | 0.157 ** | 0.144 ** | 0.236 *** | 0.094 | 0.080 | 1 |
Year | Moran’s I | Year | Moran’s I | ||
---|---|---|---|---|---|
I | p-Value | I | p-Value | ||
2001 | 0.328 | 0.025 | 2011 | 0.309 | 0.036 |
2002 | 0.330 | 0.025 | 2012 | 0.310 | 0.035 |
2003 | 0.324 | 0.028 | 2013 | 0.311 | 0.035 |
2004 | 0.322 | 0.029 | 2014 | 0.312 | 0.035 |
2005 | 0.313 | 0.033 | 2015 | 0.312 | 0.035 |
2006 | 0.312 | 0.034 | 2016 | 0.311 | 0.035 |
2007 | 0.311 | 0.035 | 2017 | 0.307 | 0.038 |
2008 | 0.307 | 0.037 | 2018 | 0.303 | 0.040 |
2009 | 0.310 | 0.035 | 2019 | 0.299 | 0.042 |
2010 | 0.310 | 0.036 |
Spatial Autoregressive Model (SAR): ~ N (0, σ2 I) is an n-dimensional vector of i,i,d disturbances following multiple normal distributions with zero mean and finite variances. | ||||||
Variables | Model 1 SAR with Spatial Fixed Effects | Model 2 SAR with Spatial and Time Fixed Effects | Model 3 SAR with Random Effects | |||
Coefficient | p-Value | Coefficient | p-Value | Coefficient | p-Value | |
GGE | 0.448 *** | 0.000 | 0.558 *** | 0.000 | 0.416 *** | 0.000 |
EDE | 0.035 | 0.365 | 0.066 | 0.060 | 0.038 | 0.334 |
EESC | 0.148 * | 0.033 | 0.063 | 0.312 | 0.178 * | 0.012 |
ECDEP | 0.449 ** | 0.002 | 0.415 ** | 0.001 | 0.445 ** | 0.002 |
NATC | 0.000 *** | 0.000 | 0.000 *** | 0.000 | 0.000 *** | 0.000 |
NLU | 0.082 *** | 0.000 | 0.085 *** | 0.000 | 0.082 *** | 0.000 |
LFPR | 257.466 * | 0.017 | 336.785 ** | 0.001 | 256.833 * | 0.019 |
PEE | −108.494 * | 0.019 | 501.005 *** | 0.000 | −106.946 * | 0.020 |
PEA | 65.021 | 0.403 | 76.645 | 0.372 | 82.816 | 0.297 |
Constant | −17,516.800 | 0.077 | ||||
n | 418 | 418 | 418 | |||
0.070 * | 0.031 | 0.032 | 0.334 | 0.078 * | 0.013 | |
within R2 | 0.913 | 0.834 | 0.912 | |||
between R2 | 0.933 | 0.950 | 0.937 | |||
overall R2 | 0.933 | 0.943 | 0.937 | |||
Log-likelihood | −3848.553 | −3809.588 | −3934.340 | |||
AIC | 7715.106 | 7637.175 | 7890.68 | |||
BIC | 7751.425 | 7673.495 | 7935.07 | |||
6.61 | 483.42 | |||||
Hausman p-value | 0.470 | 0.000 | ||||
Wald test | = 0 = 179.78 p-value = 0.0000 | = 0 = 132.24 p-value = 0.0000 | = 0 = 159.79 p-value = 0.0000 | |||
(1) | = 128.14 p-value = 0.0000 | = 131.78 p-value = 0.0000 |
Spatial Error Model (SEM): ~ N (0, σ2 I) ; ε is an i.i.d noise. | ||||||
Variables | Model 4 SEM with Spatial Fixed Effects | Model 5 SEM with Spatial and Time Fixed Effects | Model 6 SEM with Random Effects | |||
Coefficient | p-Value | Coefficient | p-Value | Coefficient | p-Value | |
GGE | 0.397 *** | 0.000 | 0.569 *** | 0.000 | 0.369 *** | 0.000 |
EDE | 0.023 | 0.500 | 0.063 | 0.081 | 0.026 | 0.465 |
EESC | 0.035 | 0.592 | 0.067 | 0.310 | 0.061 | 0.362 |
ECDEP | 0.417 ** | 0.002 | 0.429 ** | 0.001 | 0.423 ** | 0.002 |
NATC | 0.000 *** | 0.000 | 0.000 *** | 0.000 | 0.000 *** | 0.000 |
NLU | 0.091 *** | 0.000 | 0.084 *** | 0.000 | 0.090 *** | 0.000 |
LFPR | 177.136 | 0.098 | 387.871 *** | 0.000 | 169.164 | 0.124 |
PEE | −9.416 | 0.863 | 544.884 *** | 0.000 | 3.033 | 0.958 |
