Efficiency Analysis of Human Capital Investments at Micro and Large-Sized Enterprises in the Manufacturing Sector Using Data Envelopment Analysis
Abstract
:1. Introduction
2. Literature Review
2.1. Human Capital in Micro and Large-Size Enterprises
2.2. Data Envelopment Analysis Method in Micro and Large-Size Enterprises
3. Methodology and Data
- -
- Investment in HCT (input 1): payments made by a company for the training of its workers, including payments to internal and external instructors, training materials and payments to educational institutions also known as scholarships.
- -
- Wages (input 2): all payments and contributions, normal and extraordinary, in money and kind, before any tax deduction, to remunerate the work of the employee’s dependent on the company name, in the form of wages and salaries, social benefits, and profits distributed to the personnel, whether this payment is calculated based on a working day or by the amount of work performed.
- -
- Working days (input 3): counts the number of days dedicated directly to activities related to the production process of the establishment.
- -
- Sales (output): revenues obtained for production of goods and services.
3.1. CCR Input-Oriented Model
DMU0 | unit under analysis | [-] |
xij | quantity of input i used by DMUj | [units] |
xio | quantity of input i used by the DMU0 | [units] |
yrj | quantity of output r delivered by DMUj | [units] |
xro | quantity of output r delivered by the DMU0 | [units] |
λj | relationship importance between DMUj and the DMU0 | [-] |
DMU0 optimal OTE | [-] | |
input slack variable | [units] | |
output slack variable | [units] | |
a small positive number | [-] |
3.2. BCC Input-Oriented Model
3.3. Data
4. Results and Discussion
4.1. Statistical Results
4.2. DEA Results
5. Conclusions, Limitations and Further Recommendations
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Almeida, Rita, and Marta Faria. 2014. The wage returns to on-the-job training: Evidence from matched employer-employee data. IZA Journal of Labor and Development 3: 1–33. [Google Scholar] [CrossRef]
- Al-Omoush, Khaled Saleh, Daniel Palacios-Marqués, and Klaus Ulrich. 2022. The impact of intellectual capital on supply chain agility and collaborative knowledge creation in responding to unprecedented pandemic crises. Technological Forecasting and Social Change 178: 121603. [Google Scholar] [CrossRef]
- Aman-Ullah, Attia, Wagas Mehmood, Saqib Amin, and Yasir Abdullah Abbas. 2022. Human capital and organizational performance: A moderation study through innovative leadership. Journal of Innovation & Knowledge 7: 100261. [Google Scholar] [CrossRef]
- Ayele, Abebe Birhanu. 2021. Efficiency of Micro and Small Enterprises in Ethiopia: Evidence from Data Envelope Analysis Model. Preprints 2021: 100180. [Google Scholar] [CrossRef]
- Banker, Rajiv D., Abraham Charnes, and William Wager Cooper. 1984. Some models for estimating technical and scale inefficiencies in data envelopment analysis. Management Science 30: 1078–92. [Google Scholar]
- Baruah, Manuj, and Paramita Saha. 2024. Technical Efficiency of Handloom-based Micro-enterprises in Assam, India: A Stochastic Frontier Analysis. International Journal of Rural Management. [Google Scholar] [CrossRef]
- Basyah, Nazaruddin Ali, and Irham Fahmi. 2024. Define the role and economic benefits of micro, small and medium enterprises: A literature review. Jambura Economic Education Journal 6: 51–56. [Google Scholar]
- Becker, Gary S. 1962. Investment in Human Capital: A Theoretical Analysis. Journal of Political Economy 70: 9–49. [Google Scholar] [CrossRef]
- Bissoondoyal-Bheenick, Emawtee, Robert Brooks, and Hung Xuan Do. 2023. ESG and firm performance: The role of size and media channels. Economic Modelling 121: 106203. [Google Scholar] [CrossRef]
- Boubaker, Sabri, Thanh Ngo, Aristeidis Samitas, and David Tripe. 2024. An MCDA composite index of bank stability using CAMELS ratios and shannon entropy. Annals of Operations Research, 1–24. [Google Scholar] [CrossRef]
- Boubaker, Sabri, Tu D. Q. Le, Thanh Ngo, and Riadh Manita. 2023. Predicting the performance of MSMEs: A hybrid DEA-machine learning approach. Annals of Operations Research, 1–23. [Google Scholar] [CrossRef]
- Brodny, Jaroslaw, and Magdalena Tutak. 2022. The Level of Digitization of Small, Medium and Large Enterprises in the Central and Eastern European Countries and Its Relationship with Economic Parameters. Journal of Open Innovation: Technology, Market, and Complexity 8: 113. [Google Scholar] [CrossRef]
- Chanda, Avishek. 2019. Relative Technical Efficiency of the Micro, Small and Medium Enterprises of India: Recent Evidences Using Data Envelopment Analysis. Journal Indexing and Metrics 63: 668–88. [Google Scholar] [CrossRef]
- Charnes, Abraham, William W. Cooper, and Edward Rhodes. 1978. Measuring the efficiency of decision making units. European Journal of Operational Research 2: 429–44. [Google Scholar] [CrossRef]
- Cinaroglu, Songul. 2021. Changes in hospital efficiency and size: An integrated propensity score matching with data envelopment analysis. Socio-Economic Planning Sciences 76: 100960. [Google Scholar] [CrossRef]
- Cooper, William W., Lawrence M. Seinford, and Kaoru Tone, eds. 2007. Data Envelopment Analysis: A Comprehensive Text with Models, Applications, References and DEA-Solver Software, 2nd ed. New York: Springer Science + Business Media. [Google Scholar]
- Dey, Bijov. K., Gurudas Das, and Ujjwal Kanti Paul. 2023a. Technical efficiency and its determinants of handloom micro-enterprises in the Indian state of Assam: A two-stage double-bootstrap DEA approach. Indian Growth and Development Review 16: 123–40. [Google Scholar] [CrossRef]
- Dey, Bijov K., Ujjwal Kanti Paul, and Gurudas Das. 2023b. Are handloom micro-enterprises in India efficient? Estimation based on DEA and bootstrap truncated regression approach. Research Journal of Textile and Apparel 27: 452–71. [Google Scholar] [CrossRef]
- Diario Oficial de la Federación. 2019. Ley para el desarrollo de la competitividad de la micro, pequeña y mediana empresa. In Párrafo reformado DOF. Available online: https://www.diputados.gob.mx/LeyesBiblio/pdf/LDCMPME.pdf (accessed on 15 January 2024).
