Assessing the Effect of Internet Indicators on Agri-Food Export Competitiveness
Abstract
:1. Introduction
- (1)
- Analyze the impact of Internet indicators on the competitiveness of agri-food exports in the global market, including users, infrastructure, and security aspects.
- (2)
- Conduct a simulation related to the influence of the Internet on the competitiveness of agri-food exports.
- (3)
- Compare the results before and after the simulation of the competitiveness of agri-food exports by continent and income categories, investigating the new structure of agri-food export competitiveness after an enhancement in Internet indicators.
2. Literature Review
3. Data and Methodology
β5Log(FBSit) + β6Log(SISit) + eit
4. Results
5. Discussion
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A. The List of Countries (Two Categories)
Continent | Country |
---|---|
Africa | Angola, Benin, Botswana, Burkina Faso, Djibouti, Egypt, Eswatini, Gabon, Gambia, Ghana, Guinea, Kenya, Lesotho, Madagascar, Malawi, Mauritania, Mauritius, Morocco, Mozambique, Namibia, Rwanda, Senegal, Seychelles, South Africa, Togo, Tunisia, Zambia, and Zimbabwe |
Asia | Armenia, Bahrain, China, Hong Kong SAR, China, mainland, Cyprus, Georgia, India, Indonesia, Iran (Islamic Republic of), Israel, Japan, Jordan, Kazakhstan, Kuwait, Kyrgyzstan, Lao People’s Democratic Republic, Malaysia, Maldives, Mongolia, Nepal, Oman, Pakistan, Republic of Korea, Republic of Moldova, Singapore, Thailand, Timor-Leste, Türkiye, United Arab Emirates, Uzbekistan, and Viet Nam |
Europe | Albania, Austria, Belarus, Belgium, Bosnia and Herzegovina, Bulgaria, Croatia, Czechia, Denmark, Estonia, Finland, France, Germany, Greece, Hungary, Iceland, Ireland, Italy, Latvia, Lithuania, Luxembourg, Malta, Montenegro, Netherlands (Kingdom of the), North Macedonia, Norway, Poland, Portugal, Romania, Russian Federation, Serbia, Slovakia, Slovenia, Spain, Sweden, Switzerland, Ukraine, and United Kingdom of Great Britain and Northern Ireland |
North America | Belize, Canada, Costa Rica, Dominican Republic, El Salvador, Grenada, Honduras, Jamaica, Mexico, Nicaragua, Panama, Qatar, Saint Lucia, Saint Vincent and the Grenadines, and United States of America |
Oceania | Australia, Fiji, New Zealand, and Tonga |
South America | Argentina, Bolivia (Plurinational State of), Brazil, Chile, Colombia, Ecuador, Paraguay, Peru, Suriname, and Uruguay |
Income | Country |
---|---|
High | Australia, Austria, Bahrain, Belgium, Canada, Chile, China, Hong Kong SAR, Croatia, Cyprus, Czechia, Denmark, Estonia, Finland, France, Germany, Greece, Hungary, Iceland, Ireland, Israel, Italy, Japan, Kuwait, Latvia, Lithuania, Luxembourg, Malta, Netherlands (Kingdom of the), New Zealand, Norway, Oman, Panama, Poland, Portugal, Qatar, Republic of Korea, Romania, Seychelles, Singapore, Slovakia, Slovenia, Spain, Sweden, Switzerland, United Arab Emirates, United Kingdom of Great Britain and Northern Ireland, United States of America, and Uruguay |
Middle | Albania, Angola, Argentina, Armenia, Belarus, Belize, Benin, Bolivia (Plurinational State of), Bosnia and Herzegovina, Botswana, Brazil, Bulgaria, China, mainland, Colombia, Costa Rica, Djibouti, Dominican Republic, Ecuador, Egypt, El Salvador, Eswatini, Fiji, Gabon, Georgia, Ghana, Grenada, Guinea, Honduras, India, Indonesia, Iran (Islamic Republic of), Jamaica, Jordan, Kazakhstan, Kenya, Kyrgyzstan, Lao People’s Democratic Republic, Lesotho, Malaysia, Maldives, Mauritania, Mauritius, Mexico, Mongolia, Montenegro, Morocco, Namibia, Nepal, Nicaragua, North Macedonia, Pakistan, Paraguay, Peru, Republic of Moldova, Russian Federation, Saint Lucia, Saint Vincent and the Grenadines, Senegal, Serbia, South Africa, Suriname, Thailand, Timor-Leste, Tonga, Tunisia, Türkiye, Ukraine, Uzbekistan, Viet Nam, Zambia, and Zimbabwe |
