Evaluating the Efficiency of Human Capital at Small and Medium Enterprises in the Manufacturing Sector Using the DEA-Weight Russell Directional Distance Model
Abstract
:1. Introduction
2. Literature Review
2.1. Human Capital
2.2. HC in Small and Medium Enterprises
2.3. Data Envelopment Analysis Method in Human Capital
3. Methodology
3.1. CCR Input-Oriented Model
3.2. BCC Input-Oriented Model
4. Case Study
4.1. Statistical Results
S | = mean sales | ($) |
TI | = mean training investment | ($) |
S | = mean salary | ($) |
W | = mean days worked | (days) |
4.2. DEA Results
5. Discussion
6. Conclusions
- -
- Perform annual comparisons for each of the subsectors within the manufacturing industry, incorporating weighting factors.
- -
- Analyze the efficiency within each subsector rather than between subsectors.
- -
- Employ output-oriented DEA models to analyze efficiency.
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Abraham, José, López Machuca, and Jorge Eduardo Mendoza Cota. 2017. Salarios, desempleo y productividad laboral en la industria manufacturera mexicana. (Wage, Unemployment and Labor Productivity in the Mexican Manufacturing Industry). Ensayos Revista de Economia 36: 185–228. [Google Scholar]
- Acevedo, Gladys Lopez, and Hong W. Tan, eds. 2011. Impact Evaluation of Small and Medium Enterprise Programs in Latin America and the Caribbean. Washington, DC: World Bank Publications. [Google Scholar] [CrossRef]
- Akdere, Mesut, and Toby Egan. 2020. Transformational leadership and human resource development: Linking employee learning, job satisfaction, and organizational performance. Human Resource Development Quarterly 31: 393–421. [Google Scholar] [CrossRef]
- Almeida, Rita K., and Reyes Aterido. 2015. Investing in formal on-the-job training: Are SMEs lagging much behind? IZA Journal of Labor and Development 4: 8. [Google Scholar] [CrossRef]
- Almonte, Leobardo de Jesús, Yolanda Carbajal Suárez, and Víctor Hugo Torres Preciado, eds. 2021. Actividad Económica en México. Un Análisis Sectorial, 1st ed. Mexico City: Ediciones y Gráficos Eón, S.A. de C.V., vol. 1, ISBN 978-607-633-249-8. [Google Scholar]
- Aman-Ullah, Attia, Waqas Mehmood, Saqib Amin, and Yasir Abdullah Abbas. 2022. Human capital and organizational performance: A moderation study through innovative leadership. Journal of Innovation & Knowledge 7: 100261. [Google Scholar] [CrossRef]
- Aroche Reyes, Fidel. 2023. La inversión manufacturera y el lento crecimiento de la economía mexicana a partir de 1993. Investigación Económica 82: 96–124. [Google Scholar] [CrossRef]
- Banker, Rajiv D., Abraham Charnes, and William Wager Cooper. 1984. Some models for estimating technical and scale inefficiencies in data envelopment analysis. Management Science 30: 1078–92. [Google Scholar] [CrossRef]
- Bautista, Selene Jiménez, and Carlos Mario Rodríguez Peralta. 2017. La inclusión de las PyMEs en la Cadena de valor de la Industria Automotriz en México en el marco del Tratado Trans-Pacífico (ttp). Economía Informa 403: 46–65. [Google Scholar] [CrossRef]
- Bayraktaroglu, Ayse Elvan, Fethi Calisir, and Murat Baskak. 2019. Intellectual capital and firm performance: An extended VAIC model. Journal of Intellectual Capital 20: 406–25. [Google Scholar] [CrossRef]
- Becker, Gary S. 1962. Investment in Human Capital: A Theoretical Analysis. Journal of Political Economy 70: 9–49. [Google Scholar] [CrossRef]
- Becker, Gary S., ed. 1993. Human Capital a Theoretical and Empirical Analysis, with Special Reference to Education, 3rd ed. Chicago: University of Chicago Press, ISBN-13: 978-0226041209. [Google Scholar]
- Bissoondoyal-Bheenick, Emawtee, Robert Brooks, and Hung Xuan Do. 2023. ESG and firm performance: The role of size and media channels. Economic Modelling 121: 106203. [Google Scholar] [CrossRef]
- Brooking, Annie, and Enrico Motta. 1996. A taxonomy of intellectual capital and a methodology for auditing it. Paper presented at the 17th Annual National Business Conference, McMaster University, Hamilton, ON, Canada, January 24–26. [Google Scholar]
- Bueno, Eduardo, J. Alberto Aragon-Correa, and Víctor Jesus García-Morales. 2001. El Capital Intangible Frente al Capital Intelectual de la Empresa Desde la Perspectiva de las Capacidades Dinámicas. In XI Congreso Nacional de ACEDE. p. 26. Available online: https://www.researchgate.net/publication/335287188_El_capital_intangible_frente_al_capital_intelectual_de_la_empresa_desde_la_perspectiva_de_las_capacidades_dinamicas/stats (accessed on 10 June 2023).