- Díaz Rodríguez, Héctor Eduardo, Magnolia Miriam Sosa Castro, and María Alejandra Cabello Rosales. 2021. Financial performance and administrative practices in Mexican microenterprises: An analysis with artificial neural networks. Contaduria y Administracion 64: 1–15. [Google Scholar] [CrossRef]
- García Camacho, Manuel Eduardo, and José Daniel Anido. 2024. Encouragement Policies and Productivity Indicators for Colombian SMEs Using Data Envelopment Analysis and Malmquist Indexes. Revista CEA 10: 1–37. [Google Scholar] [CrossRef]
- García-Zambrano, Lidia, Arturo Rodríguez-Castellanos, and José Domingo García-Merino. 2018. Impact of investments in training and advertising on the market value relevance of a company’s intangibles: The effect of the economic crisis in Spain. European Research on Management and Business Economics 24: 27–32. [Google Scholar] [CrossRef]
- Gopalkrishnan, Santos, Shiba Prasad Mohanty, and Megha Jaiwani. 2023. Do efficiencies really matter? Analysing the housing finance sector and deriving insights through data envelopment analysis. Cogent Economics & Finance 11: 2285158. [Google Scholar] [CrossRef]
- Hooda, Singh, and Nitisha Sehrawat. 2023. Sustainable Development and Public Transport in Haryana. Space and Culture, India 11: 49–57. [Google Scholar] [CrossRef]
- Ibarra-Cisneros, Manuel Alejandro, and Felipe Hernández-Perlines. 2019. The influence of intellectual capital on the performance of small and medium manufacturing companies in Mexico: The case of Baja California. Innovar 29: 79–96. [Google Scholar] [CrossRef]
- INEGI. 2019. Censos Económicos 2019. Available online: https://www.inegi.org.mx/app/biblioteca/ficha.html?upc=702825198657 (accessed on 12 March 2024).
- INEGI. 2021a. Demografía de los Negocios. Economía y Sectores Productivos. Available online: https://www.inegi.org.mx/temas/dn/ (accessed on 12 March 2024).
- INEGI. 2021b. Nota técnica Encuesta Anual de la Industria Manufacturera (EAIM) Cifras 2021. Available online: https://www.inegi.org.mx/contenidos/programas/eaim/2013/doc/Nota_Tecnica_EAIM.pdf (accessed on 12 March 2024).
- INEGI. 2023. Estadísticas a propósito del día internacional de la juventud. Available online: https://www.inegi.org.mx/contenidos/productos/prod_serv/contenidos/espanol/bvinegi/productos/nueva_estruc/702825006792.pdf (accessed on 15 March 2024).
- INEGI SNIEG. 2021. Sistema Nacional de Información Estadística y Geografía. Encuesta Anual de la Industria Manufacturera (EAIM). Uso de microdatos mediante Laboratorio de micro datos del INEGI. Available online: https://www.inegi.org.mx/programas/eaim/2013/#microdatos (accessed on 12 March 2024).
- Kalapouti, Kleoniki, Konstantinos Petridis, Chrisovalantis Malesios, and Prasanta Kumar Dey. 2020. Measuring efficiency of innovation using combined Data Envelopment Analysis and Structural Equation Modeling: Empirical study in EU regions. Annals of Operations Research 294: 297–320. [Google Scholar] [CrossRef]
- Kononiuk, Anna. 2022. Determinants of Foresight Maturity in SME Enterprises of Poland. Foresight and STI Governance 16: 69–81. [Google Scholar] [CrossRef]
- Kumar, Sunil, and Rachita Gulati. 2008. An Examination of Technical, Pure Technical, and Scale Efficiencies in Indian Public Sector Banks using Data Envelopment Analysis. Eurasian Journal of Business and Economics 1: 33–69. [Google Scholar]
- Ling, Lin, Hayat Khan, Liu Qianqian, and Li Qiumei. 2024. Minimum wage standard adjustment and employment: Heterogeneity effects on the human capital investment. Heliyon 10: e25097. [Google Scholar] [CrossRef]
- Marjanovic, Ivana, Jelena J. Stankovic, and Žarko Popovic. 2018. Efficiency Estimation of Commercial Banks Based on Financial Performance: Input Oriented DEA CRS/VRS Models. Economic Themes 56: 239–52. [Google Scholar] [CrossRef]
- Martínez-Aparicio, Jorge. 2012. Micros, pequeñas y grandes empresas, dos circuitos económicos separados. Lázaro Cárdenas, Michoacán. Economía, Sociedad y Territorio 12: 751–91. [Google Scholar]
- Martín-Gamboa, Mario, and Diego Iribarren. 2021. Coupled life cycle thinking and data envelopment analysis for quantitative sustainability improvement. In Methods in Sustainability Science: Assessment, Prioritization, Improvement, Design and Optimization. Amsterdam: Elsevier, pp. 295–320. [Google Scholar] [CrossRef]
- Memon, Mehran Ali, and Izah Mohd Tahir. 2012. Size and Operational Performance of Manufacturing Companies in Pakistan Using Data Envelopment Analysis. Journal of Information Engineering and Applications 2: 39–49. [Google Scholar]
- Mincer, Jacob. 1958. Investment in Human Capital and Personal Income Distribution. Journal of Political Economy 66: 281–302. Available online: https://about.jstor.org/terms (accessed on 15 March 2024).