Low | Burkina Faso, Gambia, Madagascar, Malawi, Mozambique, Rwanda, and Togo |
References
- Abbas, Shujaat. 2022. Global warming and export competitiveness of agriculture sector: Evidence from heterogeneous econometric analysis of Pakistan. Environmental Science and Pollution Research 29: 34325–337. [Google Scholar] [CrossRef] [PubMed]
- Abbas, Shujaat, and Abdul Waheed. 2015. Pakistan’s potential export flow: The gravity model approach. The Journal of Developing Areas 49: 367–78. [Google Scholar] [CrossRef]
- Apăvăloaie, Elena-Iulia. 2014. The Impact of the Internet on the Business Environment. Procedia Economics and Finance 15: 951–58. [Google Scholar] [CrossRef]
- Asbiantari, Dara Resmi, Manuntun Parulian Hutagaol, and Alla Asmara. 2016. Pengaruh Ekspor Terhadap Pertumbuhan Ekonomi Indonesia (Effect of Export on Indonesian’s Economic Growth). Jurnal Ekonomi Dan Kebijakan Pembangunan 5: 10–31. [Google Scholar] [CrossRef]
- Atkinson, Robert D. 2013. What Really Is Competitiveness? Available online: https://www.theglobalist.com/really-competitiveness/ (accessed on 15 May 2023).
- Awokuse, Titus O., and Ruizhi Xie. 2015. Does agriculture really matter for economic growth in developing countries? Canadian Journal of Agricultural Economics 63: 77–99. [Google Scholar] [CrossRef]
- Bahaweres, Rizal Broer, Arif Imam Suroso, Alam Wahyu Hutomo, Indra Permana Solihin, Irman Hermadi, and Yandra Arkeman. 2020. Tackling feature selection problems with genetic algorithms in software defect prediction for optimization. Paper presented 2020 International Conference on Informatics, Multimedia, Cyber and Information System (ICIMCIS), Jakarta, Indonesia, November 19–20; pp. 64–69. [Google Scholar]
- Bahrini, Raéf, and Alaa A. Qaffas. 2019. Impact of information and communication technology on economic growth: Evidence from developing countries. Economies 7: 21. [Google Scholar] [CrossRef]
- Balamurugan, S., N. Divyabharathi, K. Jayashruthi, M. Bowiya, R. P. Shermy, and R. G. K. Shanker. 2016. Internet of Agriculture: Applying IoT to Improve Food and Farming Technology. Journal of International Research Journal of Engineering and Technology (IRJET) 3: 713–19. [Google Scholar]
- Balassa, Bela. 1965. Trade Liberalisation and “Revealed” Comparative Advantage. The Manchester School 33: 99–123. [Google Scholar] [CrossRef]
- Balogh, Jeremiás Máté, and Attila Jámbor. 2017. Determinants of revealed comparative advantages: The case of cheese trade in the European Union. Acta Alimentaria 46: 305–11. [Google Scholar] [CrossRef]
- Bansal, Rohit, Arun Singh, Sushil Kumar, and Rajni Gupta. 2018. Evaluating factors of profitability for Indian banking sector: A panel regression. Asian Journal of Accounting Research 3: 236–54. [Google Scholar] [CrossRef]
- Berger, Thomas. 2008. Concepts of National Competitiveness. Journal of International Business and Economy 9: 3–17. [Google Scholar] [CrossRef]
- Bilgihan, Anil, and Youcheng Wang. 2016. Technology induced competitive advantage: A case of US lodging industry. Journal of Hospitality and Tourism Technology 7: 37–59. [Google Scholar] [CrossRef]
- Bojnec, Štefan, and Imre Fertő. 2017. The duration of global agri-food export competitiveness. British Food Journal 119: 1378–93. [Google Scholar] [CrossRef]
