How Heterogeneous Are the Determinants of Total Factor Productivity in Manufacturing Sectors? Panel-Data Evidence from Vietnam
Abstract
:1. Introduction
2. Literature Review
3. Data and Methods
3.1. Data
3.2. TFP Estimation
3.3. Model Specification
4. Empirical Results
4.1. TFP Estimation Results
4.2. Determinants of TFP
4.3. Heterogeneity of TFP
4.3.1. Labor Heterogeneity
4.3.2. Capital Stock Heterogeneity
5. Conclusions and Implications
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Ackerberg, Dan, Kevin Caves, and Garth Frazer. 2006. Structural Estimation of Production Functions. Los Angeles: Department of Economics, UCLA. [Google Scholar]
- Aghion, Philippe, and Peter Howitt. 2006. Appropriate growth policy: A unifying framework. Journal of the European Economic Association 4: 269–314. [Google Scholar] [CrossRef] [Green Version]
- Ali, Merima, and Jack Peerlings. 2011. Value added of cluster membership for micro enterprises of the handloom sector in Ethiopia. World Development 39: 363–74. [Google Scholar] [CrossRef]
- Arellano, Manuel, and Stephen Bond. 1991. Some tests of specification for panel data: Monte Carlo evidence and an application to employment equations. The Review of Economic Studies 58: 277–97. [Google Scholar] [CrossRef] [Green Version]
- Aw, Bee Yan, Mark J. Roberts, and Daniel Yi Xu. 2008. R&D investments, exporting, and the evolution of firm productivity. American Economic Review 98: 451–56. [Google Scholar]
- Barney, Jay B. 2000. Firm resources and sustained competitive advantage. In Economics Meets Sociology in Strategic Management. Bingley: Emerald Group Publishing Limited, pp. 203–27. [Google Scholar]
- Barney, Jay B. 2001. Is the resource-based “view” a useful perspective for strategic management research? Yes. Academy of Management Review 26: 41–56. [Google Scholar]
- Bartel, Ann, Casey Ichniowski, and Kathryn Shaw. 2007. How does information technology affect productivity? Plant-level comparisons of product innovation, process improvement, and worker skills. The Quarterly Journal of Economics 122: 1721–58. [Google Scholar] [CrossRef] [Green Version]
- Bartelsman, Eric, John Haltiwanger, and Stefano Scarpetta. 2009. Cross-Country Differences in Productivity: The Role of Allocation and Selection. Discussion Paper No. 4578. Bonn: IZA Institute of Labor Economics. [Google Scholar]
- Bernard, Andrew B., and J. Bradford Jensen. 1999. Exporting and Productivity. No. w7135. Cambridge: National Bureau of Economic Research. [Google Scholar]
- Bernard, Andrew B., Stephen J. Redding, and Peter K. Schott. 2010. Multiple-product firms and product switching. American Economic Review 100: 70–97. [Google Scholar] [CrossRef] [Green Version]
- Bloom, Nicholas, and John Van Reenen. 2007. Measuring and explaining management practices across firms and countries. The Quarterly Journal of Economics 122: 1351–408. [Google Scholar] [CrossRef]
- Bloom, Nicholas, and John Van Reenen. 2010. Why do management practices differ across firms and countries? Journal of Economic Perspectives 24: 203–24. [Google Scholar] [CrossRef] [Green Version]
- Blundell, Richard, and Stephen Bond. 1998. Initial conditions and moment restrictions in dynamic panel data models. Journal of Econometrics 87: 115–43. [Google Scholar] [CrossRef] [Green Version]
- Botrić, Valerija, Ljiljana Božić, and Tanja Broz. 2017. Explaining firm-level total factor productivity in post-transition: Manufacturing vs. services sector. Journal of International Studies 10: 77–90. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bridgman, Benjamin, Shi Qi, and James Andrew Schmitz. 2009. The Economic Performance of Cartels: Evidence from the New Deal US Sugar Manufacturing Cartel, 1934–74. Minneapolis: Federal Reserve Bank of Minneapolis, vol. 437. [Google Scholar]
- Brock, William A., and Steven N. Durlauf. 2001. What have we learned from a decade of empirical research on growth? Growth empirics and reality. The World Bank Economic Review 15: 229–72. [Google Scholar] [CrossRef]
- Brown, J. David, John S. Earle, and Almos Telegdy. 2006. The productivity effects of privatization: Longitudinal estimates from Hungary, Romania, Russia, and Ukraine. Journal of Political Economy 114: 61–99. [Google Scholar] [CrossRef] [Green Version]
- Cao, Lizhan, Zhongying Qi, and Junxia Ren. 2017. China’s industrial total-factor energy productivity growth at sub-industry level: A two-step stochastic metafrontier Malmquist index approach. Sustainability 9: 1384. [Google Scholar] [CrossRef] [Green Version]
- Castellacci, Fulvio. 2007. Technological regimes and sectoral differences in productivity growth. Industrial and Corporate Change 16: 1105–45. [Google Scholar] [CrossRef] [Green Version]
- Castellani, Davide, and Giorgia Giovannetti. 2010. Productivity and the international firm: Dissecting heterogeneity. Journal of Economic Policy Reform 13: 25–42. [Google Scholar] [CrossRef]
- Castellani, Davide, Francesco Serti, and Chiara Tomasi. 2010. Firms in international trade: Importers’ and exporters’ heterogeneity in Italian manufacturing industry. World Economy 33: 424–57. [Google Scholar] [CrossRef]
- Clerides, Sofronis K., Saul Lach, and James R. Tybout. 1998. Is learning by exporting important? Micro-dynamic evidence from Colombia, Mexico, and Morocco. The Quarterly Journal of Economics 113: 903–47. [Google Scholar] [CrossRef] [Green Version]