- Monika, Dugelova, and Strenitzerova Mariana. 2015. The Using of Data Envelopment Analysis in Human Resource Controlling. Procedia Economics and Finance 26: 468–75. [Google Scholar] [CrossRef]
- Montejano García, Salomón, and Gabriela Citlalli López Torres. 2013. Impacto del capital intelectual en la innovación en empresas: Una perspectiva de México. Revista Científica Teorías, Enfoques y Aplicación En Las Ciencias Sociales 6: 39–48. [Google Scholar]
- Nahuat Román, Bernardo. 2020. Influencia del capital intelectual en la innovación: Una perspectiva al nivel del individuo. Nova Scientia 12: 1–29. [Google Scholar] [CrossRef]
- Nduneseokwu, Chibuike K., and Marie K. Harder. 2023. Developing environmental transformational leadership with training: Leaders and subordinates environmental behaviour outcomes. Journal of Cleaner Production 403: 136790. [Google Scholar] [CrossRef]
- Nguyen, Thanh Quy, Anh Thuy Nguyen, Anh Lan Tran, Hung Thai Le, Ha Hoang Thi Le, and Lien Phuong Vu. 2020. Do workers benefit from on-the-job training? New evidence from matched employer-employee data. Finance Research Letters 40: 101664. [Google Scholar] [CrossRef]
- Ofori, Eric, Elizabeth A. Yeager, and Brian C. Briggeman. 2024. Estimating potential gains from agricultural cooperative mergers. Agribusiness, 1–16. [Google Scholar] [CrossRef]
- Olexová, Cecília. 2011. Nástroje Personálneho controllingu tools of personnel controlling. Scientific papers of the University Pardubice Series D 20: 11–125. [Google Scholar]
- Padilla-Angulo, Laura, Jesús Miguel Lasarte-López, and Pedro Caldentey Del Pozo. 2023. Policy evaluations of microenterprise business support services in Latin America: A systematic review. Evaluation and Program Planning 97: 102212. [Google Scholar] [CrossRef]
- Peralta, Alejandro de Jesús, Paula Rosalinda Antonio Vidaña, Daniel Martínez Navarrete, and Claudia Vasquez Rojas. 2023. Social vulnerability, crime and human capital of microenterprises in Veracruz, Mexico. Economia, Sociedad y Territorio 23: 433–65. [Google Scholar] [CrossRef]
- Perri, Alessandra, Victoria G. Scalera, and Ram Mudambi. 2017. What are the most promising conduits for foreign knowledge inflows? Innovation networks in the Chinese pharmaceutica industry. Industrial and Corporate Change 26: 333–55. [Google Scholar] [CrossRef]
- Porfírio, José, José Antonio Felício, and Tiago Carrilho. 2020. Family business succession: Analysis of the drivers of success based on entrepreneurship theory. Journal of Business Research 115: 250–57. [Google Scholar] [CrossRef]
- Proaño-Rivera, Bladimir, and José Manuel Feria-Dominguez. 2022. Are Ecuadorian banks enough technically efficient for growth? A clinical study. International Journal of Finance & Economics 29: 2011–29. [Google Scholar] [CrossRef]
- Prouska, Rea, Alexandros G. Psychogios, and Yllka Rexhepi. 2016. Rewarding employees in turbulent economies for improved organisational performance: Exploring SMEs in the South-Eastern European region. Personnel Review 45: 1259–80. [Google Scholar] [CrossRef]
- Purmiyati, Atik, Madeline Berma, Basri Abdul Talib, and Marta Sabila Rakhima. 2019. The role of banking capital in industrial sector micro enterprises for poverty alleviation: A study in east java, Indonesia. Foundations of Management 11: 131–42. [Google Scholar] [CrossRef]
- Ramírez, Natanael, Alejandro Mungaray, José G. Aguilar, and Ramón Inzunza. 2017. Una explicación de la rentabilidad y poder de mercado de las microempresas marginadas. Economia Teoría y Practica 46: 97–113. Available online: https://www.redalyc.org/articulo.oa?id=281155224005 (accessed on 15 March 2024).
- Rodríguez-Gulías, María Jesús, Sara Fernández-López, and David Rodeiro-Pazos. 2024. Foreign knowledge sources and innovation: Differences across large and small and medium-size multinational enterprises (MNEs). International Review of Economics & Finance 92: 741–57. [Google Scholar] [CrossRef]
- Rosales-Córdova, Aldebarán, and Luis Felipe Llanos. 2021. Efecto de la inversión en capacitación en las ventas y sueldos de las PyMES. Investigación Administrativa 50: 45–62. [Google Scholar] [CrossRef]
- Rosales-Córdova, Aldebarán, and Rafael Bernardo Carmona-Benítez. 2023. Evaluating the Efficiency of Human Capital at Small and Medium Enterprises in the Manufacturing Sector Using the DEA-Weight Russell Directional Distance Model. Economies 11: 261. [Google Scholar] [CrossRef]
- Schultz, Theodore W. 1961. Investment in Human Capital. American Economic Association 51: 1035–39. Available online: https://www.jstor.org/stable/1818907 (accessed on 15 March 2024).