- Cardona-Acevedo, Marleny, Isabel C. Montes, Juan J. Vásquez-Maya, Maria N. Villegas-González, and Tatiana Brito-Mejía. 2007. Capital Humano: Una Mirada Desde La Educación. Series de Cuadernos de Investigación, Documento 56-042007; Medellín: Universidad EIFAT, April, ISSN 1692-0694. Available online: https://publicaciones.eafit.edu.co/index.php/cuadernos-investigacion/article/view/1287 (accessed on 10 June 2023).
- Charnes, Abraham, William W. Cooper, and Edwardo Rhodes. 1978. Measuring the efficiency of decision making units. European Journal of Operational Research 2: 429–44. [Google Scholar] [CrossRef]
- Chen, Po-Chi, Ming-Miin Yu, Ching-Cheng Chang, Shih-Hsun Hsu, and Shunsuke Managi. 2015. Nonradial Directional Performance Measurement with Undesirable Outputs: An Application to OECD and Non-OECD Countries. International Journal of Information Technology & Decision Making (IJITDM) 14: 481–520. [Google Scholar] [CrossRef]
- Colombo, Emilio, and Luca Stanca. 2014. The impact of training on productivity: Evidence from a panel of italian firms. International Journal of Manpower 35: 1140–58. [Google Scholar] [CrossRef]
- Cook, Wade D., Moez Hababou, and Hans J. H. Tuenter. 2000. Multicomponent Efficiency Measurement and Shared Inputs in Data Envelopment Analysis: An Application to Sales and Service Performance in Bank Branches. Journal of Productivity Analysis 14: 209–24. [Google Scholar] [CrossRef]
- Cooper, William W., Lawrence M. Seiford, and Kaoru Tone, eds. 2007. Data Envelopment Analysis: A Comprehensive Text with Models, Applications, References and DEA-Solver Software, 2nd ed. New York: Springer Science + Business Media. [Google Scholar]
- Diario Oficial de la Federación. 2019. Ley para el desarrollo de la competitividad de la micro, pequeña y mediana empresa. In Párrafo reformado DOF. Available online: https://www.diputados.gob.mx/LeyesBiblio/pdf/247_130819.pdf (accessed on 10 June 2023).
- Duy, Nguyen Khanh, and Nguyen Thi Hoang Oanh. 2015. Impact evaluation of training on productivity of the small and medium enterprises in Vietnam. Asian Social Science 11: 39–54. [Google Scholar] [CrossRef]
- Dzinkowski, Ramona. 2000. The Value of Intellectual Capital. Journal of Business Strategy 21: 3. Available online: https://go.gale.com/ps/i.do?p=AONE&sw=w&issn=02756668&v=2.1&it=r&id=GALE%7CA63924601&sid=googleScholar&linkaccess=fulltext (accessed on 10 June 2023).
- Erdin, Ceren, and Gokhan Ozkaya. 2020. Contribution of small and medium enterprises to economic development and quality of life in Turkey. Heliyon 6: e03215. [Google Scholar] [CrossRef]
- Ernst, Holger, Wayne D. Hoyer, and Carsten Rübsaamen. 2010. Sales, marketing, and research-and-development cooperation across new product development stages: Implications for success. Journal of Marketing 74: 80–92. [Google Scholar] [CrossRef]
- Fernández Xicoténcatl, Rosa Isela, Francisco Almagro Vázquez, and José Terán Vargas. 2013. Un análisis de la productividad total de factores ampliada en la industria manufacturera de méxico 2003–2010. Investigación Administrativa 42: 1–13. [Google Scholar] [CrossRef]
- Gamage, Aruna, and Yuri Sadoi. 2013. Determinants of Training and Development Practices in SMEs: A Case of Japanese Manufacturing Firms. Sri Lankan Journal of Human Resource Management 2: 46. [Google Scholar] [CrossRef]
- González, Eleazar Villegas, Martín Aubert Hernández Calzada, and Blanca Cecilia Salazar Hernández. 2017. La medición del capital intelectual y su impacto en el rendimiento financiero en empresas del sector industrial en México. Contaduria y Administracion 62: 184–206. [Google Scholar] [CrossRef]
- Hamadamin, Halbast Hussein, and Tarik Atan. 2019. The impact of strategic human resource management practices on competitive advantage sustainability: The mediation of human capital development and employee commitment. Sustainability 11: 5782. [Google Scholar] [CrossRef]
- INEGI. 2019. Inegi Presenta los Resultados Definitivos de los Censos Económicos. Available online: http://www.inegi.org.mx/programas/ce/2019/ (accessed on 15 January 2023).
- Instituto Nacional de Estadística Geografía e Informática. 2020. Encuesta Anual de la Industria Manufacturera (EAIM). Available online: https://www.inegi.org.mx/app/tabulados/pxwebv2/pxweb/es/EAIM/-/EAIM_0.px/ (accessed on 15 January 2023).
