Do Jumps Matter in Both Equity Market Returns and Integrated Volatility: A Comparison of Asian Developed and Emerging Markets
Abstract
:1. Introduction
2. Methodological Review of Swap Variance Jump
3. Theory
4. Data and Methodology
4.1. Data
4.2. Methodology
4.3. Integrated Volatility Due to Jump Component
4.4. Hypotheses
5. Empirical Analysis
6. Discussion
7. Concluding Remarks
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Aït-Sahalia, Yacine. 2004. Disentangling diffusion from jumps. Journal of Financial Economics 74: 487–528. [Google Scholar] [CrossRef]
- Aït-Sahalia, Yacine, and Thomas Robert Hurd. 2015. Portfolio choice in markets with contagion. Journal of Financial Econometrics 14: 1–28. [Google Scholar] [CrossRef] [Green Version]
- Aït-Sahalia, Yacine, and Jean Jacod. 2009. Testing for jumps in a discretely observed process. The Annals of Statistics 37: 184–222. [Google Scholar] [CrossRef]
- Aït-Sahalia, Yacine, and Jean Jacod. 2012. Analyzing the spectrum of asset returns: Jump and volatility components in high frequency data. Journal of Economic Literature 50: 1007–50. [Google Scholar] [CrossRef]
- Amaya, Diego, and Aurelio Vasquez. 2011. Explaining Stock Returns with Intraday Jumps, Working paper. [CrossRef] [Green Version]
- Andersen, Torben G., Tim Bollerslev, Francis X. Diebold, and Paul Labys. 2001. The distribution of realized exchange rate volatility. Journal of the American Statistical Association 96: 42–55. [Google Scholar] [CrossRef]
- Andersen, Torben G., Tim Bollerslev, and Francis X. Diebold. 2003a. Some Like it Smooth, and Some Like it Rough: Untangling Continuous and Jump Components in Measuring, Modeling, and Forecasting Asset Return Volatility, Working paper. Duke University. [CrossRef]
- Andersen, Torben G., Tim Bollerslev, Francis X. Diebold, and Paul Labys. 2003b. Modeling And Forecasting Realized Volatility. Econometrica 71: 579–625. [Google Scholar] [CrossRef] [Green Version]
- Andersen, Torben G., Tim Bollerslev, and Francis X. Diebold. 2007. Roughing it up: Including jump components in the measurement, modeling, and forecasting of return volatility. Review of Economics and Statistics 89: 701–20. [Google Scholar] [CrossRef]
- Andersen, Torben G., Dobrislav Dobrev, and Ernst Schaumburg. 2012. Jump-robust volatility estimation using nearest neighbor truncation. Journal of Econometrics 169: 75–93. [Google Scholar] [CrossRef] [Green Version]
- Apergis, Nicholas, and Emmanuel Apergis. 2020. The role of Covid-19 for Chinese stock returns: Evidence from a GARCHX model. Asia-Pacific Journal of Accounting and Economics 27: 1–9. [Google Scholar] [CrossRef]
- Back, Kerry. 1991. Asset pricing for general processes. Journal of Mathematical Economics 20: 371–95. [Google Scholar] [CrossRef]
- Bajgrowicz, Pierre, Olivier Scaillet, and Adrien Treccani. 2016. Jumps in high-frequency data: Spurious detections, dynamics, and news. Management Science 62: 2198–217. [Google Scholar] [CrossRef] [Green Version]
- Baker, Scott R., Nicholas Bloom, Steven J. Davis, Kyle Kost, Marco Sammon, and Tasaneeya Viratyosin. 2020. The unprecedented stock market reaction to COVID-19. Review of Asset Pricing Studies 10: 742–58. [Google Scholar] [CrossRef]
- Barndorff-Nielsen, Ole E., and Neil Shephard. 2003. Realized power variation and stochastic volatility models. Bernoulli 9: 243–65. [Google Scholar] [CrossRef]
- Barndorff-Nielsen, Ole E., and Neil Shephard. 2004. Power and Bipower Variation with Stochastic Volatility and Jumps. Journal of Financial Econometrics 2: 1–37. [Google Scholar] [CrossRef] [Green Version]
- Barndorff-Nielsen, Ole E., and Neil Shephard. 2006. Econometrics of Testing for Jumps in Financial Economics Using Bipower Variation. Journal of Financial Econometrics 4: 1–30. [Google Scholar] [CrossRef]
- Brownlees, Christian, Eulalia Nualart, and Yucheng Sun. 2020. On the estimation of integrated volatility in the presence of jumps and microstructure noise. Econometric Reviews 39: 991–1013. [Google Scholar] [CrossRef]
- Buncic, Daniel, and Katja IM Gisler. 2017. The role of jumps and leverage in forecasting volatility in international equity markets. Journal of International Money and Finance 79: 1–19. [Google Scholar] [CrossRef]
- Carr, Peter, and Liuren Wu. 2003. What Type of Process Underlies Options? A Simple Robust Test. Journal of Finance 58: 2581–610. [Google Scholar] [CrossRef] [Green Version]
- Corradi, Valentina, Mervyn J. Silvapulle, and Norman R. Swanson. 2018. Testing for jumps and jump intensity path dependence. Journal of Econometrics 204: 248–67. [Google Scholar] [CrossRef]