- Sedliačiková, Mariana, Nikolay Neykov, Ján Dobrovič, Anna Šatanová, Mária Osvaldová, and Mykola Palinchak. 2024. Performance measuring of wood-processing microenterprises through data envelopment analysis: A case study of Slovakia, Poland, and Bulgaria. Entrepreneurship and Sustainability Issues 11: 408–22. [Google Scholar] [CrossRef]
- Seth, Himanshu, Deepak Deepak, Namita Ruparel, Saurabh Chadha, and Shivi Agarwal. 2024. Assessment of working capital management efficiency—A two-stage slack-based measure of data envelopment analysis. Managerial Finance. ahead-of-print. [Google Scholar] [CrossRef]
- Sitzmann, Traci, and Justin M. Weinhardt. 2019. Approaching evaluation from a multilevel perspective: A comprehensive analysis of the indicators of training effectiveness. Human Resource Management Review 29: 253–69. [Google Scholar] [CrossRef]
- Słomka-Gołębiowska, Agnieszka, Sara De Masi, Simona Zambelli, and Andrea Paci. 2023. Towards higher sustainability: If you want something done, ask a chairwoman. Finance Research Letters 58: 104308. [Google Scholar] [CrossRef]
- Song, Jiayi. 2024. Corporate ESG performance and human capital investment efficiency. Finance Research Letters 62: 105239. [Google Scholar] [CrossRef]
- Tseng, Fang-Mei, Ching-Wen Liang, and Ngoc B. Nguyen. 2023. Blockchain technology adoption and business performance in large enterprises: A comparison of the United States and China. Technology in Society 73: 102230. [Google Scholar] [CrossRef]
- Villa, Gabriela, Sebastián Lozano, and Sandra Redondo. 2021. Data Envelopment Analysis Approach to Energy-Saving Projects Selection in an Energy Service Company. Mathematics 9: 200. [Google Scholar] [CrossRef]
- Wang, Shuhong, Hui Yu, and Malin Song. 2017. Assessing the efficiency of environmental regulations of large-scale enterprises based on extended fuzzy data envelopment analysis. Industrial Management & Data Systems 118: 463–79. [Google Scholar] [CrossRef]
- Way, Sean A., Patrick M. Wright, Bruce J. Tracey, and Jeremy F. Isnard. 2018. HR flexibility: Precursors and the contingent impact on firm financial performance. Human Resource Management 57: 567–82. [Google Scholar] [CrossRef]
- Wright, Patrick M. 2021. Rediscovering the “Human” in strategic human capital. Human Resource Management Review 31: 100781. [Google Scholar] [CrossRef]
- Yang, Kexin, Qi Zhang, Qiqi Liu, Jiangfeng Liu, and Jie Jiao. 2024. Effect mechanism and efficiency evaluation of financial support on technological innovation in the new energy vehicles’ industrial chain. Energy 293: 130761. [Google Scholar] [CrossRef]
- Zhang, Yi, Sanjay Kumar, Xianhai Huang, and Yiming Yuan. 2023. Human Capital Quality and the Regional Economic Growth: Evidence from China. Journal of Asian Economics 86: 101593. [Google Scholar] [CrossRef]
- Zhao, Yongliang, Weihua Ruan, Yonghong Jiang, and Junnan Rao. 2018. Salesperson human capital investment and heterogeneous export enterprises performance. Journal of Business Economics and Management 19: 609–29. [Google Scholar] [CrossRef]
- Zheng, Jinghai, Xiaoxuan Liu, and Arne Bigsten. 1998. Ownership Structure and Determinants of Technical Efficiency: An Application of Data Envelopment Analysis to Chinese Enterprises (1986–1990). Journal of Comparative Economics 26: 465–84. [Google Scholar]
- Zheng, Jinghai, Xiaoxuan Liu, and Arne Bigsten. 2003. Efficiency, technical progress, and best practice in Chinese state enterprises (1980–1994). Journal of Comparative Economics 31: 134–52. [Google Scholar]
- Zhu, Xiaoqian, Xingru Xiao, and Yating Bo. 2024. A Study on Measuring the Efficiency of Digital Inclusive Finance Enabling High-Quality Fiscal Development in Provinces. Highlights in Business, Economics and Management 24: 40–49. [Google Scholar] [CrossRef]
HCT/Yes—Set 1— | HCT/No—Set 2— | ||||||||
---|---|---|---|---|---|---|---|---|---|
Inputs Variables | Output Variable | Inputs Variables | Output Variable | ||||||
EAS | N | Annual Average HCT [MXN] | Annual Average Wages [MXN] | Annual Average Working Days [Days] | Annual Average Sales per Year [000 of MXN] | N | Annual Average Wages [MXN] | Annual Average Working Days [Days] | Annual Average Sales per Year [000 of MXN] |