PEA | 82.254 | 0.320 | 64.136 | 0.477 | 98.888 | 0.242 |
Constant | −15,627.800 | 0.111 | ||||
n | 418 | 418 | 418 | |||
0.406 *** | 0.000 | 0.010 | 0.898 | 0.410 *** | 0.000 | |
within R2 | 0.909 | 0.830 | 0.910 | |||
between R2 | 0.922 | 0.951 | 0.926 | |||
overall R2 | 0.922 | 0.943 | 0.926 | |||
Log-likelihood | −3839.559 | −3810.908 | −3927.159 | |||
AIC | 7697.118 | 7639.815 | 7876.317 | |||
BIC | 7733.438 | 7676.135 | 7920.708 | |||
4.62 | 379.02 | |||||
Hausman p-value | 0.707 | 0.000 | ||||
Wald test | = 132.09 p-value = 0.0000 | = 0 = 112.36 p-value = 0.0000 | = 114.74 p-value = 0.0000 | |||
Likelihood-ratio test | = 128.19 p-value = 0.0000 | = 130.78 p-value = 0.0000 | = 117.42 p-value = 0.0000 |
Spatial Durbin Model (SDM): ~ N (0, σ2 I) is the error term of the spatial autocorrelation. | ||||||
Variables | Model 7 SDM with Spatial Fixed Effects | Model 8 SDM with Spatial and Time Fixed Effects | Model 9 SDM with Random Effects | |||
Coefficient | p-Value | Coefficient | p-Value | Coefficient | p-Value | |
GGE | 0.202 * | 0.011 | 0.337 *** | 0.000 | 0.218 ** | 0.007 |
EDE | 0.098 ** | 0.003 | 0.087 ** | 0.007 | 0.100 ** | 0.003 |
EESC | 0.134 * | 0.027 | 0.147 * | 0.013 | 0.144 * | 0.021 |
ECDEP | 0.256 * | 0.037 | 0.228 | 0.057 | 0.258 * | 0.042 |
NATC | 0.000 *** | 0.000 | 0.000 *** | 0.000 | 0.000 *** | 0.000 |
NLU | 0.093 *** | 0.000 | 0.089 *** | 0.000 | 0.092 *** | 0.000 |
LFPR | 41.294 | 0.665 | 127.183 | 0.197 | 26.286 | 0.789 |
PEE | 213.426 *** | 0.000 | 249.263 * | 0.017 | 233.193 *** | 0.000 |
PEA | 139.467 | 0.060 | 178.889 * | 0.026 | 148.154 * | 0.046 |
W×GGE | 0.266* | 0.010 | 0.625 *** | 0.000 | 0.200 | 0.061 |
W×EDE | −0.072 | 0.157 | −0.072 | 0.169 | −0.086 | 0.095 |
W×EESC | 0.450 *** | 0.000 | 0.482 *** | 0.000 | 0.382 *** | 0.000 |
W×ECDEP | 0.030 | 0.841 | 0.034 | 0.825 | 0.058 | 0.710 |
W×NATC | 0.000 ** | 0.004 | 0.000 | 0.092 | 0.000 ** | 0.003 |
W×NLU | −0.072 *** | 0.000 | −0.072 *** | 0.000 | −0.057 *** | 0.000 |
W×LFPR | 88.822 | 0.674 | 294.051 | 0.207 | 182.973 | 0.195 |
W×PEE | −162.803 | 0.050 | 158.341 | 0.120 | −252.968 ** | 0.003 |
W×PEA | −84.484 | 0.520 | 267.261 | 0.152 | −18.823 | 0.846 |
Constant | −13019 | 0.259 | ||||
n | 418 | 418 | 418 | |||
0.324 *** | 0.000 | 0.182 * | 0.046 | 0.312 *** | 0.000 | |
within R2 | 0.934 | 0.916 | 0.934 | |||
between R2 | 0.885 | 0.823 | 0.918 | |||
overall R2 | 0.886 | 0.824 | 0.918 | |||
Log-likelihood | −3775.465 | −3745.520 | −3868.450 | |||
AIC | 7582.93 | 7523.039 | 7772.9 | |||
BIC | 7647.498 | 7587.607 | 7845.539 | |||
0.28 | 39.67 | |||||
Hausman p-value | 0.100 | 0.000 |
Variables | LR_Direct Effect | LR_Indirect Effect | LR_Total Effect | |||
Coefficient | p-Value | Coefficient | p-Value | Coefficient | p-Value | |
GGE | 0.370 *** | 0.000 | 0.709 *** | 0.000 | 1.079 *** | 0.000 |
EDE | 0.083 ** | 0.009 | −0.059 | 0.276 | 0.024 | 0.731 |
EESC | 0.174 ** | 0.004 | 0.529 *** | 0.000 | 0.704 *** | 0.000 |
ECDEP | 0.225 | 0.052 | 0.064 | 0.683 | 0.289 | 0.194 |