- Constantini, James A., and Marc J. Melitz. 2008. The dynamics of firm-level adjustment to trade liberalization. In The Organization of Firms in a Global Economy. Edited by E. Helpman, D. Marin and T. Verdier. Cambridge: Harvard University Press. [Google Scholar]
- Dhawan, Rajeev. 2001. Firm size and productivity differential: Theory and evidence from a panel of US firms. Journal of Economic Behavior & Organization 44: 269–93. [Google Scholar]
- Evans, Paul. 1998. Using panel data to evaluate growth theories. International Economic Review 39: 295–306. [Google Scholar] [CrossRef]
- Fabrizio, Kira R., Nancy L. Rose, and Catherine D. Wolfram. 2007. Do markets reduce costs? Assessing the impact of regulatory restructuring on US electric generation efficiency. American Economic Review 97: 1250–77. [Google Scholar] [CrossRef] [Green Version]
- Fernandes, Ana M. 2008. Firm Productivity in Bangladesh Manufacturing Industries. World Development 36: 1725–44. [Google Scholar] [CrossRef] [Green Version]
- Forbes, Silke J., and Mara Lederman. 2010. Does vertical integration affect firm performance? Evidence from the airline industry. The Rand Journal of Economics 41: 765–90. [Google Scholar] [CrossRef] [Green Version]
- Foster, Lucia, John Haltiwanger, and Chad Syverson. 2008. Reallocation, firm turnover, and efficiency: Selection on productivity or profitability? American Economic Review 98: 394–425. [Google Scholar] [CrossRef] [Green Version]
- Giang, Mai Huong, Tran Dang Xuan, Bui Huy Trung, Mai Thanh Que, and Yuichiro Yoshida. 2018. Impact of investment climate on total factor productivity of manufacturing firms in Vietnam. Sustainability 10: 4815. [Google Scholar] [CrossRef] [Green Version]
- Giang, Mai Huong, Bui Huy Trung, Yuichiro Yoshida, Tran Dang Xuan, and Mai Thanh Que. 2019. The Causal Effect of Access to Finance on Productivity of Small and Medium Enterprises in Vietnam. Sustainability 11: 5451. [Google Scholar] [CrossRef] [Green Version]
- Goedhuys, Micheline. 2007. Learning, product innovation, and firm heterogeneity in developing countries; Evidence from Tanzania. Industrial and Corporate Change 16: 269–92. [Google Scholar] [CrossRef] [Green Version]
- Harper, Michael J. 2007. Technology and the theory of vintage aggregation. In Hard-to-Measure Goods and Services: Essays in Honor of Zvi Griliches. Chicago: University of Chicago Press, pp. 99–120. [Google Scholar]
- Harris, Richard, and John Moffat. 2015. Plant-level determinants of total factor productivity in Great Britain, 1997–2008. Journal of Productivity Analysis 44: 1–20. [Google Scholar] [CrossRef] [Green Version]
- Harris, Richard I.D., and Stephen Drinkwater. 2000. UK plant and machinery capital stocks and plant closures. Oxford Bulletin of Economics and Statistics 62: 243–43. [Google Scholar] [CrossRef]
- Head, Keith, and John Ries. 2003. Heterogeneity and the FDI versus export decision of Japanese manufacturers. Journal of the Japanese and International Economies 17: 448–67. [Google Scholar] [CrossRef] [Green Version]
- Hsieh, Chang-Tai, and Peter J. Klenow. 2009. Misallocation and manufacturing TFP in China and India. The Quarterly Journal of Economics 124: 1403–48. [Google Scholar] [CrossRef] [Green Version]
- Hulten, Charles R., and Frank C. Wykoff. 1980. The Measurement of Economic Depreciation. Washington: Urban Institute. [Google Scholar]
- Hulten, Charles R. 1992. Growth Accounting When Technical Change Is Embodied in Capital. No. w3971. Cambridge: National Bureau of Economic Research. [Google Scholar]
- Ilmakunnas, Pekka, Mika Maliranta, and Jari Vainiomäki. 2004. The roles of employer and employee characteristics for plant productivity. Journal of Productivity Analysis 21: 249–76. [Google Scholar] [CrossRef] [Green Version]
- İmrohoroğlu, Ayşe, and Şelale Tüzel. 2014. Firm-level productivity, risk, and return. Management Science 60: 2073–90. [Google Scholar] [CrossRef] [Green Version]
- Isaksson, Anders. 2007. Determinants of Total Factor Productivity: A Literature Review. Woking Paper. Vienna: Research and Statistics Branch, UNIDO. [Google Scholar]
- Jorgenson, Dale W., Mun S. Ho, and Kevin J. Stiroh. 2005. Productivity, Volume 3: Information technology and the American growth Resurgence. Cambridge: MIT Press, Books 3. [Google Scholar]
- Jorgenson, Dale W., Mun S. Ho, and Kevin J. Stiroh. 2008. A retrospective look at the US productivity growth resurgence. Journal of Economic Perspectives 22: 3–24. [Google Scholar] [CrossRef] [Green Version]
- Jovanovic, Boyan. 1982. Selection and the Evolution of Industry. Econometrica: Journal of the Econometric Society 50: 649–70. [Google Scholar] [CrossRef]
- Jovanovic, Boyan, and Y. Nyarko. 1994. Learning by Doing and the Choice of Technology. Cambridge: National Bureau of Economic Research. [Google Scholar]
- Jovanovic, Boyan, and Y. Nyarko. 1996. Learning by doing and the choice of technology. Econometrica 64: 1299–310. [Google Scholar] [CrossRef]
- Jung, Moosup, and Keun Lee. 2010. Sectoral systems of innovation and productivity catch-up: Determinants of the productivity gap between Korean and Japanese firms. Industrial and Corporate Change 19: 1037–69. [Google Scholar] [CrossRef]
- Kendrick, John W. 1961. Productivity Trends in the United States. Princeton: Princeton University Press. [Google Scholar]