- Chavula, Hopestone Kayiska. 2014. The role of ICTs in agricultural production in Africa. Journal of Development and Agricultural Economics 6: 279–89. [Google Scholar] [CrossRef]
- Das, Naba Kumar, and Arup Roy. 2022. COVID-19 and agri-food value chain: A systematic review and bibliometric mapping. Journal of Agribusiness in Developing and Emerging Economies 12: 442–62. [Google Scholar] [CrossRef]
- Domenech, Josep, Marian Rizov, and Michela Vecchi. 2016. The impact of companies’ websites on competitiveness and productivity performance. Paper presented at Conference Paper: First International Conference on Advanced Research Methods and Analytics, Valencia, Spain, July 6–7. [Google Scholar]
- FAO. 2023. Crops and Livestock Products. Available online: https://www.fao.org/faostat/en/#data/TCL (accessed on 6 April 2023).
- Fernández-Uclés, Domingo, Enrique Bernal-Jurado, Adoración Mozas-Moral, and Miguel Jesús Medina-Viruel. 2020. The importance of websites for organic agri-food producers. Economic Research-Ekonomska Istrazivanja 33: 2867–80. [Google Scholar] [CrossRef]
- Franke, George R. 2010. Multicollinearity. In Wiley International Encyclopedia of Marketing. New York: Wiley. [Google Scholar] [CrossRef]
- Heang, Jimmy Foo, and Habib Ullah Khan. 2015. The role of internet marketing in the development of agricultural industry: A case study of China. Journal of Internet Commerce 14: 65–113. [Google Scholar] [CrossRef]
- Hristoski, Ilija, Olivera Kostoska, Tome Dimovski, and Zoran Kotevski. 2017. Farm Management Software for Increased Productivity and Competitiveness. Paper presented at V International Balkan and Near Eastern Social Sciences Congress Series, Kırklareli, Turkey, September 23–24. [Google Scholar]
- Irshad, Muhammad Saqib, Qi Xin, and Hamza Arshad. 2018. Competitiveness of Pakistani rice in international market and export potential with global world: A panel gravity approach. Cogent Economics and Finance 6: 1486690. [Google Scholar] [CrossRef]
- Jambor, Attila, and Suresh Babu. 2016. The Competitiveness of Global Agriculture. Cham: Springer International Publishing, pp. 99–129. [Google Scholar] [CrossRef]
- Jambor, Attila, Andrea Timea Toth, and Domonkos Koroshegyi. 2018. Competitiveness in the trade of spices: A global evidence. Bulgarian Journal of Agricultural Science 24: 729–36. [Google Scholar]
- Jansik, Csaba, Xavier Irz, and Nataliya Kuosmanen. 2014. Competitiveness of Northern European Dairy Chains. Jokioinen: MTT Agrifood Research Finland, p. 161. [Google Scholar]
- Kalaitzi, Athanasia S., and Emmanuel Cleeve. 2018. Export-led growth in the UAE: Multivariate causality between primary exports, manufactured exports and economic growth. Eurasian Business Review 8: 341–65. [Google Scholar] [CrossRef]
- Khan, Waseem, Mohammed Jamshed, and Sana Fatima. 2020. Contribution of agriculture in economic growth: A case study of West Bengal (India). Journal of Public Affairs 20: e2031. [Google Scholar] [CrossRef]
- Kosior, Katarzyna. 2018. Digital transformation in the agri-food sector–opportunities and challenges. Roczniki (Annals) 2018. [Google Scholar] [CrossRef]
- Laursen, Keld. 2015. Revealed comparative advantage and the alternatives as measures of international specialization. Eurasian Business Review 5: 99–115. [Google Scholar] [CrossRef]
- Lin, Faqin. 2015. Estimating the effect of the Internet on international trade. Journal of International Trade and Economic Development 24: 409–28. [Google Scholar] [CrossRef]
- Lollar, James G., Hooshang M. Beheshti, and Brenton J. Whitlow. 2010. The role of integrative technology in competitiveness. Competitiveness Review 20: 423–33. [Google Scholar] [CrossRef]