- Instituto Nacional de Estadística y Geografía. 2009–2020. Sistema Nacional de Información Estadística y Geografía. Encuesta Anual de la Industria Manufacturera (EAIM). Uso de microdatos mediante Laboratorio de microdatos del INEGI. [Google Scholar]
- Instituto Nacional de Estadística y Geografía. 2018. Sistema de Clasificación Industrial de América del Norte, México SCIAN 2018. Available online: https://www.inegi.org.mx/contenidos/productos/prod_serv/contenidos/espanol/bvinegi/productos/nueva_estruc/702825099695.pdf (accessed on 10 June 2023).
- Kalapouti, Kleoniki, Konstantinos Petridis, Chrisovalantis Malesios, and Prasanta Kumar Dey. 2020. Measuring efficiency of innovation using combined Data Envelopment Analysis and Structural Equation Modeling: Empirical study in EU regions. Annals of Operations Research 294: 297–320. [Google Scholar] [CrossRef]
- Kaplan, Robert, and David P. Norton. 2002. Cuadro de Mando Integral (The Balanced Scorecard), 2nd ed. Barcelona: Gestion. [Google Scholar]
- Keszey, Tamara, and Wim Biemans. 2016. Sales-marketing encroachment effects on innovation. Journal of Business Research 69: 3698–706. [Google Scholar] [CrossRef]
- Khan, Eijaz Ahmed, and Mohammed Quaddus. 2018. Dimensions of human capital and firm performance: Micro-firm context. IIMB Management Review 30: 229–41. [Google Scholar] [CrossRef]
- Kirberg, Sergio, ed. 2016. Gestión estratégica del Capital Humano en el siglo XXI. California: GB Books Inc., ISBN 13: 9789563623307. [Google Scholar]
- Konara, Palitha, and Yingqi Wei. 2019. The complementarity of human capital and language capital in foreign direct investment. International Business Review 28: 391–404. [Google Scholar] [CrossRef]
- Kumar, Sunil, and Rachita Gulati. 2008. An Examination of Technical, Pure Technical, and Scale Efficiencies in Indian Public Sector Banks using Data Envelopment Analysis. Eurasian Journal of Business and Economics 1: 33–69. [Google Scholar]
- Lenihan, Helena, Helen McGuirk, and Kevin R. Murphy. 2019. Driving innovation: Public policy and human capital. Research Policy 48: 103791. [Google Scholar] [CrossRef]
- Liu, Qing, and Ruosi Lu. 2016. On-the-job training and productivity: Firm-level evidence from a large developing country. China Economic Review 40: 254–64. [Google Scholar] [CrossRef]
- Lufungula, Agnes Riziki, and Robert A. Borromeo. 2019. The correlates of human capital and organizational performance: Empirical Evidence from North-Kivu Hospitals in DR Congo. International Journal of Academic Research in Business and Social Sciences 12: 9. [Google Scholar]
- Marjanović, Ivana, Jelena J. Stanković, and Žarko Popović. 2018. Efficiency Estimation of Commercial Banks Based on Financial Performance: Input Oriented DEA CRS/VRS Models. Economic Themes 56: 239–52. [Google Scholar] [CrossRef]
- Martín-Gamboa, Mario, and Diego Iribarren. 2021. Coupled life cycle thinking and data envelopment analysis for quantitative sustainability improvement. In Methods in Sustainability Science: Assessment, Prioritization, Improvement, Design and Optimization. Amsterdam: Elsevier, pp. 295–320. [Google Scholar] [CrossRef]
- Mejía de León, Yolanda, María de la Luz Rodríguez Garza, and Alicia Hernández Bonilla. 2014. Importancia Estrategica Del Capital Intelectual En La Industria Manufacturera De La Region Sureste Del Estado De Coahuila, Mexico. Revista Internacional Administracion & Finanzas 7: 93–106. [Google Scholar]
- Mihardjo, Leonardus W. W., Kittisak Jermsittiparsert, Umair Ahmed, Thitinan Chankoson, and Hafezali Iqbal Hussain. 2021. Impact of key HR practices (human capital, training and rewards) on service recovery performance with mediating role of employee commitment of the Takaful industry of the Southeast Asian region. Education and Training 63: 1–21. [Google Scholar] [CrossRef]
- Mincer, Jacob. 1958. Investment in Human Capital and Personal Income Distribution. Journal of Political Economy 66: 281–302. Available online: https://www.jstor.org/stable/1827422 (accessed on 15 January 2023). [CrossRef]