NATC | 0.000 *** | 0.000 | 0.000 * | 0.012 | 0.000 *** | 0.000 |
NLU | 0.086 *** | 0.000 | −0.058 *** | 0.000 | 0.028 * | 0.021 |
LFPR | 142.947 | 0.177 | 323.182 | 0.199 | 466.129 | 0.123 |
PEE | 255.002 * | 0.014 | 220.974 | 0.068 | 475.976 ** | 0.004 |
PEA | 197.346 * | 0.014 | 316.581 | 0.108 | 513.927 * | 0.020 |
Coefficient | > 0 | < 0 |
> 0 | The stronger the environmental regulation, the higher the number of local profit-seeking enterprises, and local governments adopt the strategy of yardstick competition in environmental regulation. The yardstick competition strategy shows that the interactive behavior pattern of environmental regulation between local governments is “you are strong and I am strong”. → General government expenditure → Expenditure on education, science and culture | The stronger the environmental regulation, the lower the number of local profit-seeking enterprises, and local governments adopt the strategy of differentiated competition in environmental regulation. The differentiated competition strategy shows that the interactive behavior pattern of environmental regulation among local governments is “you are strong and I am weak”. |
< 0 | The stronger the environmental regulation, the higher the number of local profit-seeking enterprises, and local governments adopt the strategy of differentiated competition in environmental regulation. The differentiated competition strategy shows that the interactive behavior pattern of environmental regulation among local governments is “you are weak and I am strong”. → Number of lighting users | The stronger the environmental regulation, the lower the number of local profit-seeking enterprises, and local governments adopt the strategy of racing to the bottom in environmental regulation. The “race to the bottom” competition strategy indicates that the interactive behavior pattern of environmental regulation among local governments is “you are weak and I am weak”. |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, H.-C.; Liu, H.-H.; Peng, C.-L.; Liao, T.-H. Do Local Fiscal Expenditures Promote the Growth of Profit-Seeking Enterprise Numbers in Neighboring Areas? Economies 2022, 10, 34. https://doi.org/10.3390/economies10020034
Huang H-C, Liu H-H, Peng C-L, Liao T-H. Do Local Fiscal Expenditures Promote the Growth of Profit-Seeking Enterprise Numbers in Neighboring Areas? Economies. 2022; 10(2):34. https://doi.org/10.3390/economies10020034
Chicago/Turabian StyleHuang, Hao-Chen, Hsin-Hung Liu, Chi-Lu Peng, and Ting-Hsiu Liao. 2022. "Do Local Fiscal Expenditures Promote the Growth of Profit-Seeking Enterprise Numbers in Neighboring Areas?" Economies 10, no. 2: 34. https://doi.org/10.3390/economies10020034
APA StyleHuang, H. -C., Liu, H. -H., Peng, C. -L., & Liao, T. -H. (2022). Do Local Fiscal Expenditures Promote the Growth of Profit-Seeking Enterprise Numbers in Neighboring Areas? Economies, 10(2), 34. https://doi.org/10.3390/economies10020034