- Kim, Sangho. 2018. Firm heterogeneity in sources of total factor productivity growth for Japanese manufacturing firms. Applied Economics 50: 6301–15. [Google Scholar] [CrossRef]
- Kim, Soo-Il, Munisamy Gopinath, and Hanho Kim. 2009. High productivity before or after exports? An empirical analysis of Korean manufacturing firms. Journal of Asian Economics 20: 410–18. [Google Scholar] [CrossRef]
- Kreuser, Carl Friedrich, and Carol Newman. 2018. Total factor productivity in South African manufacturing firms. South African Journal of Economics 86: 40–78. [Google Scholar] [CrossRef] [Green Version]
- Lee, Frank C, and Jianmin Tang. 2001. Multifactor productivity disparity between Canadian and US manufacturing firms. Journal of Productivity Analysis 15: 115–28. [Google Scholar]
- Levinsohn, James, and Amil Petrin. 2003. Estimating production functions using inputs to control for unobservables. The Review of Economic Studies 70: 317–41. [Google Scholar] [CrossRef]
- Lu, Jiangyong, Yi Lu, Yi Sun, and Zhigang Tao. 2017. Intermediaries, firm heterogeneity and exporting behaviour. The World Economy 40: 1381–404. [Google Scholar] [CrossRef]
- Maksimovic, Vojislav, and Gordon Phillips. 2001. The market for corporate assets: Who engages in mergers and asset sales and are there efficiency gains? The Journal of Finance 56: 2019–65. [Google Scholar] [CrossRef] [Green Version]
- Malerba, Franco. 1992. Learning by firms and incremental technical change. The Economic Journal 102: 845–59. [Google Scholar] [CrossRef]
- Martin, Philippe, Thierry Mayer, and Florian Mayneris. 2011. Spatial concentration and plant-level productivity in France. Journal of Urban Economics 69: 182–95. [Google Scholar] [CrossRef] [Green Version]
- Melitz, Marc J. 2003. The impact of trade on intra-industry reallocations and aggregate industry productivity. Econometrica 71: 1695–725. [Google Scholar] [CrossRef] [Green Version]
- Mohnen, Pierre, and Bronwyn H Hall. 2013. Innovation and productivity: An update. Eurasian Business Review 3: 47–65. [Google Scholar]
- Newman, Carol, John Rand, Theodore Talbot, and Finn Tarp. 2015. Technology transfers, foreign investment and productivity spillovers. European Economic Review 76: 168–87. [Google Scholar] [CrossRef] [Green Version]
- Ngo, Quang Thanh, and Canh Thi Nguyen. 2019. Do export transitions differently affect firm productivity? Evidence across Vietnamese manufacturing sectorss. Post-Communist Economies, 1–27. [Google Scholar] [CrossRef]
- Ngo, Quang Thanh, and Quang Van Tran. 2020. Firm heterogeneity and total factor productivity: New panel-data evidence from Vietnamese manufacturing firms. Management Science Letters 10: 1505–12. [Google Scholar] [CrossRef]
- Nichter, Simeon, and Lara Goldmark. 2009. Small firm growth in developing countries. World Development 37: 1453–64. [Google Scholar] [CrossRef]
- Oliner, Stephen D., Daniel E. Sichel, and Kevin J. Stiroh. 2007. Explaining a productive decade. Brookings Papers on Economic Activity 2007: 81–137. [Google Scholar] [CrossRef] [Green Version]
- Pakes, Ariel, and Richard Ericson. 1998. Empirical implications of alternative models of firm dynamics. Journal of Economic Theory 79: 1–45. [Google Scholar] [CrossRef] [Green Version]
- Penrose, Edith Tilton. 1959. The Theory of the Growth of the Firm. New York: Oxford University Press. [Google Scholar]
- Roodman, David. 2009. How to do xtabond2: An introduction to difference and system GMM in Stata. The Stata Journal 9: 86–136. [Google Scholar] [CrossRef] [Green Version]
- Söderbom, Måns, and Francis Teal. 2004. Size and efficiency in African manufacturing firms: Evidence from firm-level panel data. Journal of Development Economics 73: 369–94. [Google Scholar] [CrossRef] [Green Version]
- Sakellaris, Plutarchos, and Daniel J. Wilson. 2004. Quantifying embodied technological change. Review of Economic Dynamics 7: 1–26. [Google Scholar] [CrossRef] [Green Version]
- Satpathy, Lopamudra D, Bani Chatterjee, and Jitendra Mahakud. 2017. Firm Characteristics and Total Factor Productivity: Evidence from Indian Manufacturing Firms. Margin: The Journal of Applied Economic Research 11: 77–98. [Google Scholar] [CrossRef]
- Syverson, Chad. 2011. What determines productivity? Journal of Economic Literature 49: 326–65. [Google Scholar] [CrossRef] [Green Version]
- Thornton, Rebecca Achee, and Peter Thompson. 2001. Learning from experience and learning from others: An exploration of learning and spillovers in wartime shipbuilding. American Economic Review 91: 1350–68. [Google Scholar] [CrossRef]
- Tornatzky, L., and Mitchell Fleischer. 1990. The Process of Technology Innovation. Lexington: Lexington Books, p. 165. [Google Scholar]
- Tran, Viet T., Trung Thanh Nguyen, and Nguyet T. M. Tran. 2019. Gender difference in access to local finance and firm performance: Evidence from a panel survey in Vietnam. Economic Analysis and Policy 63: 150–64. [Google Scholar] [CrossRef]
- United Nations Statistical Division. 2008. International Standard Industrial Classification of All Economic Activities (ISIC). New York: United Nations Publications. [Google Scholar]
- Van Biesebroeck, Johannes. 2003. Productivity dynamics with technology choice: An application to automobile assembly. The Review of Economic Studies 70: 167–98. [Google Scholar] [CrossRef]