- Monika, Dugelova, and Strenitzerova Mariana. 2015. The Using of Data Envelopment Analysis in Human Resource Controlling. Procedia Economics and Finance 26: 468–75. [Google Scholar] [CrossRef]
- Muda, Salwa, and Mara Ridhuan Che Abdul Rahman. 2016. Human Capital in SMEs Life Cycle Perspective. Procedia Economics and Finance 35: 683–89. [Google Scholar] [CrossRef]
- Nielsen, Karina, Raymond Randall, and Karl Bang Christensen. 2010. Does training managers enhance the effects of implementing team-working? A longitudinal, mixed methods field study. Human Relations 63: 1719–41. [Google Scholar] [CrossRef]
- Olexová, Cecília. 2011. Nástroje Personálneho Controllingu Tools of Personnel Controlling. Scientific papers of the University Pardubic. Series D 20: 11–125. [Google Scholar]
- Olvera Rebolledo, Emilio David, and Yolanda Carbajal Suárez. 2023. Determinantes de la competitividad en la manufactura mexiquense: Un análisis a nivel de subsector, 2018. Revista de Economía, Facultad de Economía, Universidad Autónoma de Yucatán 40: 42–67. [Google Scholar] [CrossRef]
- Onkelinx, Jonas, Tatiana S. Manolova, and Linda F. Edelman. 2016. The human factor: Investments in employee human capital, productivity, and SME internationalization. Journal of International Management 22: 351–64. [Google Scholar] [CrossRef]
- Parra Penagos, Carlos, and Fernando Rodríguez Fonseca. 2015. La capacitación y su efecto en la calidad dentro de las organizaciones. Revista De Investigación, Desarrollo E Innovación 6: 131. [Google Scholar] [CrossRef]
- Pasban, Mohammad, and Sadegheh Hosseinzadeh Nojedeh. 2016. A Review of the Role of Human Capital in the Organization. Procedia Social and Behavioral Sciences 230: 249–53. [Google Scholar] [CrossRef]
- Ployhart, Robert E., and Thomas P. Moliterno. 2011. Emergence of the human capital resource: A multilevel model. Academy of Management Review 36: 127–50. [Google Scholar] [CrossRef]
- Prouska, Rea, Alexandros G. Psychogios, and Yllka Rexhepi. 2016. Rewarding employees in turbulent economies for improved organisational performance: Exploring SMEs in the South-Eastern European region. Personnel Review 45: 1259–80. [Google Scholar] [CrossRef]
- Rojas, Angélica María Vázquez, and Diana Xóchitl González Gómez. 2018. An analysis of Mexico’s manufacturing productivity between 1988 and 2013. RICEA Revista Iberoamericana de Contaduría, Economía y Administración 7: 69–94. [Google Scholar] [CrossRef]
- Rojas, Angélica María Vázquez, Eduardo Rodríguez Juárez, and Diana Xóchitl González Gómez. 2016. An analysis of the manufacturing productivity in the State of Hidalgo. Revista CIMEXUS 11: 13–28. [Google Scholar]
- Rosales-Córdova, Aldebarán, and Luis Felipe Llanos. 2021. Efecto de la inversión en capacitación en las ventas y sueldos de las PyMES. Investigación Administrativa 50: 45–62. [Google Scholar] [CrossRef]
- Sahinidis, Alexandros G., and John Bouris. 2008. Employee perceived training effectiveness relationship to employee attitudes. Journal of European Industrial Training 32: 63–76. [Google Scholar] [CrossRef]
- Santibañez, Ana Lilia Valderrama, Omar Neme Castillo, and Humberto Ríos Bolívar. 2015. Eficiencia técnica en la industria manufacturera en México. Investigación Económica 74: 73–100. [Google Scholar] [CrossRef]
- Schultz, Theodore W. 1961. Investment in Human Capital. American Economic Association 51: 1035–39. [Google Scholar]
- Sitzmann, Traci, and Justin M. Weinhardt. 2019. Approaching evaluation from a multilevel perspective: A comprehensive analysis of the indicators of training effectiveness. Human Resource Management Review 29: 253–69. [Google Scholar] [CrossRef]
- Statista Research Department. 2022. La Industria Manufacturera en México—Datos Estadísticos. Available online: https://es.statista.com/estadisticas/595542/empresas-del-sector-industrias-manufactureras-en-mexico-por-entidad-federativa/#:~:text=En%20diciembre%20de%202022%2C%20el,sector%20con%20alrededor%20de%2065.000 (accessed on 21 April 2023).