311 | 37 | $13,757 | $580,457 | 277.4 | $6379.3 | 509 | $224,338 | 292.4 | $1179.6 |
312 | 21 | $3810 | $423,133 | 292.4 | $3501.9 | 134 | $167,970 | 298.8 | $613.7 |
313 | 7 | $7286 | $920,429 | 280.7 | $9012.0 | 103 | $251,398 | 274.8 | $1296.3 |
314 | 4 | $5000 | $715,333 | 239.0 | $1936.0 | 69 | $347,348 | 289.5 | $1815.6 |
315 | 12 | $8083 | $649,750 | 253.7 | $9053.6 | 142 | $250,690 | 269.9 | $915.0 |
316 | 8 | $8128 | $433,667 | 258.1 | $1950.0 | 113 | $304,770 | 280.4 | $1402.3 |
321 | 8 | $5625 | $408,667 | 287.3 | $5988.5 | 154 | $192,844 | 276.0 | $862.3 |
322 | 4 | $39,600 | $444,000 | 246.3 | $2689.7 | 45 | $358,333 | 275.9 | $1596.7 |
323 | 14 | $7000 | $343,200 | 257.8 | $2714.0 | 64 | $169,803 | 276.1 | $623.0 |
324 | 4 | $8333 | $897,667 | 327.3 | $4987.0 | 10 | $309,900 | 266.0 | $1373.5 |
325 | 13 | $39,333 | $685,846 | 257.6 | $49,418.5 | 73 | $288,151 | 282.7 | $1064.5 |
326 | 20 | $6846 | $739,235 | 250.8 | $3915.4 | 128 | $263,578 | 275.4 | $1049.4 |
327 | 36 | $4250 | $1,120,250 | 299.6 | $11,881.3 | 174 | $241,810 | 273.7 | $782.4 |
331 | 4 | $27,000 | $1,822,500 | 282.0 | $71,202.4 | 46 | $217,239 | 289.7 | $868.9 |
332 | 23 | $9217 | $561,955 | 276.6 | $5269.5 | 178 | $174,427 | 278.4 | $676.3 |
333 | 15 | $25,750 | $599,615 | 261.3 | $5826.6 | 77 | $331,026 | 267.9 | $1196.6 |
334 | 4 | $2250 | $658,250 | 251.3 | $3655.3 | 53 | $321,849 | 278.9 | $1285.4 |
335 | 6 | $19,500 | $1,085,833 | 255.0 | $4270.6 | 50 | $244,600 | 260.8 | $969.3 |
336 | 11 | $16,818 | $673,500 | 258.5 | $2793.8 | 78 | $288,244 | 285.5 | $1288.3 |
337 | 8 | $12,500 | $428,857 | 285.9 | $3599.3 | 81 | $206,877 | 300.3 | $818.9 |
339 | 15 | $6267 | $410,938 | 270.4 | $3371.3 | 129 | $304,465 | 273.6 | $1215.9 |
HCT/Yes—Set 3— | HCT/No—Set 4— | ||||||||
---|---|---|---|---|---|---|---|---|---|
Inputs Variables | Output Variable | Inputs Variables | Output Variable | ||||||
EAS | N | Annual Average HCT [MXN] | Annual Average Wages [000 of MXN] | Annual Average Working Days [Days] | Annual Average Sales per Year [000 of MXN] | N | Annual Average Wages [000 of MXN] | Annual Average Working Days [Days] | Annual Average Sales per Year [000 of MXN] |
311 | 608 | $262,622 | $73,682.2 | 292.2 | $449,446.5 | 264 | $58,482.8 | 288.2 | $272,072.5 |
312 | 148 | $397,209 | $80,254.6 | 297.1 | $542,262.3 | 61 | $65,672.2 | 295.3 | $333,689.4 |
313 | 115 | $203,800 | $70,083.8 | 291.6 | $365,709.6 | 59 | $54,598.1 | 295.5 | $231,402.3 |
314 | 51 | $164,353 | $66,276.5 | 273.9 | $334,678.9 | 18 | $35,922.7 | 286.9 | $189,447.5 |
315 | 60 | $60,650 | $57,429.4 | 271.4 | $147,562.6 | 40 | $41,667.9 | 259.2 | $110,854.9 |
316 | 31 | $124,290 | $39,020.1 | 264.9 | $171,229.1 | 18 | $44,433.3 | 270.6 | $192,398.3 |
321 | 5 | $42,600 | $43,598.6 | 316.5 | $389,412.0 | 1 | $57,937.0 | 293.0 | $440,158.0 |
322 | 36 | $472,694 | $76,552.2 | 334.4 | $812,872.9 | 18 | $84,373.9 | 349.3 | $1,035,219.9 |
323 | 12 | $203,000 | $60,942.8 | 293.1 | $182,428.8 | 6 | $40,603.2 | 321.5 | $166,881.7 |
324 | 6 | $1,776,000 | $134,110.0 | 335.7 | $1,571,015.0 | 7 | $2,018,178.1 | 365.0 | $118,405,378.4 |
325 | 65 | $814,154 | $132,428.5 | 290.0 | $1,222,906.1 | 31 | $137,769.0 | 289.3 | $997,483.4 |
326 | 67 | $259,955 | $57,455.0 | 296.3 | $258,804.0 | 34 | $56,478.6 | 301.4 | $241,054.7 |
327 | 22 | $252,909 | $103,021.6 | 319.7 | $544,489.9 | 16 | $52,047.1 | 337.5 | $260,075.7 |
331 | 25 | $435,040 | $89,292.1 | 310.5 | $1,102,789.6 | 11 | $85,060.5 | 310.4 | $1,339,806.3 |
332 | 62 | $283,323 | $76,402.6 | 273.0 | $260,697.3 | 12 | $58,021.6 | 296.5 | $304,894.3 |
333 | 44 | $510,227 | $101,412.0 | 283.7 | $319,145.5 | 13 | $74,514.0 | 277.5 | $287,117.9 |
334 | 91 | $366,560 | $114,887.7 | 269.1 | $259,937.9 | 36 | $99,082.8 | 273.2 | $238,375.0 |
335 | 67 | $413,478 | $100,475.4 | 262.5 | $262,235.4 | 22 | $84,075.5 | 266.1 | $310,289.3 |
336 | 192 | $507,995 | $137,830.4 | 265.1 | $529,175.4 | 85 | $114,790.4 | 254.8 | $282,766.1 |
337 | 23 | $160,913 | $55,799.8 | 275.0 | $165,283.6 | 15 | $44,507.3 | 270.8 | $189,541.1 |
339 | 68 | $342,838 | $92,782.5 | 296.9 | $249,207.2 | 23 | $85,682.2 | 258.7 | $163,623.9 |