- Van Biesebroeck, Johannes. 2005. Firm size matters: Growth and productivity growth in African manufacturing. Economic Development and Cultural Change 53: 545–83. [Google Scholar] [CrossRef]
- Venturini, Francesco. 2015. The modern drivers of productivity. Research Policy 44: 357–69. [Google Scholar] [CrossRef] [Green Version]
- Wernerfelt, Birger. 1984. A resource-based view of the firm. Strategic Management Journal 5: 171–80. [Google Scholar] [CrossRef]
- Williamson, Oliver E. 1967. Hierarchical control and optimum firm size. Journal of Political Economy 75: 123–38. [Google Scholar] [CrossRef]
- Xu, Chang, Jianbing Guo, Baodong Cheng, and Yu Liu. 2019. Exports, Misallocation, and Total Factor Productivity of Furniture Enterprises. Sustainability 11: 4892. [Google Scholar] [CrossRef] [Green Version]
Sector | Number of Observations | Value-Added (ln) | Fixed Capital (ln) | Labor (ln) | Raw Material Expenses (ln) | ||||
---|---|---|---|---|---|---|---|---|---|
Mean | Standard Deviation | Mean | Standard Deviation | Mean | Standard Deviation | Mean | Standard Deviation | ||
10: Food products | 5556 | 14.123 | 1.923 | 10.970 | 1.829 | 4.845 | 1.335 | 16.120 | 2.076 |
11: Beverages | 558 | 14.857 | 2.260 | 11.291 | 1.949 | 4.775 | 1.070 | 15.551 | 2.169 |
13: Textiles | 2322 | 13.880 | 1.763 | 10.512 | 1.768 | 4.726 | 1.188 | 15.357 | 1.829 |
14: Wearing apparel | 5208 | 14.755 | 1.622 | 10.261 | 1.481 | 5.896 | 1.327 | 15.341 | 1.622 |
15: Leather and related products | 1746 | 15.359 | 1.770 | 10.910 | 1.808 | 6.427 | 1.616 | 16.069 | 1.790 |
16: Wood and products of wood/cork | 2034 | 13.169 | 1.471 | 9.910 | 1.453 | 4.287 | 1.033 | 14.811 | 1.650 |
17: Paper and paper products | 2016 | 13.704 | 1.523 | 10.612 | 1.437 | 4.403 | 1.041 | 15.486 | 1.437 |
18: Printing and reproduction of recorded media | 1122 | 13.368 | 1.426 | 9.730 | 1.466 | 4.094 | 0.976 | 14.561 | 1.429 |
20: Chemicals and chemical products | 2136 | 14.234 | 1.710 | 11.134 | 1.575 | 4.268 | 1.118 | 15.884 | 1.826 |
21: Pharmaceuticals, medicinal chemicals | 618 | 15.017 | 1.561 | 11.707 | 1.351 | 5.140 | 1.051 | 16.046 | 1.533 |
22: Rubber and plastics products | 3258 | 14.213 | 1.575 | 10.999 | 1.392 | 4.728 | 1.149 | 15.784 | 1.542 |
23: Other non-metallic mineral products | 4332 | 13.799 | 1.684 | 10.583 | 1.664 | 4.710 | 1.116 | 14.887 | 1.829 |
24: Basic metals | 714 | 14.008 | 1.865 | 11.386 | 1.778 | 4.456 | 1.215 | 16.377 | 1.970 |
25: Fabricated metal products | 3828 | 13.577 | 1.654 | 10.512 | 1.510 | 4.251 | 1.142 | 15.151 | 1.601 |
26: Computer, electronic and optical products | 852 | 15.312 | 1.800 | 11.969 | 1.745 | 5.885 | 1.497 | 16.541 | 2.046 |
27: Electrical equipment | 1224 | 14.473 | 1.728 | 11.464 | 1.544 | 4.907 | 1.331 | 16.158 | 1.847 |
28: Not-yet-classified machinery and equipment | 942 | 13.478 | 1.697 | 10.557 | 1.558 | 4.241 | 1.187 | 14.907 | 1.566 |
29: Motor vehicles, trailers and semi-trailers | 522 | 15.176 | 1.757 | 11.946 | 1.512 | 5.393 | 1.244 | 16.575 | 1.802 |
30: Other transport equipment | 654 | 14.759 | 2.071 | 11.645 | 1.803 | 5.219 | 1.390 | 16.165 | 2.025 |
31: Furniture | 2856 | 14.213 | 1.539 | 10.660 | 1.427 | 5.214 | 1.253 | 15.566 | 1.557 |
34: Other manufacturing | 1080 | 14.209 | 1.688 | 10.550 | 1.564 | 5.133 | 1.323 | 15.203 | 1.704 |
VARIABLES | Sector 10 | Sector 11 | Sector 13 | Sector 14 | Sector 15 | Sector 16 | Sector 17 |
Dependent variable: value-added (logarithm) | |||||||
Capital (ln) | 0.517 *** | 0.800 *** | 0.473 *** | 0.0341 | 0.139 *** | 0.389 *** | 0.326 *** |
(0.0513) | (0.145) | (0.0192) | (0.0227) | (0.0362) | (0.0349) | (0.0493) | |
Labor (ln) | 0.712 *** | 0.605 * | 0.755 *** | 1.105 *** | 0.931 *** | 0.901 *** | 1.041 *** |
(0.0724) | (0.314) | (0.0332) | (0.0378) | (0.0385) | (0.0862) | (0.109) | |
Observations | 4865 | 485 | 2010 | 4445 | 1525 | 1820 | 1770 |
Wald test statistic of constant returns to scale | 85.48 | 5.162 | 152.7 | 50.19 | 24.73 | 23.71 | 30.35 |
Sargan–Hansen test statistic | 4.19 × 10−9 | 3.87 × 10−8 | 6.84 × 10−9 | 3.03 × 10−8 | 2.89 × 10−8 | 1.45 × 10−9 | 1.78 × 10−7 |
VARIABLES | Sector 18 | Sector 20 | Sector 21 | Sector 22 | Sector 23 | Sector 24 | Sector 25 |
Capital (ln) | 0.260 *** | 0.621 *** | 0.162 | 0.426 *** | 0.363 *** | 0.476 *** | 0.482 *** |
(0.0596) | (0.0328) | (0.209) | (0.0448) | (0.0659) | (0.0138) | (0.0429) | |
Labor (ln) | 1.117 *** | 0.597 *** | 1.372 *** | 0.789 *** | 0.986 *** | 0.792 *** | 0.490 *** |
(0.179) | (0.0577) | (0.368) | (0.0562) | (0.111) | (0.0215) | (0.108) | |
Observations | 970 | 1825 | 525 | 2765 | 3770 | 620 | 3360 |
Wald test statistic of constant returns to scale | 8.442 | 51.99 | 7.319 | 107.8 | 52.50 | 219.6 | 0.0583 |
Sargan–Hansen test statistic | 4.93 × 10−8 | 9.18 × 10−9 | 6.12 × 10−9 | 1.82 × 10−8 | 6.456 | ||
VARIABLES | Sector 26 | Sector 27 | Sector 28 | Sector 29 | Sector 30 | Sector 31 | Sector 34 |
Capital (ln) | 0.383 *** | 0.576 *** | 0.472 *** | 0.808 *** | 0.326 | 0.223 *** | 0.228 *** |
(0.0528) | (0.0478) | (0.0662) | (0.279) | (0.203) | (0.0680) | (0.0488) | |
Labor (ln) | 0.731 *** | 0.620 *** | 0.707 *** | 0.649 | 1.078 ** | 0.947 *** | 0.925 *** |
(0.0963) | (0.0660) | (0.206) | (0.468) | (0.432) | (0.106) | (0.103) | |