- Tavares Luna, Rafael, and Rogelio Varela Llamas. 2018. The demand for employment in the manufacturing industry in Mexico. Contaduria y Administracion 64: 1–21. [Google Scholar] [CrossRef]
- Yahya, Ahmad Zahiruddin, Md Said Othman, and Abd Latiff Sukri Shamsuri. 2012. The Impact of Training on Small and Medium Enterprises (SMEs) Performance. Journal of Professional Management 2: 15–25. [Google Scholar] [CrossRef]
- Zhang, Tao, Wei Lu, and Hongbing Tao. 2020. Efficiency of health resource utilisation in primary-level maternal and child health hospitals in Shanxi Province, China: A bootstrapping data envelopment analysis and truncated regression approach. BMC Health Services Research 20: 1–9. [Google Scholar] [CrossRef]
- Zhang, Xiaoyue, and Wanbing Shi. 2019. Research about the university teaching performance evaluation under the data envelopment method. Cognitive Systems Research 56: 108–15. [Google Scholar] [CrossRef]
- Zhang, Yi, Sanjay Kumar, Xianhai Huang, and Yiming Yuan. 2023. Human Capital Quality and the Regional Economic Growth: Evidence from China. Journal of Asian Economics 86: 101593. [Google Scholar] [CrossRef]
- Zhao, Yongliang, Weihua Ruan, Yonghong Jiang, and Junnan Rao. 2018. Salesperson human capital investment and heterogeneous export enterprises performance. Journal of Business Economics and Management 19: 609–29. [Google Scholar] [CrossRef]
EAS | Group 1 | Group 2 | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
Training/Yes | Training/No | t-Student for Independent Samples | Training/Yes | Training/No | t-Student for Independent Samples | |||||
N | Average Sales per Year (millions) | N | Average Sales per Year (millions) | N | Average Sales per Year (millions) | N | Average Sales per Year (millions) | |||
311 | 656 | 16,080 | 829 | 4578 | t(1483) = 42.34 * | 1329 | 87,743 | 1658 | 26,764 | t(2985) = 47.23 * |
312 | 120 | 12,332 | 145 | 3794 | t(263) = 16.21 * | 249 | 70,258 | 293 | 24,633 | t(540) = 19.07 * |
313 | 148 | 16,426 | 220 | 5795 | t(366) = 19.59 * | 307 | 67,797 | 440 | 31,027 | t(745) = 21.42 * |
314 | 64 | 13,561 | 115 | 4324 | t(177) = 14.68 * | 135 | 49,373 | 231 | 24,848 | t(364) = 15.93 * |
315 | 159 | 9322 | 330 | 4163 | t(487) = 17.83 * | 298 | 39,969 | 661 | 21,131 | t(957) = 20.93 * |
316 | 100 | 10,625 | 238 | 4016 | t(336) = 17.83 * | 208 | 46,242 | 481 | 18,244 | t(687) = 25.65 * |
321 | 64 | 13,862 | 140 | 4048 | t(144) = 9.91 * | 138 | 56,869 | 283 | 18,211 | t(419) = 27.84 * |
322 | 82 | 35,166 | 80 | 5243 | t(160) = 18.81 * | 168 | 162,434 | 163 | 41,127 | t(299) = 19.48 * |
323 | 70 | 17,906 | 73 | 5627 | t(141) = 12.92 * | 146 | 79,081 | 147 | 31,979 | t(291) = 13 * |
324 | 11 | 20,322 | 18 | 3462 | t(27) = 4.23 * | 23 | 291,330 | 36 | 34,131 | t(57) = 7.94 * |
325 | 187 | 35,742 | 121 | 6723 | t(306) = 17.26 * | 381 | 266,957 | 243 | 98,079 | t(622) = 17.39 * |
326 | 265 | 17,617 | 255 | 5533 | t(518) = 20.96 * | 589 | 85,977 | 511 | 40,028 | t(1098) = 24.21 * |
327 | 158 | 13,852 | 220 | 4177 | t(376) = 27.71 * | 325 | 69,512 | 441 | 27,612 | t(764) = 26.03 * |
331 | 84 | 21,617 | 62 | 4193 | t(144) = 13.68 * | 175 | 127,124 | 124 | 23,629 | t(293) = 14.19 * |
332 | 286 | 15,613 | 256 | 4959 | t(540) = 21.16 * | 579 | 83,655 | 514 | 29,667 | t(1091) = 27.20 * |
333 | 173 | 19,272 | 134 | 5361 | t(305) = 19.08 * | 357 | 84,628 | 271 | 22,585 | t(626) = 24.14 * |
334 | 77 | 14,238 | 77 | 3984 | t(152) = 12.74 * | 159 | 46,336 | 155 | 23,259 | t(312) = 15.87 * |
335 | 95 | 12,916 | 77 | 4770 | t(170) = 10.26 * | 194 | 62,423 | 155 | 29,945 | t(347) = 11.66 * |