HCT/Yes—Set 1— | HCT/No—Set 2— | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
EAS | N | Average Employees | Annual Wages per Employee | Annual Average Sales per Year ([000 of MXN]) | N | Average Employees | Annual Wages per Employee | Annual Average Sales per Year ([000 of MXN]) | t Student Wages per Employee | t Student Sales |
311 | 37 | 6.9 (SD = 1.7) | 83,720 (SD = 27,347) | 6379.257 (SD = 4081.92) | 509 | 4.8 (SD = 1.4) | 47,007 (SD = 19,421) | 1179.627 (SD = 581.25) | t (544) = 10.76 * | t (544) = 25.64 * |
312 | 21 | 5.5 (SD = 2.2) | 76,933 (SD = 30,458) | 3501.933 (SD = 3365.73) | 134 | 3.5 (SD = 1.3) | 48,683 (SD = 22,874) | 613.679 (SD = 323.20) | t (153) = 5.07 * | t (153) = 9.82 * |
313 | 7 | 9 (SD = 0.9) | 102,270 (SD = 40,820) | 9012 (SD = 4032.39) | 103 | 5.3 (SD = 1.9) | 47,693 (SD = 18,137) | 1296.331 (SD = 762.71) | t (108) = 10.15 * | t (108) = 16.40 * |
314 | 4 | 7.5 (SD = 2.4) | 95,378 (SD = 94,443) | 1936 (SD = 1801.42) | 69 | 5.5 (SD = 1.6) | 63,680 (SD = 20,959) | 1815.551 (SD = 691.81) | t (71) = 2.18 * | t (71) = 0.30 |
315 | 12 | 7.2 (SD = 1.9) | 90,663 (SD = 28,592) | 9053.583 (SD = 6649.70) | 142 | 4.3 (SD = 1.7) | 58,903 (SD = 22,776) | 915.007 (SD = 439.04) | t (152) = 4.54 * | t (152) = 14.73 * |
316 | 8 | 5.3 (SD = 1) | 81,313 (SD = 20,810) | 1950 (SD = 1152.20) | 113 | 5.5 (SD = 1.8) | 55,664 (SD = 16,120) | 1402.330 (SD = 902.74) | t (119) = 4.27 * | t (119) = 1.63 * |
321 | 8 | 6 (SD = 1.6) | 68,111 (SD = 23,762) | 5988.5 (SD = 2960.41) | 154 | 3.8 (SD = 1.7) | 50,103 (SD = 24,294) | 862.344 (SD = 597.68) | t (160) = 2.05 * | t (160) = 16.91 * |
322 | 4 | 5.2 (SD = 2.9) | 85,385 (SD = 37,979) | 2689.667 (SD = 216.57) | 45 | 6 (SD = 1.5) | 59,897 (SD = 18,783) | 1596.651 (SD = 849.92) | t (47) = 2.38 | t (47) = 2.54 * |
323 | 14 | 5.9 (SD = 1.1) | 58,080 (SD = 27,483) | 2714 (SD = 2195.11) | 64 | 3 (SD = 1) | 56,601 (SD = 21,778) | 622.984 (SD = 278.68) | t (76) = 0.22 | t (76) = 7.52 * |
324 | 4 | 8.3 (SD = 0.6) | 107,720 (SD = 69,774) | 4987 (SD = 1347) | 10 | 5.1 (SD = 2) | 60,964 (SD = 28,428) | 1373.5 (SD = 1,110.26) | t (12) = 1.85 * | t (12) = 5.20 * |
325 | 13 | 2 (SD = 0.9) | 351,716 (SD = 214,637) | 49,418.5 (SD = 36,918.12) | 73 | 4.1 (SD = 1.8) | 69,582 (SD = 31,135) | 1064.459 (SD = 794.17) | t (84) = 10.89 * | t (84) = 11.50 * |
326 | 20 | 5.1 (SD = 2) | 144,448 (SD = 51,387) | 3915.364 (SD = 1493.57) | 128 | 4.2 (SD = 1.7) | 63,387 (SD = 25,308) | 1049.411 (SD = 696.58) | t (146) = 11.27 * | t (146) = 14.13 * |
327 | 36 | 5.7 (SD = 1.5) | 195,772 (SD = 66,172) | 11,881.250 (SD = 3926.16) | 174 | 4.1 (SD = 1.7) | 58,535 (SD = 27,895) | 782.434 (SD = 496.48) | t (208) = 20.15 * | t (208) = 36.24 * |
331 | 4 | 5.3 (SD = 1.7) | 347,143 (SD = 178,454) | 71,202.350 (SD = 64,880.67) | 46 | 4 (SD = 1.7) | 54,310 (SD = 22,228) | 868.913 (SD = 434.98) | t (48) = 11.34 * | t (48) = 8.32 * |
332 | 23 | 4.4 (SD = 1.8) | 127,502 (SD = 54,480) | 5269.5 (SD = 3297.11) | 178 | 2.4 (SD = 1.6) | 71,356 (SD = 48,301) | 676.344 (SD = 492.58) | t (199) = 5.17 * | t (199) = 17.41 * |
333 | 15 | 6.4 (SD = 2.4) | 93,853 (SD = 32,524) | 5826.560 (SD = 2731.85) | 77 | 4.8 (SD = 1.4) | 68,517 (SD = 30,296) | 1196.636 (SD = 695.64) | t (90) = 2.93 * | t (90) = 11.57 * |
334 | 4 | 5.8 (SD = 0.5) | 114,478 (SD = 65,589) | 3655.250 (SD = 2478.25) | 53 | 4.3 (SD = 1.8) | 74,458 (SD = 33,458) | 1285.442 (SD = 701.16) | t (55) = 2.15 * | t (55) = 5.11 * |
335 | 6 | 6.7 (SD = 2) | 161,720 (SD = 57,030) | 4270.6 (SD = 327.50) | 50 | 4 (SD = 1.6) | 60,888 (SD = 32,048) | 969.26 (SD = 824.01) | t (54) = 6.65 * | t (54) = 9.66 * |
336 | 11 | 3.2 (SD = 1.1) | 210,469 (SD = 173,147) | 2793.75 (SD = 1251.30) | 78 | 4.4 (SD = 1.6) | 65,960 (SD = 25,945) | 1288.2693 (SD = 765.91) | t (87) = 7.06 * | t (87) = 5.59 * |
337 | 8 | 6.3 (SD = 1.1) | 76,818 (SD = 25,542) | 3599.286 (SD = 1935.42) | 81 | 4.6 (SD = 0.9) | 44,498 (SD = 21,877) | 818.876 (SD = 492.22) | t (87) = 3.93 * | t (87) = 10.37 * |
339 | 15 | 6 (SD = 2.1) | 68,490 (SD = 23,065) | 3371.286 (SD = 1137.52) | 129 | 5.1 (SD = 1.4) | 60,092 (SD = 20,820) | 1215.921 (SD = 675.29) | t (142) = 1.46 | t (142) = 10.77 * |
HCT/Yes—Set 3— | HCT/No—Set 4— | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