Observations | 740 | 1040 | 810 | 440 | 570 | 2445 | 930 |
Wald test statistic of constant returns to scale | 3.370 | 57.84 | 1.351 | 4.571 | 3.010 | 5.093 | 5.511 |
Sargan–Hansen test statistic | 3.50 × 10−8 | 1.59 × 10−8 | 2.28 × 10−8 | 0.0780 | 1.65 × 10−8 | 8.96 × 10−8 | 4.04 × 10−9 |
Industry | Mean | Min | Max |
---|---|---|---|
10: Food products | 4.994 | −1.771 | 9.278 |
11: Beverages | 2.935 | −2.689 | 5.864 |
13: Textiles | 5.329 | 0.721 | 9.323 |
14: Wearing apparel | 7.890 | 2.236 | 11.760 |
15: Leather and related products | 7.853 | 4.165 | 9.941 |
16: Wood and products of wood/cork | 5.438 | 1.599 | 7.535 |
17: Paper and paper products | 5.651 | −1.692 | 8.535 |
18: Printing and reproduction of recorded media | 6.262 | 2.889 | 8.702 |
20: Chemicals and chemical products | 4.758 | 0.321 | 8.051 |
21: Pharmaceuticals, medicinal chemicals | 6.050 | 2.486 | 10.166 |
22: Rubber and plastics products | 5.800 | 0.150 | 8.765 |
23: Other non-metallic mineral products | 5.304 | −6.892 | 8.463 |
24: Basic metals | 5.045 | 1.590 | 8.549 |
25: Fabricated metal products | 6.397 | 1.120 | 9.419 |
26: Computer, electronic and optical products | 6.407 | 2.670 | 9.921 |
27: Electrical equipment | 4.827 | 0.981 | 6.734 |
28: Not-yet-classified machinery and equipment | 5.501 | 1.196 | 7.876 |
29: Motor vehicles, trailers and semi-trailers | 2.017 | −1.302 | 3.702 |
30: Other transport equipment | 5.309 | −0.262 | 8.138 |
31: Furniture | 6.901 | 1.572 | 9.853 |
34: Other manufacturing | 7.056 | −0.101 | 9.490 |
All manufacturing | 5.921 | −6.892 | 11.760 |
VARIABLES | Sector 10 | Sector 11 | Sector 13 | Sector 14 | Sector 15 | Sector 16 | Sector 17 |
TFP, lagged | 0.0668 * | 0.174 ** | 0.0495 | 0.114 ** | 0.192 *** | - | 0.234 *** |
(0.0395) | (0.0801) | (0.0460) | (0.0465) | (0.0572) | - | (0.0605) | |
Capital-to-labor ratio (ln), lagged | 0.0130 | −0.0443 | −0.0171 | 0.0442 *** | 0.0575 *** | −0.0099 | 0.0537 ** |
(0.0174) | (0.0577) | (0.0257) | (0.0151) | (0.0171) | (0.0244) | (0.0267) | |
Workers (ln), lagged | −0.0983 ** | −0.301 * | −0.125 ** | 0.0621 | 0.0349 | −0.0108 | −0.0298 |
(0.0392) | (0.162) | (0.0624) | (0.0509) | (0.0794) | (0.0561) | (0.0935) | |
Wage (ln), lagged | 0.0823 *** | 0.189 | 0.106 * | −0.0588 | −0.0347 | 0.0053 | −0.0169 |
(0.0317) | (0.121) | (0.0546) | (0.0442) | (0.0744) | (0.0540) | (0.0714) | |
Ages (ln), lagged | 0.0200 | −0.0024 | −0.0318 | 0.0962 *** | −0.0238 | −0.0333 | −0.0506 |
(0.0266) | (0.0993) | (0.0345) | (0.0216) | (0.0307) | (0.0426) | (0.0373) | |
VA per labor (ln), lagged | 0.0831 (0.0576) | ||||||
Observations (Number of firms) | 4835 (967) | 480 (96) | 2005 (401) | 4425 (885) | 1520 (304) | 1820 (364) | 1765 (353) |
Hansen J statistic; Wald chi-squared statistic; AR(2) test statistic; Number of instruments | 2.767; 104.8 ***; 2.720 ***; 12 | 5.624; 39.76 ***; 0.502; 18 | 13.45; 70.13 ***; 0.951; 18 | 17.51 **; 1237 ***; −0.0723; 18 | 5.545; 397.8 ***; −0.405; 18 | 5.042; 58.51 ***; −1.160; 16 | 10.29; 163.9 ***; 1.251; 16 |
VARIABLES | Sector 18 | Sector 20 | Sector 21 | Sector 22 | Sector 23 | Sector 24 | Sector 25 |
TFP, lagged | 0.103 | 0.195 *** | 0.0804 | 0.134 *** | 0.0854 | 0.126 ** | 0.136 *** |
(0.0681) | (0.0514) | (0.122) | (0.0359) | (0.0524) | (0.0540) | (0.0390) | |
Capital to labor ratio (ln), lagged | −0.0104 | 0.0294 | 0.101 | −0.0145 | −0.0021 | −0.0257 | 0.0379 |
(0.0298) | (0.0286) | (0.106) | (0.0227) | (0.0188) | (0.0383) | (0.0276) | |
Workers (ln), lagged | −0.269 ** | −0.0911 | −0.429 *** | −0.200 *** | −0.151 ** | −0.255 *** | 0.153 *** |
(0.128) | (0.0574) | (0.166) | (0.0568) | (0.0594) | (0.0893) | (0.0563) | |
Wage (ln), lagged | 0.131 | 0.0721 | 0.224 ** | 0.171 *** | 0.100 ** | 0.232 *** | 0.0873 * |
(0.0987) | (0.0477) | (0.112) | (0.0487) | (0.0470) | (0.0783) | (0.0521) | |
Ages (ln), lagged | 0.0820 ** | 0.0011 | −0.150 ** | −0.0070 | −0.0089 | −0.0436 | −0.0512 |
(0.0363) | (0.0393) | (0.0645) | (0.0314) | (0.0269) | (0.0655) | (0.0314) | |
Observations (Number of firms) | 965 (193) | 1825 (365) | 520 (104) | 2755 (551) | 3760 (752) | 615 (123) | 3350 (670) |
Hansen J statistic; Wald chi-squared statistic; AR(2) test statistic; Number of instruments | 9.724; 250 ***; 0.548; 18 | 5.354; 99.98 ***; 0.124; 16 | 6.609; 79.22 ***; 1.574; 16 | 12.16; 169.9 ***; 1.627; 18 | 8.246; 258.7 ***; 1.551; 18 | 6.510; 20.71 ***; −0.357; 18 | 10.20; 714.1 ***; 1.047; 18 |
VARIABLES | Sector 26 | Sector 27 | Sector 28 | Sector 29 | Sector 30 | Sector 31 | Sector 34 |
TFP, lagged | 0.202 *** | 0.210 *** | 0.168 *** | 0.314 *** | 0.319 *** | 0.0511 | |
(0.0481) | (0.0574) | (0.0626) | (0.0617) | (0.0736) | (0.0405) | ||
Capital to labor ratio (ln), lagged | 0.0254 | −0.0397 | −0.0487 | −0.117 ** | 0.0427 | −0.0232 | 0.0435 |
(0.0352) | (0.0323) | (0.0364) | (0.0553) | (0.0444) | (0.0300) | (0.0329) | |
Workers (ln), lagged | −0.0584 | −0.206 *** | −0.132 ** | −0.262 *** | 0.200 ** | −0.0894 * | −0.0373 |
(0.0719) | (0.0747) | (0.0652) | (0.0947) | (0.0899) | (0.0502) | (0.0847) | |
Wage (ln), lagged | 0.0389 | 0.181 *** | 0.188 *** | 0.0710 | −0.209 *** | 0.0823 * | 0.0082 |
(0.0702) | (0.0652) | (0.0532) | (0.0781) | (0.0728) | (0.0458) | (0.0809) | |
Ages (ln), lagged | −0.0202 | −0.0370 | −0.101 * | 0.0088 | −0.126 | −0.0220 | 0.0002 |