- Lugo Arias, Elkyn Rafael, Mario Alberto de la Puente Pacheco, and Jose Lugo Arias. 2020. An Examination of Palm Oil Export Competitiveness through Price-nominal Exchange Rate. International Trade Journal 34: 495–509. [Google Scholar] [CrossRef]
- Mentsiev, Adam U., E. F. Amirova, and N. V. Afanasev. 2020. Digitalization and mechanization in agriculture industry. IOP Conference Series: Earth and Environmental Science 548: 032031. [Google Scholar] [CrossRef]
- Mizik, Tamás, Ákos Szerletics, and Attila Jámbor. 2020. Agri-food export competitiveness of the Asean countries. Sustainability 12: 9860. [Google Scholar] [CrossRef]
- Mizik, Tamás. 2021. Agri-food trade competitiveness: A review of the literature. Sustainability 13: 11235. [Google Scholar] [CrossRef]
- Nazarczuk, Jarosław Michał, Stanisław Umiński, and Krystyna Gawlikowska-Hueckel. 2018. The Role of Specialisation in the Export Success of Polish Counties in 2004–15. Entrepreneurial Business and Economics Review 6: 91–109. [Google Scholar] [CrossRef]
- Nugroho, Agus Dwi, Imade Yoga Prasada, and Zoltan Lakner. 2023. Comparing the effect of climate change on agricultural competitiveness in developing and developed countries. Journal of Cleaner Production 406: 137139. [Google Scholar] [CrossRef]
- Odetola, Tolulope, and Chinonso Etumnu. 2013. Contribution of Agriculture to Economic Growth in Nigeria. Paper presented at the 18th Annual Conference of the African Econometric Society (AES) Accra, Ghana at the Session Organized by the Association for the Advancement of African Women Economists (AAAWE), Accra, Ghana, 22–23 July 2013. [Google Scholar]
- Ollo-López, Andrea, and M. Elena Aramendía-Muneta. 2012. ICT impact on competitiveness, innovation and environment. Telematics and Informatics 29: 204–10. [Google Scholar] [CrossRef]
- Oltra-Mestre, Maria Jose, Vincent Hargaden, Paul Coughlan, and Baldomero Segura-García del Río. 2021. Innovation in the Agri-Food sector: Exploiting opportunities for Industry 4.0. Creativity and Innovation Management 30: 198–210. [Google Scholar] [CrossRef]
- Oyelami, Lukman O., Nurudeen Afolabi Sofoluwe, and Omowumi Monisola Ajeigbe. 2022. ICT and agricultural sector performance: Empirical evidence from sub-Saharan Africa. Future Business Journal 8: 18. [Google Scholar] [CrossRef]
- Porter, Michael. 1990. Competitive Advantage of Nations. Competitive Intelligence Review 1: 14. [Google Scholar] [CrossRef]
- Rachmaniah, Meuthia, Arif Imam Suroso, Muhamad Syukur, and Irman Hermadi. 2022. Supply and Demand Model for a Chili Enterprise System Using a Simultaneous Equations System. Economies 10: 312. [Google Scholar] [CrossRef]
- Raza, Syed Ali, Yasir Ali, and Farhan Mehboob. 2012. Role of agriculture in economic growth of Pakistan. International Research Journal of Finance and Economics 83: 180–86. [Google Scholar]
- Renda, Andrea. 2019. The age of foodtech: Optimizing the agri-food chain with digital technologies. In Achieving the Sustainable Development Goals Through Sustainable Food Systems. Cham: Springer. [Google Scholar] [CrossRef]
- Sanjuán-López, Ana I., and Phillip J. Dawson. 2010. Agricultural Exports and Economic Growth in Developing Countries: A Panel Cointegration Approach. Journal of Agricultural Economics 61: 565–83. [Google Scholar] [CrossRef]
- Senaviratna, N. A. M. R., and T. M. J. A. Cooray. 2019. Diagnosing Multicollinearity of Logistic Regression Model. Asian Journal of Probability and Statistics 5: 1–9. [Google Scholar] [CrossRef]