EAS | N | Average Employees | Annual Wages per Employee | Annual Average Sales per Year ([000 of MXN]) | N | Average Employees | Annual Wages per Employee | Annual Average Sales per Year ([000 of MXN]) | t Student Wages per Employee | t Student Sales |
311 | 608 | 521.4 (SD = 125.5) | 141,303 (SD = 43,574) | 449,446.485 (SD = 225,444.282) | 264 | 476.9 (SD = 122.7) | 122,628 (SD = 40,997) | 272,072.462 (SD = 131,171.846) | t (870) = 5.92 * | t (870) = 11.93 * |
312 | 148 | 532.6 (SD = 131.3) | 150,676 (SD = 46,034) | 542,262.331 (SD = 328,690.170) | 61 | 465.9 (SD = 84.8) | 140,967 (SD = 35,510) | 333,689.426 (SD = 204,532.897) | t (207) = 1.48 | t (207) = 4.60 * |
313 | 115 | 474.5 (SD = 107.9) | 147,713 (SD = 42,662) | 365,709.565 (SD = 138,858.837) | 59 | 480.7 (SD = 122.7) | 113,569 (SD = 33,299) | 231,402.288 (SD = 82,801.115) | t (172) = 5.36 * | t (172) = 6.83 * |
314 | 51 | 468.3 (SD = 124.8) | 141,536 (SD = 49,700) | 334,678.853 (SD = 160,362.891) | 18 | 364.9 (SD = 53.9) | 98,433 (SD = 14,624) | 189,447.5 (SD = 84,976.839) | t (67) = 3.61 * | t (67) = 3.65 * |
315 | 60 | 642.1 (SD = 144.1) | 89,447 (SD = 21,825) | 147,562.593 (SD = 36,757.112) | 40 | 524.5 (SD = 106.1) | 79,437 (SD = 18,582) | 110,854.9 (SD = 35,918.245) | t (98) = 2.38 * | t (98) = 4.94 * |
316 | 31 | 469.5 (SD = 108) | 83,101 (SD = 22,238) | 171,229.065 (SD = 42,402.847) | 18 | 461.7 (SD = 139.4) | 96,238 (SD = 43,084) | 192,398.333 (SD = 65,697.177) | t (47) = −1.41 | t (47) = −1.37 |
321 | 5 | 447.2 (SD = 83.4) | 97,492 (SD = 36,606) | 389,412 (SD = 190,732.057) | 3 | 647 (SD = 167) | 89,547 (SD = 73,212) | 440,158 (SD = 381,464.114) | t (2) = 0.18 * | t (2) = −0.21 * |
322 | 36 | 397.1 (SD = 66.5) | 192,776 (SD = 34,066) | 812,872.889 (SD = 192,339.787) | 18 | 490.9 (SD = 98.9) | 171,878 (SD = 40,902) | 1,035,219.944 (SD = 450,173.286) | t (52) = 1.99 * | t (52) = −2.55 |
323 | 12 | 438.2 (SD = 47.6) | 139,086 (SD = 40,197) | 182,428.833 (SD = 80,695.894) | 6 | 313.7 (SD = 45.5) | 129,447 (SD = 24,874) | 166,881.666 (SD = 38,573.758) | t (16) = 0.53 | t (16) = 0.44 |
324 | 6 | 660.3 (SD = 230.9) | 203,094 (SD = 66,651) | 1,571,015 (SD = 709,867.650) | 7 | 3881.1 (SD = 578.1) | 519,996 (SD = 76,140) | 118,405,378.429 (SD = 13,659,482.544) | t (11) = −7.91 | t (11) = −20.79 |
325 | 65 | 507.7 (SD = 124.7) | 260,820 (SD = 75,281) | 1,222,906.092 (SD = 612,634.752) | 31 | 514.8 (SD = 135.9) | 267,630 (SD = 117,999) | 997,483.388 (SD = 727,550.361) | t (94) = −0.34 | t (94) = 1.59 |
326 | 67 | 408.4 (SD = 69.6) | 140,698 (SD = 31,675) | 258,803.985 (SD = 117,053.145) | 34 | 413.8 (SD = 67.9) | 136,4992 (SD = 26,632) | 241,054.676 (SD = 103,581.556) | t (99) = 0.66 | t (99) = 0.75 |
327 | 22 | 458.1 (SD = 103.7) | 224,871 (SD = 84,188) | 544,489.909 (SD = 393,548.433) | 16 | 419.4 (SD = 101) | 124,088 (SD = 26,603) | 260,075.667 (SD = 146,586.314) | t (36) = 4.61 * | t (36) = 2.75 * |
331 | 25 | 483.5 (SD = 104.2) | 184,686 (SD = 72,608) | 1,102,789.56 (SD = 939,653.252) | 11 | 421.3 (SD = 123.4) | 201,899 (SD = 57,163) | 1,339,806.272 (SD = 783,298.827) | t (34) = −0.70 | t (34) = −0.83 |
332 | 62 | 421.2 (SD = 75.9) | 181,376 (SD = 38,769) | 260,697.274 (SD = 110,550.096) | 12 | 375.6 (SD = 72) | 154,484 (SD = 54,213) | 304,894.25 (SD = 157,909.320) | t (72) = 2.05 * | t (72) = −1.18 |
333 | 44 | 483.4 (SD = 116.4) | 209,789 (SD = 67,673) | 319,145.523 (SD = 97,003.389) | 13 | 474 (SD = 90.2) | 157,203 (SD = 74,385) | 287,117.923 (SD = 176,555.031) | t (55) = 2.41 * | t (55) = 0.85 |
334 | 91 | 740.4 (SD = 254.7) | 155,173 (SD = 54,097) | 259,937.945 (SD = 98,727.606) | 36 | 622.8 (SD = 202.1) | 159,091 (SD = 48,571) | 238,374.972 (SD = 85,468.506) | t (125) = −0.58 | t (125) = 1.15 |
335 | 67 | 656.4 (SD = 161.9) | 153,076 (SD = 33,837) | 262,235.403 (SD = 80,897.799) | 22 | 555.4 (SD = 141.4) | 151,376 (SD = 41,299) | 310,289.273 (SD = 177,631.239) | t (87) = 0.19 | t (87) = −1.74 |
336 | 192 | 864.7 (SD = 304.6) | 159,403 (SD = 50,555) | 529,175.351 (SD = 222,897.198) | 85 | 938.2 (SD = 380.1) | 122,348 (SD = 48,631) | 282,766.107 (SD = 129,216.051) | t (275) = 5.69 * | t (275) = 9.50 * |