(0.0604) | (0.0402) | (0.0592) | (0.0691) | (0.0918) | (0.0390) | (0.0671) | |
VA per labor (ln), lagged | 0.171 ** | ||||||
(0.0729) | |||||||
Observations (Number of firms) | 740 (148) | 1035 (207) | 805 (161) | 440 (88) | 565 (113) | 2445 (489) | 920 (184) |
Hansen J statistic; Wald chi-squared statistic; AR(2) test statistic; Number of instruments | 7.310; 120.7 ***; 0.602; 18 | 13.87 *; 60.47 ***; 0.748; 18 | 5.475; 229.5 ***; −0.0452; 16 | 4.191; 226 ***; 1.216; 18 | 8.514; 154.8 ***; 0.945; 18 | 17.52 **; 823.4 ***; −1.590; 18 | 11.52; 157.2 ***; −0.136; 18 |
VARIABLES | Workers | ||||||
---|---|---|---|---|---|---|---|
10–49 | 50–199 | 200–299 | 300–499 | 500–999 | 1000–4999 | >5000 | |
Sector 10: Food products (Number of observations: _1403) | |||||||
TFP, lagged | 0.0465 | −0.0397 | 0.0938 | 0.211 ** | 0.0590 | 0.337 *** | |
Capital to labor ratio (ln), lagged | 0.0227 | −0.0062 | 0.0336 | 0.0814 ** | 0.0530 | 0.167 *** | |
Workers (ln), lagged | −0.0010 | −0.0603 | 0.0271 | 0.412 *** | −0.0181 | −0.0054 | |
Wage (ln), lagged | 0.0692 | 0.203 *** | 0.212 ** | −0.0417 | 0.0385 | 0.0514 | |
Ages (ln), lagged | 0.0049 | 0.0086 | 0.0134 | −0.0199 | 0.105 * | 0.0505 | |
Sector 11: Beverages (Number of observations: _107) | |||||||
VA per labor (ln), lagged | 0.270 ** | ||||||
Capital to labor ratio (ln), lagged | −0.237 * | −0.106 | |||||
Workers (ln), lagged | −0.406 | −0.537 * | |||||
Wage (ln), lagged | 0.125 | 0.454 ** | |||||
Sector 13: Textiles (Number of observations: _542) | |||||||
TFP, lagged | 0.0018 | 0.297 ** | 0.130 | ||||
Workers (ln), lagged | −0.179 * | −0.0020 | −0.0437 | −0.180 | |||
Wage (ln), lagged | 0.185 ** | 0.142 * | 0.185 | 0.308 ** | |||
Ages (ln), lagged | −0.116 ** | 0.0125 | 0.0121 | −0.0295 | |||
Sector 14: Wearing apparel (Number of observations: _332) | |||||||
VA per labor (ln), lagged | 0.209 | 0.0572 | 0.0982 | 0.225 *** | |||
Capital to labor ratio (ln), lagged | 0.0838 | 0.0860 *** | 0.0228 | 0.105 *** | 0.0338 | 0.0485 | 0.120 |
Workers (ln), lagged | 0.175 | 0.146 | 0.254 ** | 0.486 *** | 0.335 *** | 0.134 | −0.141 |
Wage (ln), lagged | −0.0050 (0.179) | 0.106 | 0.136 | −0.168 * | −0.188 *** | −0.0986 | 0.302 ** |
Ages (ln), lagged | 0.0843 | 0.0103 | 0.117 ** | 0.0787 | 0.0995 ** | 0.100 *** | 0.0037 |
TFP, lagged | 0.0770 | 0.163 | −0.216 | ||||
Sector 15: Leather and related products (Number of observations: _92) | |||||||
TFP, lagged | 0.566 ** | 0.172 | 0.167 | −0.0011 | |||
Capital to labor ratio (ln), lagged | 0.0876 | 0.0590 | 0.0682 * | 0.0439 | 0.120 ** | 0.0109 | 0.0673 |
Workers (ln), lagged | 0.615 ** | 0.119 | 0.188 | −0.0628 | 0.262 | 0.190 * | −0.0556 |
Wage (ln), lagged | −0.386 ** | 0.0399 | 0.205 | 0.352 ** | 0.0526 | −0.122 | 0.0141 |
Ages (ln), lagged | −0.116 | −0.111 * | −0.121 * | 0.0205 | 0.0371 | −0.0291 | 0.0737 |
VA per labor (ln), lagged | −0.0187 | 0.161 ** | 0.134 | ||||
Sector 16: Wood and products of wood/cork (Number of observations: _733) | |||||||
TFP, lagged | 0.0808 | 0.254 *** | 0.360 * | ||||
Capital to labor ratio (ln), lagged | 0.0460 | 0.0544 * | 0.0804 | ||||
Workers (ln), lagged | 0.128 | 0.241 ** | 0.456 ** | ||||
Sector 17: Paper and paper products (Number of observations: _630) | |||||||
TFP, lagged | 0.208 ** | 0.188 * | 0.347 *** | 0.392 *** | |||
Capital to labor ratio (ln), lagged | 0.0429 | 0.0145 | 0.214 *** | 0.192 *** | |||
Workers (ln), lagged | 0.0705 | 0.0527 | 0.384 ** | 0.329 | |||
Wage (ln), lagged | 0.0699 | 0.0416 | −0.0996 | −0.275 * | |||
Ages (ln), lagged | −0.0466 | −0.0548 | −0.167 ** | 0.153 * | |||
Sector 18: Printing and reproduction of recorded media (Number of observations: _472) | |||||||
VA (ln), lagged | 0.194 ** | 0.0975 | |||||
Workers (ln), lagged | −0.166 | −0.279 ** | |||||
Wage (ln), lagged | 0.0455 | 0.198 ** | |||||
Sector 20: Chemicals and chemical products (Number of observations: _779) | |||||||
TFP, lagged | 0.271 *** | 0.334 * | 0.0715 | ||||
Capital to labor ratio (ln), lagged | 0.0704 | −0.0777 | −0.0063 | 0.0550 | −0.282 ** | ||
VA per labor (ln), lagged | 0.147 * | 0.450 *** | |||||
Sector 21: Pharmaceuticals, medicinal chemicals (Number of observations: _208) | |||||||
Ages (ln), lagged | −0.210 ** | −0.0928 | |||||
VA per labor (ln), lagged | 0.340 ** | ||||||
Sector 22: Rubber and plastics products (Number of observations: _737) | |||||||
VA per labor (ln), lagged | 0.0901 | 0.114 ** | |||||
Capital to labor ratio (ln), lagged | −0.142 *** | −0.0257 | 0.0403 | 0.0889 | 0.0706 | ||
Workers (ln), lagged | −0.289 ** | −0.0764 | −0.0199 | −0.0010 | −0.159 | ||
Wage (ln), lagged | 0.317 *** | 0.160 *** | 0.302 *** | −0.108 | 0.0174 | ||
Ages (ln), lagged | −0.0576 | −0.0809 | −0.0062 | −0.0340 | 0.0222 | ||
TFP, lagged | 0.187 * (0.110) | 0.256 *** (0.0899) | 0.0380 (0.271) | ||||
Sector 23: Other non-metallic mineral products (Number of observations: _986) | |||||||
VA per labor (ln), lagged | 0.0947 | 0.0200 | |||||
Capital to labor ratio (ln), lagged | −0.0592 | 0.0222 | 0.0454 | 0.0336 | 0.179 *** | ||
Workers (ln), lagged | −0.0914 | 0.0062 | 0.126 | 0.303 * | 0.337 ** | ||
Wage (ln), lagged | 0.115 * | 0.111 | 0.293 ** | 0.0108 | −0.0114 | ||
Ages (ln), lagged | −0.135 ** | 0.104 *** | 0.0690 | −0.0864 | −0.0331 | ||
TFP, lagged | 0.139 * | 0.219 ** | 0.171 | ||||
Sector 24: Basic metals (Number of observations: _243) | |||||||