- Setiawan, Maman, Rina Indiastuti, and Peggie Destevanie. 2015. Information technology and competitiveness: Evidence from micro, small and medium enterprises in Cimahi District, Indonesia. International Journal of Entrepreneurship and Small Business 25: 475–93. [Google Scholar] [CrossRef]
- Statistic Times. 2019. List of Countries by Continents. Available online: https://statisticstimes.com/geography/countries-bycontinents.%0Aphp (accessed on 19 April 2023).
- Suroso, Arif Imam, and Arief Ramadhan. 2012. Decision support system for agribusiness investment as e-Government service using computable general equilibrium model. In Advances in Intelligent and Soft Computing. Berlin and Heidelberg: Springer. [Google Scholar] [CrossRef]
- Suroso, Arif Imam, and Arief Ramadhan. 2014. Decision support system for agricultural appraisal in dryland areas. Advanced Science Letters 20: 1980–86. [Google Scholar] [CrossRef]
- Suroso, Arif Imam, Bahtiar Rifai, and Nur Hasanah. 2021. Traceability System in Hydroponic Vegetables Supply Chain Using Blockchain Technology. International Journal of Information and Management Sciences 32: 347–61. [Google Scholar] [CrossRef]
- Suroso, Arif Imam, Idqan Fahmi, and Hansen Tandra. 2022. The Role of Internet on Agricultural Sector Performance in Global World. Sustainability 14: 12266. [Google Scholar] [CrossRef]
- Tandra, Hansen, and Arif Imam Suroso. 2023. The determinant, efficiency, and potential of Indonesian palm oil downstream export to the global market The determinant, efficiency, and potential of Indonesian palm oil downstream export to the global market. Cogent Economics & Finance 11: 2189671. [Google Scholar] [CrossRef]
- Tandra, Hansen, Arif Imam Suroso, Yusman Syaukat, and Mukhamad Najib. 2022. The Determinants of Competitiveness in Global Palm Oil Trade. Economies 10: 132. [Google Scholar] [CrossRef]
- Török, Áron, Ákos Szerletics, and Lili Jantyik. 2020. Factors Influencing Competitiveness in the Global Beer Trade. Sustainability 12: 5957. [Google Scholar] [CrossRef]
- Torok, Aron, and Attila Jambor. 2016. Determinants of the revealed comparative advantages: The case of the European ham trade. Agricultural Economics (Czech Republic) 62: 471–82. [Google Scholar] [CrossRef]
- Trivelli, Leonello, Andrea Apicella, Filippo Chiarello, Roberto Rana, Gualtiero Fantoni, and Angela Tarabella. 2019. From precision agriculture to Industry 4.0. British Food Journal 121: 1730–43. [Google Scholar] [CrossRef]
- Umiński, Stanisław, and Aleksandra Borowicz. 2021. Will multinational enterprises contribute to Poland’s economic resilience and recovery during and post COVID-19 pandemic. Transnational Corporations Review 13: 74–87. [Google Scholar] [CrossRef]
- Verma, Samar. 2002. Export Competitiveness of Indian Textile and garment Industry. ICRIER 94: 1–46. [Google Scholar]
- Wang, Chao-Hung, and Li-Chang Hsu. 2010. The influence of dynamic capability on performance in the high technology industry: The moderating roles of governance and competitive posture. African Journal of Business Management 4: 562–77. [Google Scholar]
- Wang, Fang, and Xiao-Ping Zhang. 2015. The role of the Internet in changing industry competition. Information and Management 52: 71–81. [Google Scholar] [CrossRef]
- Wintoki, M. Babajide, James S. Linck, and Jeffry M. Netter. 2012. Endogeneity and the dynamics of internal corporate governance. Journal of Financial Economics 105: 581–606. [Google Scholar] [CrossRef]
- World Development Indicator (WDI). 2023. World Bank Open Data. Available online: https://data.worldbank.org/ (accessed on 6 April 2023).