336 | 144 | 14,118 | 104 | 4606 | t(246) = 14.60 * | 298 | 81,460 | 209 | 28,742 | t(505) = 17.78 * |
337 | 97 | 13,941 | 140 | 5499 | t(235) = 13.39 * | 199 | 45,660 | 280 | 23,867 | t(477) = 18.22 * |
339 | 129 | 10,055 | 151 | 4335 | t(278) = 14.31 * | 264 | 41,225 | 305 | 20,021 | t(567) = 20.83 * |
CCR | Group 1 | Group 2 | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
EAS | N | Average Investment in Training per Year (MXN) | Average Payroll (millions of MXN) | Average Working Days | Average Sales per Year (millions of MXN) | N | Average Investment in Training per Year (MXN) | Average Payroll (millions of MXN) | Average Working Days | Average Sales per Year (millions of MXN) |
311 | 656 | 4408 | 2347 | 109 | 16,080 | 1329 | 37,258 | 8830 | 94 | 87,743 |
312 | 120 | 3284 | 2283 | 187 | 12,332 | 249 | 29,575 | 7091 | 75 | 70,258 |
313 | 148 | 4485 | 2485 | 130 | 16,426 | 307 | 24,961 | 7125 | 72 | 67,797 |
314 | 64 | 3581 | 2664 | 239 | 13,561 | 135 | 18,823 | 5138 | 52 | 49,373 |
315 | 159 | 2506 | 1610 | 117 | 9322 | 298 | 17,849 | 3953 | 43 | 39,969 |
316 | 100 | 2912 | 1551 | 72 | 10,625 | 208 | 15,184 | 5006 | 49 | 46,242 |
321 | 64 | 3800 | 2024 | 94 | 13,862 | 138 | 17,517 | 6247 | 60 | 56,869 |
322 | 82 | 9640 | 5134 | 237 | 35,166 | 168 | 63,178 | 16,805 | 173 | 162,434 |
323 | 70 | 4909 | 2614 | 121 | 17,906 | 146 | 25,490 | 8598 | 83 | 79,081 |
324 | 11 | 5492 | 3360 | 222 | 20,322 | 23 | 89,739 | 32,004 | 305 | 291,330 |
325 | 187 | 9798 | 5218 | 241 | 35,742 | 381 | 133,479 | 25,272 | 290 | 266,957 |
326 | 265 | 4799 | 2723 | 152 | 17,617 | 589 | 32,897 | 8938 | 91 | 85,977 |
327 | 158 | 3699 | 2515 | 200 | 13,852 | 325 | 27,424 | 7161 | 74 | 69,512 |
331 | 84 | 5926 | 3156 | 146 | 21,617 | 175 | 58,008 | 12,474 | 137 | 127,124 |
332 | 286 | 4280 | 2279 | 105 | 15,613 | 579 | 33,420 | 8585 | 89 | 83,655 |
333 | 173 | 5283 | 2813 | 130 | 19,272 | 357 | 41,427 | 8082 | 92 | 84,628 |
334 | 77 | 3883 | 2179 | 118 | 14,238 | 159 | 14,273 | 5090 | 49 | 46,336 |
335 | 95 | 3528 | 1949 | 101 | 12,916 | 194 | 22,337 | 6612 | 66 | 62,423 |
336 | 144 | 3836 | 2233 | 132 | 14,118 | 298 | 34,616 | 8195 | 87 | 81,460 |
337 | 97 | 3775 | 2269 | 144 | 13,941 | 199 | 19,913 | 4553 | 49 | 45,660 |
339 | 129 | 3592 | 1468 | 124 | 10,055 | 264 | 15,107 | 4338 | 44 | 41,225 |
BCC | N | Group 1 | Group 2 | |||||||
---|---|---|---|---|---|---|---|---|---|---|
EAS | N | Average Investment in Training per Year (MXN) | Average Payroll (millions of MXN) | Average Working Days | Average Sales per Year (millions of MXN) | N | Average Investment in Training per Year (MXN) | Average Payroll (millions of MXN) | Average Working Days | Average Sales per Year (millions of MXN) |
311 | 656 | 5250 | 2772 | 228 | 16,080 | 1329 | 44,901 | 9476 | 268 | 87,743 |
312 | 120 | 3998 | 2511 | 228 | 12,332 | 249 | 42,124 | 10,718 | 265 | 70,258 |
313 | 148 | 4906 | 2718 | 236 | 16,426 | 307 | 34,156 | 7790 | 266 | 67,797 |
314 | 64 | 3581 | 2664 | 239 | 13,561 | 135 | 31,706 | 8685 | 262 | 49,373 |
315 | 159 | 3195 | 2053 | 228 | 9322 | 298 | 23,102 | 5116 | 262 | 39,969 |
316 | 100 | 4400 | 2302 | 215 | 10,625 | 208 | 29,337 | 7833 | 262 | 46,242 |
321 | 64 | 4290 | 2076 | 240 | 13,862 | 138 | 20,468 | 8990 | 280 | 56,869 |
322 | 82 | 9674 | 5151 | 241 | 35,166 | 168 | 85,480 | 17,908 | 276 | 162,434 |
323 | 70 | 5965 | 3147 | 223 | 17,906 | 146 | 46,696 | 11,693 | 266 | 79,081 |
324 | 11 | 5811 | 3437 | 235 | 20,322 | 23 | 89,739 | 32,004 | 305 | 291,330 |