VA per labor (ln), lagged | 0.184 | ||||||
Capital to labor ratio (ln), lagged | −0.0893 | −0.0187 | |||||
Workers (ln), lagged | −0.213 | 0.216 | |||||
Wage (ln), lagged | 0.238 | 0.162 (0.146) | |||||
Ages (ln), lagged | −0.0415 | −0.285 * | |||||
TFP, lagged | 0.115 | ||||||
Sector 25: Fabricated metal products (Number of observations: _1492) | |||||||
TFP, lagged | 0.248 *** | 0.147 * | 0.218 | −0.0666 | |||
Capital to labor ratio (ln), lagged | 0.118 ** | 0.0069 | 0.0168 | −0.0768 | 0.0413 | ||
Workers (ln), lagged | 0.375 *** | 0.0772 | 0.0972 | 0.137 | 0.210 * | ||
Wage (ln), lagged | −0.0431 | 0.144 * | 0.0251 | −0.0452 | 0.0257 (0.108) | ||
Sector 26: Computer, electronic and optical products (Number of observations: _217) | |||||||
TFP, lagged | 0.338 *** | 0.280 *** | 0.108 | 0.135 | |||
Wage (ln), lagged | −0.194 | −0.173 | 0.285 ** | 0.0049 | |||
Sector 27: Electrical equipment (Number of observations: _235) | |||||||
TFP, lagged | 0.173 ** | 0.175 ** | 0.525 *** | ||||
Capital to labor ratio (ln), lagged | −0.111 | −0.0206 | 0.0193 | −0.267 ** | |||
Workers (ln), lagged | −0.423 ** | −0.227 ** | 0.296 * (0.161) | 0.0439 | |||
Wage (ln), lagged | 0.373 *** | 0.254 *** | −0.104 (0.123) | −0.0420 | |||
Ages (ln), lagged | −0.283 ** | −0.0403 | 0.0891 | 0.100 | |||
VA per labor (ln), lagged | 0.343 *** | ||||||
Sector 28: Not-yet-classified machinery and equipment (Number of observations: _364) | |||||||
TFP, lagged | 0.0686 | 0.266 * | |||||
Wage (ln), lagged | 0.228 *** | 0.152 | |||||
Ages (ln), lagged | 0.128 (0.0848) | −0.0236 (0.0753) | |||||
Sector 30: Other transport equipment (N = _113) | |||||||
VA per labor (ln), lagged | 0.184 ** (0.0821) | ||||||
Sector 31: Furniture (Number of observations: _403) | |||||||
TFP, lagged | −0.208 | 0.0807 | 0.0056 | 0.0240 | 0.268 *** | 0.0736 | |
Capital to labor ratio (ln), lagged | 0.0306 | −0.0441 * | −0.0657 | 0.0964 ** | 0.0618 | −0.0805 | |
Workers (ln), lagged | −0.0107 | −0.0031 | −0.0089 | −0.0256 | 0.254 ** | 0.219 | |
Wage (ln), lagged | 0.177 | 0.174 ** | 0.298 *** | 0.220 *** | −0.0457 | −0.0548 | |
Ages (ln), lagged | −0.156 * | −0.0551 | −0.0138 | 0.0752 | 0.165 | −0.169 ** | |
Sector 34: Other manufacturing sectors (Number of observations: _175) | |||||||
TFP, lagged | 0.0477 | 0.0391 | 0.146 | 0.227 | 0.330 *** | ||
Capital to labor ratio (ln), lagged | 0.0324 | 0.108 ** | 0.0704 | −0.00101 | 0.0771 | 0.0814 | |
Wage (ln), lagged | 0.119 | 0.183 * | 0.360 * | −0.218 | 0.0206 | −0.218 ** | |
VA per labor (ln), lagged | 0.322 *** (0.0788) |
VARIABLES | Total Fixed Capital | ||||
---|---|---|---|---|---|
<10 VND Billion | From 10 to Less than 50 VND Billion | From 50 to Less than 200 VND Billion | From 200 to Less than 500 VND Billion | >500 VND Billion | |
Sector 10: Food products (Number of observations: _838) | |||||
Capital to labor ratio (ln), lagged | −0.0345 | 0.0543 | 0.0462 | 0.0305 | 0.280 *** |
Workers (ln), lagged | −0.127 | −0.0121 | 0.0512 | −0.318 *** | −0.0038 |
Wage (ln), lagged | 0.225 *** | 0.0958 ** | 0.0453 | 0.237 ** | 0.0193 |
TFP, lagged | 0.109 * | 0.167 | |||
Sector 11: Beverages Number of observations: _87) | |||||
TFP, lagged | 0.320 *** | 0.516 *** | |||
Workers (ln), lagged | 0.0387 | −0.598 ** | 0.0005 | ||
Wage (ln), lagged | 0.153 | 0.479 ** | 0.0278 | ||
Sector 13: Textiles (Number of observations: _461) | |||||
VA per labor (ln), lagged | −0.0873 | ||||
Capital to labor ratio (ln), lagged | −0.121 ** | 0.0357 | 0.0613 | −0.0890 | 0.0921 * |
Workers (ln), lagged | −0.428 *** | −0.0487 | 0.132 | −0.240 | −0.0838 |
Wage (ln), lagged | 0.411 *** | 0.0713 | −0.0171 | 0.157 | 0.0496 |
TFP, lagged | 0.100 | 0.147 ** | 0.0231 | 0.174 * | |
Sector 14: Wearing apparel (Number of observations: _1016) | |||||
TFP, lagged | −0.179 * | 0.0224 | |||
Capital to labor ratio (ln), lagged | 0.0450 | −3.33e−06 | 0.0580 * | 0.0538 | 0.187 ** |
Workers (ln), lagged | −0.223 * | 0.0904 | −0.0606 | 0.335 * | 0.0394 |
Wage (ln), lagged | 0.322 *** | −0.133 ** | −0.0304 | −0.428 *** | −0.105 |
Ages (ln), lagged | 0.0553 | 0.0977 *** | 0.0488 | 0.123 *** | 0.130 * |
VA per labor (ln), lagged | 0.133 * | 0.184 *** | 0.385 *** | ||
Sector 15: Leather and related products (Number of observations: _249) | |||||
TFP, lagged | 0.0372 | 0.315 *** | 0.101 | −0.0387 | |
Capital to labor ratio (ln), lagged | 0.0521 | 0.0469 | 0.0940 | −0.0917 | 0.235 ** |
Workers (ln), lagged | −0.0628 | −0.0140 | 0.202 * | −0.344 ** | −0.165 * |
Wage (ln), lagged | 0.110 | 0.0423 | −0.154 * | 0.163 | 0.120 |
Sector 16: Wood and products of wood/cork (Number of observations: _604) | |||||
TFP, lagged | 0.174 ** | 0.145 | 0.381 | ||
Sector 17: Paper and paper products (Number of observations: _224) | |||||
TFP, lagged | 0.364 | 0.305 ** | 0.530 *** | 0.0651 | |
Capital to labor ratio (ln), lagged | 0.0113 | 0.0541 | 0.153 ** | 0.325 ** | 0.424 ** |
Workers (ln), lagged | 0.178 | −0.175 * | 0.265 | 0.160 | −0.0413 |
Ages (ln), lagged | −0.0046 | 0.0460 | −0.187 ** | −0.0568 | 0.125 |
Sector 18: Printing and reproduction of recorded media (Number of observations: _379) | |||||
TFP, lagged | 0.0957 | 0.126 * | |||
Capital to labor ratio (ln), lagged | −0.0270 | −0.0927 | −0.0862 | ||
Workers (ln), lagged | −0.305 * | −0.433 *** | −0.440 * | ||