Notation | Definition | Unit | Source |
---|---|---|---|
RSCAit | Export competitiveness, by utilizing RSCA in country i in year t | Index | Author’s calculation |
GDPCit | GDP per capita in country i in year t | Current USD | WDI (2023) |
AGLit | Agricultural land in country i in year t | Sq. Km | WDI (2023) |
FDIit | Foreign direct investment, net inflows in country i in year t | % of GDP | WDI (2023) |
INTit | Individuals using the Internet | % of population | WDI (2023) |
FBSit | Fixed broadband subscription in country i in year t | Fixed subscriptions to high-speed access to the public Internet at downstream speeds equal to, or greater than, 256 kbit/s | WDI (2023) |
SISit | Secure Internet servers in country i in year t | The number of distinct, publicly trusted TLS/SSL certificates found in the Netcraft Secure Server Survey | WDI (2023) |
Variable | Mean | Median | Maximum | Minimum | Std. Dev. |
---|---|---|---|---|---|
RSCA | 0.128 | 0.226 | 0.862 | −1.000 | 0.471 |
GDPCit | 17,488.71 | 7720.61 | 123,678.7 | 430.99 | 21,641.66 |
AGLit | 299,329.2 | 38,200 | 5,289,168 | 6.60 | 760,908.7 |
FDIit | 5.697 | 2.882 | 279.361 | −104.060 | 16.615 |
INTit | 54.876 | 57.895 | 100 | 1 | 27.634 |
FBSit | 6,535,714 | 600,411 | 4.84 × 108 | 350 | 29,734,129 |
SISit | 189,181.8 | 1386.50 | 46,678,110 | 1 | 1,826,564 |
Log(GDPCit) | Log(AGLit) | FDIit | Log(INTit) | Log(FBSit) | Log(SISit) | |
---|---|---|---|---|---|---|
Log(GDPCit) | 1.000 | |||||
Log(AGLit) | −0.222 | 1.000 | ||||
FDIit | 0.099 | −0.227 | 1.000 | |||
Log(INTit) | 0.798 | −0.201 | 0.041 | 1.000 | ||
Log(FBSit) | 0.552 | 0.420 | −0.065 | 0.583 | 1.000 | |
Log(SISit) | 0.641 | 0.261 | −0.030 | 0.673 | 0.832 | 1.000 |
Variable | CEM | FEM | REM |
---|---|---|---|
Constant | 1.465 *** (0.130) | 2.668 *** (0.805) | 1.320 *** (0.238) |
Log(GDPCit) | −0.208 *** (0.015) | −0.132 *** (0.024) | −0.145 *** (0.019) |
Log(AGLit) | 0.002 (0.006) | −0.146 ** (0.073) | −0.006 (0.014) |
FDIit | 0.001 * (0.001) | 3.52 × 10−5 (0.000) | 4.10 × 10−6 (0.000) |
Log(INTit) | 0.056 ** (0.027) | −0.051 *** (0.014) | −0.050 *** (0.013) |
Log(FBSit) | 0.017 * (0.009) | 0.024 ** (0.010) | 0.024 *** (0.009) |
Log(SISit) | 0.009 (0.007) | 0.006 ** (0.003) | 0.007 ** (0.003) |
R-Squared | 0.201 | 0.944 | 0.055 |
Adjusted-R Squared | 0.198 | 0.938 | 0.051 |
F-Statistics | 57.886 *** | 160.139 *** | 13.484 *** |
Chow Test | 3673.695 *** | ||
Hausman Test | 10.999 * | ||