325 | 187 | 9798 | 5218 | 241 | 35,742 | 381 | 133,479 | 25,272 | 290 | 266,957 |
326 | 265 | 5903 | 3114 | 222 | 17,617 | 589 | 54,818 | 15,539 | 266 | 85,977 |
327 | 158 | 4266 | 2689 | 230 | 13,852 | 325 | 39,913 | 9398 | 265 | 69,512 |
331 | 84 | 6762 | 3578 | 227 | 21,617 | 175 | 72,580 | 17,670 | 271 | 127,124 |
332 | 286 | 5472 | 2881 | 220 | 15,613 | 579 | 55,906 | 16,837 | 265 | 83,655 |
333 | 173 | 6258 | 3306 | 224 | 19,272 | 357 | 56,611 | 17,081 | 265 | 84,628 |
334 | 77 | 5177 | 2721 | 219 | 14,238 | 159 | 49,400 | 21,421 | 258 | 46,336 |
335 | 95 | 4892 | 2568 | 218 | 12,916 | 194 | 48,506 | 16,936 | 262 | 62,423 |
336 | 144 | 5151 | 2707 | 219 | 14,118 | 298 | 58,459 | 19,098 | 264 | 81,460 |
337 | 97 | 4980 | 2689 | 221 | 13,941 | 199 | 32,271 | 9964 | 261 | 45,660 |
339 | 129 | 6672 | 2726 | 231 | 10,055 | 264 | 33,885 | 11,802 | 260 | 42,580 |
EAS | Group 1 | Group 2 | EAS | Group 1 | Group 2 | EAS | Group 1 | Group 2 |
---|---|---|---|---|---|---|---|---|
311 | IRS | IRS | 322 | IRS | IRS | 332 | IRS | IRS |
312 | IRS | IRS | 323 | IRS | IRS | 333 | IRS | IRS |
313 | IRS | IRS | 324 | IRS | CRS | 334 | IRS | IRS |
314 | CRS | IRS | 325 | CRS | CRS | 335 | IRS | IRS |
315 | IRS | IRS | 326 | IRS | IRS | 336 | IRS | IRS |
316 | IRS | IRS | 327 | IRS | IRS | 337 | IRS | IRS |
321 | IRS | IRS | 331 | IRS | IRS | 339 | IRS | IRS |
Marginally Inefficient | Above Average | Below Average | Most Inefficient | Marginally Inefficient | Above Average | Below Average | Most Inefficient |
---|---|---|---|---|---|---|---|
Group 1 | Group 1 | Group 1 | Group 1 | Group 2 | Group 2 | Group 2 | Group 2 |
311 | 312 | 316 | 333 | 311 | 312 | 316 | 334 |
313 | 315 | 323 | 334 | 313 | 314 | 323 | 335 |
321 | 327 | 326 | 335 | 315 | 326 | 332 | 336 |
322 | 331 | 332 | 336 | 321 | 327 | 333 | 337 |
324 | 337 | 339 | 322 | 331 | 339 |
EAS | Group 1 | Group 2 | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
N | Average Investment in Training per Year (MXN) | Average Payroll (millions of MXN) | Average Working Days | Average Sales per Year (millions of MXN) | N | Average Investment in Training per Year (MXN) | Average Payroll (millions of MXN) | Average Working Days | Average Sales per Year (millions of MXN) | |
311 | 656 | 4408 | 2347 | 109 | 16,080 | 1329 | 37,258 | 8830 | 94 | 87,743 |
312 | 120 | 3284 | 2283 | 187 | 12,332 | 249 | 29,575 | 7091 | 75 | 70,258 |
313 | 148 | 4485 | 2485 | 130 | 16,426 | 307 | 24,961 | 7125 | 72 | 67,797 |
314 | 64 | 3581 | 2664 | 239 | 13,561 | 135 | 18,823 | 5138 | 52 | 49,373 |
315 | 159 | 2506 | 1610 | 117 | 9322 | 298 | 17,849 | 3953 | 43 | 39,969 |
316 | 100 | 2912 | 1551 | 72 | 10,625 | 208 | 15,184 | 5006 | 49 | 46,242 |
321 | 64 | 3800 | 2024 | 94 | 13,862 | 138 | 17,517 | 6247 | 60 | 56,869 |
322 | 82 | 9640 | 5134 | 237 | 35,166 | 168 | 63,178 | 16,805 | 173 | 162,434 |
323 | 70 | 4909 | 2614 | 121 | 17,906 | 146 | 25,490 | 8598 | 83 | 79,081 |
324 | 11 | 5492 | 3360 | 222 | 20,322 | 23 | 89,739 | 32,004 | 305 | 291,330 |
325 | 187 | 9798 | 5218 | 241 | 35,742 | 381 | 133,479 | 25,272 | 290 | 266,957 |
326 | 265 | 4799 | 2723 | 152 | 17,617 | 589 | 32,897 | 8938 | 91 | 85,977 |
327 | 158 | 3699 | 2515 | 200 | 13,852 | 325 | 27,424 | 7161 | 74 | 69,512 |
331 | 84 | 5926 | 3156 | 146 | 21,617 | 175 | 58,008 | 12,474 | 137 | 127,124 |
332 | 286 | 4280 | 2279 | 105 | 15,613 | 579 | 33,420 | 8585 | 89 | 83,655 |
333 | 173 | 5283 | 2813 | 130 | 19,272 | 357 | 41,427 | 8082 | 92 | 84,628 |
334 | 77 | 3883 | 2179 | 118 | 14,238 | 159 | 14,273 | 5090 | 49 | 46,336 |