Wage (ln), lagged | 0.169 | 0.228 ** | −0.0076 | ||
Ages (ln), lagged | 0.0781 * | 0.107 * | −0.0300 | ||
Value-added per labor (ln), lagged | 0.454 * | ||||
Sector 20: Chemicals and chemical products (Number of observations: _209) | |||||
TFP, lagged | −0.0071 | 0.239 *** | 0.397 *** | −0.0125 | |
Workers (ln), lagged | −0.121 | 0.0031 | −0.0456 | −0.0098 | −0.291 ** |
Ages (ln), lagged | 0.210 * | −0.108 | −0.0095 | −0.0305 | 0.0043 |
VA per labor (ln), lagged | 0.312 *** | ||||
Sector 21: Pharmaceuticals, medicinal chemicals (Number of observations: _85) | |||||
TFP, lagged | −0.229 | 0.339 ** | |||
Capital to labor ratio (ln), lagged | 0.0884 | 0.0061 | 0.299 ** | ||
Workers (ln), lagged | −0.782 | −0.274 | −0.550 *** | ||
Wage (ln), lagged | 0.784 ** | 0.0700 | 0.224 * | ||
Ages (ln), lagged | −0.154 | −0.0488 | −0.271 *** | ||
VA per labor (ln), lagged | −0.203 * | ||||
Sector 22: Rubber and plastics products (Number of observations: _228) | |||||
VA per labor (ln), lagged | 0.126 | 0.138 * | |||
Capital to labor ratio (ln), lagged | −0.139 *** | −0.0984 ** | 0.0201 | 0.0586 | 0.180 * |
Workers (ln), lagged | −0.190 | −0.247 ** (0.0964) | −0.0987 | −0.221 | −0.409 ** |
Wage (ln), lagged | 0.219 | 0.229 *** | 0.0775 | 0.0850 | 0.305 ** |
Ages (ln), lagged | 0.0941 | −0.130 ** | −0.0239 | −0.0570 | 0.0618 |
TFP, lagged | 0.0776 | 0.145 | 0.162 * | ||
Sector 23: Other non-metallic mineral products (Number of observations: _696) | |||||
TFP, lagged | 0.0469 | 0.181 | 0.127 | 0.166 * | |
Capital to labor ratio (ln), lagged | 0.0784 * | −0.108 ** | 0.0993 * | −0.0112 | 0.159 ** |
Workers (ln), lagged | 0.0403 | −0.255 *** | 0.0336 | −0.365 | −0.0653 |
Wage (ln), lagged | 0.0811 | 0.130 ** | 0.0270 | 0.104 | 0.0451 |
Ages (ln), lagged | −0.0444 | 0.0701 ** | 0.0068 | −0.0997 | −0.164 *** |
Sector 24: Basic metals (Number of observations: _185) | |||||
Ages (ln), lagged | −0.123 | −0.294 * | |||
TFP, lagged | 0.209 * | ||||
Sector 25: Fabricated metal products (Number of observations: _657) | |||||
TFP, lagged | 0.182 | 0.128 * | 0.272 ** | ||
Capital to labor ratio (ln), lagged | −0.0698 | 0.0530 | 0.142 ** | 0.0153 | 0.202 * |
Workers (ln), lagged | 0.0767 | 0.339 *** | 0.270 *** | 0.120 | 0.125 |
Ages (ln), lagged | −0.0212 | −0.0952 ** | −0.0304 | −0.119 | −0.0617 |
VA per labor (log), lagged | 0.178 *** | 0.0403 | |||
Sector 26: Computer, electronic and optical products (Number of observations: _134) | |||||
TFP, lagged | 0.165 | 0.111 | 0.169 ** | ||
Capital to labor ratio (ln), lagged | 0.0095 | 0.0943 | 0.0374 | 0.188 ** | |
Sector 27: Electrical equipment (Number of observations: _324) | |||||
Workers (ln), lagged | −0.291 ** | −0.164 | −0.235 * | −0.0389 | |
Wage (ln), lagged | 0.327 *** | 0.166 | 0.158 * | −0.0024 | |
TFP, lagged | 0.245 ** | 0.243 *** | 0.226 ** | ||
Sector 28: Not-yet-classified machinery and equipment (Number of observations: _161) | |||||
TFP, lagged | −0.0682 | 0.272 * | 0.132 | ||
Capital to labor ratio (ln), lagged | 0.0359 | −0.0540 | −0.283 ** | −0.0355 | |
Workers (ln), lagged | −0.317 * | −0.131 | −0.391 | −0.117 | |
Wage (ln), lagged | 0.533 *** | 0.244 *** | 0.387 | 0.0971 * | |
Ages (ln), lagged | 0.141 * | −0.0101 | −0.120 | −0.189 | |
Sector 29: Motor vehicles, trailers and semi-trailers (Number of observations: _93) | |||||
TFP, lagged | 0.201 ** | 0.303 ** | 0.395 ** | 0.148 | |
Capital to labor ratio (ln), lagged | −0.0708 | −0.139 | −0.370 ** | 0.106 | |
Workers (ln), lagged | −0.237 | −0.123 | −0.210 | −0.518 ** | |
Wage (ln), lagged | 0.156 | 0.0344 | −0.0497 | 0.366 ** | |
Sector 30: Other transport equipment (Number of observations: _137) | |||||
VA per labor (ln), lagged | 0.299 | 0.307 *** | |||
Capital to labor ratio (ln), lagged | 0.0386 | −0.0775 | 0.149 | 0.290 ** | |
Wage (ln), lagged | −0.143 | −0.232 * | −0.207 | −0.0896 | |
TFP, lagged | 0.360 *** (0.127) | 0.243 * (0.129) | |||
Sector 34: Other manufacturing sectors (Number of observations: _167) | |||||
TFP, lagged | 0.0356 | 0.0551 | 0.220 ** | ||
Capital to labor ratio (ln), lagged | 0.137 | −0.145 * | −0.177 * | −0.203 | |
Workers (ln), lagged | 0.0250 | −0.361 *** | −0.367 *** | 0.108 | |
Wage (ln), lagged | 0.145 | 0.164 * | 0.121 * | −0.526 ** |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ngo, Q.-T.; Tran, Q.-V.; Nguyen, T.-D.; Nguyen, T.-T. How Heterogeneous Are the Determinants of Total Factor Productivity in Manufacturing Sectors? Panel-Data Evidence from Vietnam. Economies 2020, 8, 57. https://doi.org/10.3390/economies8030057
Ngo Q-T, Tran Q-V, Nguyen T-D, Nguyen T-T. How Heterogeneous Are the Determinants of Total Factor Productivity in Manufacturing Sectors? Panel-Data Evidence from Vietnam. Economies. 2020; 8(3):57. https://doi.org/10.3390/economies8030057
Chicago/Turabian StyleNgo, Quang-Thanh, Quang-Van Tran, Tien-Dung Nguyen, and Trung-Thanh Nguyen. 2020. "How Heterogeneous Are the Determinants of Total Factor Productivity in Manufacturing Sectors? Panel-Data Evidence from Vietnam" Economies 8, no. 3: 57. https://doi.org/10.3390/economies8030057
APA StyleNgo, Q. -T., Tran, Q. -V., Nguyen, T. -D., & Nguyen, T. -T. (2020). How Heterogeneous Are the Determinants of Total Factor Productivity in Manufacturing Sectors? Panel-Data Evidence from Vietnam. Economies, 8(3), 57. https://doi.org/10.3390/economies8030057