Heteroskedasticity LR Test (Cross-section) | 1614.81 *** | ||
Heteroskedasticity LR Test (Period) | 1.911 *** | ||
Breusch–Godfrey Serial Correlation LM Test | 1071.85 *** |
Country | Actual | Simulation | Country | Actual | Simulation | Country | Actual | Simulation |
---|---|---|---|---|---|---|---|---|
Albania | −0.251 | 0.306 | Greece | 0.418 | −0.062 | Norway | −0.808 | 0.002 |
Angola | −0.967 | −0.169 | Grenada | 0.710 | 0.896 | Oman | −0.459 | 0.069 |
Argentina | 0.753 | −0.394 | Guinea | −0.161 | 0.117 | Pakistan | 0.418 | 0.118 |
Armenia | 0.506 | 0.284 | Honduras | 0.566 | 0.270 | Panama | 0.112 | 0.109 |
Australia | 0.307 | −0.764 | Hungary | 0.039 | 0.009 | Paraguay | 0.790 | −0.098 |
Austria | 0.004 | −0.060 | Iceland | −0.570 | −0.117 | Peru | 0.237 | −0.106 |
Bahrain | −0.480 | 0.781 | India | 0.148 | −0.096 | Poland | 0.221 | −0.099 |
Belarus | 0.290 | 0.039 | Indonesia | 0.467 | −0.090 | Portugal | 0.159 | 0.013 |
Belgium | 0.121 | 0.063 | Iran (Islamic Republic of) | −0.175 | −0.142 | Qatar | −0.984 | 0.333 |
Belize | 0.696 | 0.520 | Ireland | 0.111 | −0.181 | Republic of Korea | −0.762 | 0.124 |
Benin | 0.533 | 0.346 | Israel | −0.372 | 0.198 | Republic of Moldova | 0.706 | 0.288 |
Bolivia (Plurinational State of) | 0.356 | −0.114 | Italy | 0.065 | −0.179 | Romania | 0.129 | −0.061 |
Bosnia and Herzegovina | 0.047 | 0.228 | Jamaica | 0.476 | 0.438 | Russian Federation | −0.362 | −0.442 |
Botswana | −0.534 | −0.210 | Japan | −0.864 | −0.033 | Rwanda | 0.637 | 0.478 |
Brazil | 0.647 | −0.427 | Jordan | 0.366 | 0.358 | Saint Lucia | 0.478 | 0.834 |
Bulgaria | 0.351 | 0.088 | Kazakhstan | −0.279 | −0.506 | Saint Vincent and the Grenadines | 0.766 | 0.912 |
Burkina Faso | 0.520 | 0.237 | Kenya | 0.734 | 0.054 | Senegal | 0.450 | 0.197 |
Canada | 0.146 | −0.454 | Kuwait | −0.859 | 0.294 | Serbia | 0.459 | 0.154 |
Chile | 0.338 | −0.151 | Kyrgyzstan | 0.252 | 0.176 | Seychelles | −0.654 | 1.055 |
China, Hong Kong SAR | −0.632 | 0.877 | Lao People’s Democratic Republic | 0.250 | 0.307 | Singapore | −0.497 | 1.116 |
China, mainland | −0.553 | −0.445 | Latvia | 0.396 | 0.099 | Slovakia | −0.288 | 0.101 |
Colombia | 0.345 | −0.184 | Lesotho | −0.452 | 0.317 | Slovenia | −0.157 | 0.212 |
Costa Rica | 0.677 | 0.165 | Lithuania | 0.363 | 0.046 | South Africa | 0.108 | −0.313 |
Croatia | 0.239 | 0.175 | Luxembourg | 0.042 | 0.188 | Spain | 0.328 | −0.274 |