335 | 95 | 3528 | 1949 | 101 | 12,916 | 194 | 22,337 | 6612 | 66 | 62,423 |
336 | 144 | 3836 | 2233 | 132 | 14,118 | 298 | 34,616 | 8195 | 87 | 81,460 |
337 | 97 | 3775 | 2269 | 144 | 13,941 | 199 | 19,913 | 4553 | 49 | 45,660 |
339 | 129 | 3592 | 1468 | 124 | 10,055 | 264 | 15,107 | 4338 | 44 | 41,225 |
EAS | Group 1 | Group 2 | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
N | Average Investment in Training per Year (MXN) | Average Payroll (millions of MXN) | Average Working Days | Average Sales per Year (millions of MXN) | N | Average Investment in Training per Year (MXN) | Average Payroll (millions of MXN) | Average Working Days | Average Sales per Year (millions of MXN) | |
311 | 656 | 5250 | 2772 | 228 | 16,080 | 1329 | 44,901 | 9476 | 268 | 87,743 |
312 | 120 | 3998 | 2511 | 228 | 12,332 | 249 | 42,124 | 10,718 | 265 | 70,258 |
313 | 148 | 4906 | 2718 | 236 | 16,426 | 307 | 34,156 | 7790 | 266 | 67,797 |
314 | 64 | 3581 | 2664 | 239 | 13,561 | 135 | 31,706 | 8685 | 262 | 49,373 |
315 | 159 | 3195 | 2053 | 228 | 9322 | 298 | 23,102 | 5116 | 262 | 39,969 |
316 | 100 | 4400 | 2302 | 215 | 10,625 | 208 | 29,337 | 7833 | 262 | 46,242 |
321 | 64 | 4290 | 2076 | 240 | 13,862 | 138 | 20,468 | 8990 | 280 | 56,869 |
322 | 82 | 9674 | 5151 | 241 | 35,166 | 168 | 85,480 | 17,908 | 276 | 162,434 |
323 | 70 | 5965 | 3147 | 223 | 17,906 | 146 | 46,696 | 11,693 | 266 | 79,081 |
324 | 11 | 5811 | 3437 | 235 | 20,322 | 23 | 89,739 | 32,004 | 305 | 291,330 |
325 | 187 | 9798 | 5218 | 241 | 35,742 | 381 | 133,479 | 25,272 | 290 | 266,957 |
326 | 265 | 5903 | 3114 | 222 | 17,617 | 589 | 54,818 | 15,539 | 266 | 85,977 |
327 | 158 | 4266 | 2689 | 230 | 13,852 | 325 | 39,913 | 9398 | 265 | 69,512 |
331 | 84 | 6762 | 3578 | 227 | 21,617 | 175 | 72,580 | 17,670 | 271 | 127,124 |
332 | 286 | 5472 | 2881 | 220 | 15,613 | 579 | 55,906 | 16,837 | 265 | 83,655 |
333 | 173 | 6258 | 3306 | 224 | 19,272 | 357 | 56,611 | 17,081 | 265 | 84,628 |
334 | 77 | 5177 | 2721 | 219 | 14,238 | 159 | 49,400 | 21,421 | 258 | 46,336 |
335 | 95 | 4892 | 2568 | 218 | 12,916 | 194 | 48,506 | 16,936 | 262 | 62,423 |
336 | 144 | 5151 | 2707 | 219 | 14,118 | 298 | 58,459 | 19,098 | 264 | 81,460 |
337 | 97 | 4980 | 2689 | 221 | 13,941 | 199 | 32,271 | 9964 | 261 | 45,660 |
339 | 129 | 6672 | 2726 | 231 | 10,055 | 264 | 33,885 | 11,802 | 260 | 41,225 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rosales-Córdova, A.; Carmona-Benítez, R.B. Evaluating the Efficiency of Human Capital at Small and Medium Enterprises in the Manufacturing Sector Using the DEA-Weight Russell Directional Distance Model. Economies 2023, 11, 261. https://doi.org/10.3390/economies11100261
Rosales-Córdova A, Carmona-Benítez RB. Evaluating the Efficiency of Human Capital at Small and Medium Enterprises in the Manufacturing Sector Using the DEA-Weight Russell Directional Distance Model. Economies. 2023; 11(10):261. https://doi.org/10.3390/economies11100261
Chicago/Turabian StyleRosales-Córdova, Aldebarán, and Rafael Bernardo Carmona-Benítez. 2023. "Evaluating the Efficiency of Human Capital at Small and Medium Enterprises in the Manufacturing Sector Using the DEA-Weight Russell Directional Distance Model" Economies 11, no. 10: 261. https://doi.org/10.3390/economies11100261
APA StyleRosales-Córdova, A., & Carmona-Benítez, R. B. (2023). Evaluating the Efficiency of Human Capital at Small and Medium Enterprises in the Manufacturing Sector Using the DEA-Weight Russell Directional Distance Model. Economies, 11(10), 261. https://doi.org/10.3390/economies11100261