337 | 23 | 447.4 (SD = 132.3) | 124,726 (SD = 28,188) | 165,283.609 (SD = 38,042.089) | 15 | 399.5 (SD = 85.5) | 111,407 (SD = 39,838) | 189,541.071 (SD = 101,050.865) | t (36) = 1.21 | t (36) = −1.05 |
339 | 68 | 695.9 (SD = 276.8) | 133,331 (SD = 56,867) | 249,207.191 (SD = 86,374.550) | 23 | 627.4 (SD = 219.8) | 136,560 (SD = 45,976) | 163,623.870 (SD = 66,581.340) | t (89) = −0.25 | t (89) = 4.33 * |
HCT/Yes—Set 1— | HCT/No—Set 2— | |||||||
---|---|---|---|---|---|---|---|---|
EAS | OTE | PTE | SE | Returns to Scale | OTE | PTE | SE | Returns to Scale |
311 | 0.24 | 0.90 | 0.27 | IRS | 1 | 1 | 1 | CRS |
312 | 0.34 | 1 | 0.34 | IRS | 0.69 | 1 | 0.69 | IRS |
313 | 0.46 | 0.88 | 0.53 | IRS | 0.98 | 1 | 0.98 | IRS |
314 | 0.14 | 1 | 0.14 | IRS | 1 | 1 | 1 | CRS |
315 | 0.42 | 0.99 | 0.43 | IRS | 0.70 | 0.97 | 0.72 | IRS |
316 | 0.11 | 0.98 | 0.11 | IRS | 0.88 | 0.97 | 0.91 | IRS |
321 | 0.4 | 1 | 0.40 | IRS | 0.85 | 1 | 0.85 | IRS |
322 | 0.08 | 1 | 0.08 | IRS | 0.92 | 1 | 0.92 | IRS |
323 | 0.18 | 1 | 0.18 | IRS | 0.70 | 1 | 0.70 | IRS |
324 | 0.22 | 0.75 | 0.30 | IRS | 0.85 | 1 | 0.85 | IRS |
325 | 1 | 1 | 1 | CRS | 0.71 | 0.93 | 0.76 | IRS |
326 | 0.21 | 0.96 | 0.22 | IRS | 0.76 | 0.96 | 0.80 | IRS |
327 | 1 | 1 | 1 | CRS | 0.62 | 0.96 | 0.64 | IRS |
331 | 1 | 1 | 1 | CRS | 0.76 | 0.94 | 0.81 | IRS |
332 | 0.23 | 0.91 | 0.26 | IRS | 0.74 | 1 | 0.74 | IRS |
333 | 0.16 | 0.94 | 0.17 | IRS | 0.71 | 0.98 | 0.72 | IRS |
334 | 0.58 | 1 | 0.58 | IRS | 0.76 | 0.95 | 0.80 | IRS |
335 | 0.09 | 0.94 | 0.10 | IRS | 0.76 | 1 | 0.76 | IRS |
336 | 0.09 | 0.93 | 0.09 | IRS | 0.85 | 0.95 | 0.90 | IRS |
337 | 0.17 | 0.89 | 0.19 | IRS | 0.75 | 0.92 | 0.82 | IRS |
339 | 0.21 | 0.97 | 0.21 | IRS | 0.76 | 0.96 | 0.79 | IRS |
HCT/Yes—Set 3— | HCT/No—Set 4— | |||||||
---|---|---|---|---|---|---|---|---|
EAS | OTE | PTE | SE | Returns to Scale | OTE | PTE | SE | Returns to Scale |
311 | 0.58 | 0.94 | 0.62 | IRS | 0.08 | 0.99 | 0.08 | IRS |
312 | 0.55 | 0.92 | 0.59 | IRS | 0.09 | 0.90 | 0.10 | IRS |
313 | 0.55 | 0.94 | 0.59 | IRS | 0.07 | 0.88 | 0.08 | IRS |
314 | 0.59 | 1 | 0.59 | IRS | 0.09 | 1 | 0.09 | IRS |
315 | 0.39 | 1 | 0.39 | IRS | 0.05 | 1 | 0.05 | IRS |
316 | 0.4 | 1 | 0.40 | IRS | 0.07 | 0.96 | 0.08 | IRS |
321 | 1 | 1 | 1 | CRS | 0.13 | 0.88 | 0.15 | IRS |
322 | 0.86 | 0.93 | 0.93 | IRS | 0.21 | 0.74 | 0.28 | IRS |
323 | 0.28 | 0.9 | 0.31 | IRS | 0.07 | 0.89 | 0.08 | IRS |
324 | 1 | 1 | 1 | CRS | 1 | 1 | 1 | CRS |
325 | 1 | 1 | 1 | CRS | 0.12 | 0.88 | 0.14 | IRS |
326 | 0.37 | 0.90 | 0.42 | IRS | 0.07 | 0.86 | 0.08 | IRS |
327 | 0.7 | 0.89 | 0.78 | IRS | 0.09 | 0.8 | 0.11 | IRS |
331 | 1 | 1 | 1 | CRS | 0.27 | 0.84 | 0.32 | IRS |
332 | 0.33 | 0.97 | 0.34 | IRS | 0.09 | 0.87 | 0.10 | IRS |
333 | 0.3 | 0.93 | 0.32 | IRS | 0.07 | 0.93 | 0.07 | IRS |
334 | 0.28 | 0.98 | 0.28 | IRS | 0.04 | 0.94 | 0.04 | IRS |
335 | 0.27 | 1 | 0.27 | IRS | 0.06 | 0.97 | 0.07 | IRS |
336 | 0.53 | 1 | 0.53 | IRS | 0.04 | 1 | 0.04 | IRS |
337 | 0.29 | 0.96 | 0.30 | IRS | 0.04 | 0.96 | 0.08 | IRS |
339 | 0.27 | 0.89 | 0.30 | IRS | 0.03 | 0.99 | 0.03 | IRS |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Carmona-Benítez, R.B.; Rosales-Córdova, A. Efficiency Analysis of Human Capital Investments at Micro and Large-Sized Enterprises in the Manufacturing Sector Using Data Envelopment Analysis. Economies 2024, 12, 213. https://doi.org/10.3390/economies12080213
Carmona-Benítez RB, Rosales-Córdova A. Efficiency Analysis of Human Capital Investments at Micro and Large-Sized Enterprises in the Manufacturing Sector Using Data Envelopment Analysis. Economies. 2024; 12(8):213. https://doi.org/10.3390/economies12080213
Chicago/Turabian StyleCarmona-Benítez, Rafael Bernardo, and Aldebarán Rosales-Córdova. 2024. "Efficiency Analysis of Human Capital Investments at Micro and Large-Sized Enterprises in the Manufacturing Sector Using Data Envelopment Analysis" Economies 12, no. 8: 213. https://doi.org/10.3390/economies12080213
APA StyleCarmona-Benítez, R. B., & Rosales-Córdova, A. (2024). Efficiency Analysis of Human Capital Investments at Micro and Large-Sized Enterprises in the Manufacturing Sector Using Data Envelopment Analysis. Economies, 12(8), 213. https://doi.org/10.3390/economies12080213