Cyprus | 0.272 | 0.404 | Madagascar | 0.551 | 0.144 | Suriname | −0.203 | 0.598 |
Czechia | −0.248 | 0.026 | Malawi | 0.828 | 0.366 | Sweden | −0.364 | −0.087 |
Denmark | 0.358 | −0.083 | Malaysia | 0.190 | −0.009 | Switzerland | −0.387 | −0.036 |
Djibouti | 0.358 | 0.320 | Maldives | −0.994 | 0.925 | Thailand | 0.300 | −0.042 |
Dominican Republic | 0.444 | 0.181 | Malta | −0.338 | 0.755 | Timor-Leste | 0.576 | 0.574 |
Ecuador | 0.542 | 0.092 | Mauritania | −0.718 | −0.109 | Togo | 0.508 | 0.398 |
Egypt | 0.376 | 0.291 | Mauritius | 0.294 | 0.592 | Tonga | 0.667 | 0.721 |
El Salvador | 0.424 | 0.372 | Mexico | −0.058 | −0.312 | Tunisia | 0.108 | 0.054 |
Estonia | 0.012 | 0.157 | Mongolia | −0.212 | −0.297 | Türkiye | 0.164 | −0.186 |
Eswatini | 0.486 | 0.265 | Montenegro | 0.337 | 0.413 | Ukraine | 0.602 | −0.056 |
Fiji | 0.571 | 0.427 | Morocco | 0.226 | −0.083 | United Arab Emirates | −0.531 | 0.216 |
Finland | −0.444 | −0.043 | Mozambique | 0.354 | 0.129 | United Kingdom of Great Britain and Northern Ireland | −0.119 | −0.246 |
France | 0.236 | −0.310 | Namibia | 0.062 | −0.223 | United States of America | 0.099 | −0.689 |
Gabon | −0.857 | 0.078 | Nepal | 0.582 | 0.407 | Uruguay | 0.791 | −0.199 |
Gambia | 0.279 | 0.583 | Netherlands (Kingdom of the) | 0.285 | 0.024 | Uzbekistan | 0.193 | 0.019 |
Georgia | 0.530 | 0.248 | New Zealand | 0.762 | −0.254 | Viet Nam | 0.123 | 0.162 |
Germany | −0.160 | −0.236 | Nicaragua | 0.728 | 0.246 | Zambia | 0.085 | 0.065 |
Ghana | 0.497 | 0.099 | North Macedonia | 0.214 | 0.282 | Zimbabwe | 0.586 | 0.125 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Suroso, A.I.; Fahmi, I.; Tandra, H.; Haryono, A. Assessing the Effect of Internet Indicators on Agri-Food Export Competitiveness. Economies 2023, 11, 246. https://doi.org/10.3390/economies11100246
Suroso AI, Fahmi I, Tandra H, Haryono A. Assessing the Effect of Internet Indicators on Agri-Food Export Competitiveness. Economies. 2023; 11(10):246. https://doi.org/10.3390/economies11100246
Chicago/Turabian StyleSuroso, Arif Imam, Idqan Fahmi, Hansen Tandra, and Adi Haryono. 2023. "Assessing the Effect of Internet Indicators on Agri-Food Export Competitiveness" Economies 11, no. 10: 246. https://doi.org/10.3390/economies11100246
APA StyleSuroso, A. I., Fahmi, I., Tandra, H., & Haryono, A. (2023). Assessing the Effect of Internet Indicators on Agri-Food Export Competitiveness. Economies, 11(10), 246. https://doi.org/10.3390/economies11100246