- Corsi, Fulvio, Davide Pirino, and Roberto Reno. 2010. Threshold bipower variation and the impact of jumps on volatility forecasting. Journal of Econometrics 159: 276–88. [Google Scholar] [CrossRef] [Green Version]
- Duangin, Saowaluk, Woraphon Yamaka, Jirakom Sirisrisakulchai, and Songsak Sriboonchitta. 2018. Volatility Jump Detection in Thailand Stock Market. In International Symposium on Integrated Uncertainty in Knowledge Modelling and Decision Making. Cham: Springer, Volume 10758, pp. 445–56. [Google Scholar] [CrossRef]
- Dutta, Anupam, Elie Bouri, and David Roubaud. 2020. Modelling the volatility of crude oil returns: Jumps and volatility forecasts. International Journal of Finance and Economics 26: 889–97. [Google Scholar] [CrossRef]
- Eraker, Bjørn, Michael Johannes, and Nicholas Polson. 2003. The Impact of Jumps in Volatility and Returns. Journal of Finance 58: 1269–300. [Google Scholar] [CrossRef]
- Fama, Eugene F. 1970. Efficient Capital Markets: A Review of Theory and Empirical Work. The Journal of Finance 25: 383–417. [Google Scholar] [CrossRef]
- Ferriani, Fabrizio, and Patrick Zoi. 2020. The dynamics of price jumps in the stock market: An empirical study on Europe and U.S. European Journal of Finance 26: 1–25. [Google Scholar] [CrossRef]
- Huang, Xin, and George Tauchen. 2005. The relative contribution of jumps to total price variance. Journal of Financial Econometrics 3: 456–99. [Google Scholar] [CrossRef]
- Jiang, George J., and Roel CA Oomen. 2008. Testing for jumps when asset prices are observed with noise-a “swap variance” approach. Journal of Econometrics 144: 352–70. [Google Scholar] [CrossRef]
- Jiang, George J., and Tong Yao. 2013. Stock Price Jumps and Cross-Sectional Return Predictability. Journal of Financial and Quantitative Analysis 48: 1519–44. [Google Scholar] [CrossRef]
- Jiang, George J., and Kevin X. Zhu. 2017. Information Shocks and Short-Term Market Underreaction. Journal of Financial Economics 124: 43–64. [Google Scholar] [CrossRef]
- Johannes, Michael. 2004. The statistical and economic role of jumps in continuous-time interest rate models. The Journal of Finance 59: 227–260. [Google Scholar] [CrossRef]
- Kostrzewski, Maciej, and Jadwiga Kostrzewska. 2021. The Impact of Forecasting Jumps on Forecasting Electricity Prices. Energies 14: 336. [Google Scholar] [CrossRef]
- Kongsilp, Worawuth, and Cesario Mateus. 2017. Volatility risk and stock return predictability on global financial crises. China Finance Review International. [Google Scholar] [CrossRef]
- Lee, Suzanne S., and Jan Hannig. 2010. Detecting jumps from Lévy jump diffusion processes. Journal of Financial Economics 96: 271–90. [Google Scholar] [CrossRef] [Green Version]
- Lee, Suzanne S., and Per A. Mykland. 2008. Jumps in financial markets: A new nonparametric test and jump dynamics. Review of Financial Studies 21: 2535–63. [Google Scholar] [CrossRef]
- Lee, Suzanne S., and Per A. Mykland. 2012. Jumps in equilibrium prices and market microstructure noise. Journal of Econometrics 168: 396–406. [Google Scholar] [CrossRef] [Green Version]
- Maneesoonthorn, Worapree, Gael M. Martin, and Catherine S. Forbes. 2020. High-frequency jump tests: Which test should we use? Journal of Econometrics 219: 478–87. [Google Scholar] [CrossRef] [Green Version]
- Merton, Robert C. 1976. Option pricing when underlying stock returns are discontinuous. Journal of Financial Economics 3: 125–44. [Google Scholar] [CrossRef] [Green Version]
- Neuberger, Anthony. 1994. The log contract. Journal of Portfolio Management 20: 74. [Google Scholar] [CrossRef]
- Nguyen, Duc Binh Benno, and Marcel Prokopczuk. 2019. Jumps in commodity markets. Journal of Commodity Markets 13: 55–70. [Google Scholar] [CrossRef]
- Odusami, Babatunde O. 2021. Volatility jumps and their determinants in REIT returns. Journal of Economics and Business 113: 105943. [Google Scholar] [CrossRef]
- Pan, Jun. 2002. The jump-risk premia implicit in options: Evidence from an integrated time-series study. Journal of Financial Economics 63: 3–50. [Google Scholar] [CrossRef] [Green Version]
- Podolskij, Mark, and Daniel Ziggel. 2010. New tests for jumps in semimartingale models. Statistical Inference for Stochastic Processes 13: 15–41. [Google Scholar] [CrossRef]
- Sharif, Arshian, Chaker Aloui, and Larisa Yarovaya. 2020. COVID-19 pandemic, oil prices, stock market, geopolitical risk and policy uncertainty nexus in the US economy: Fresh evidence from the wavelet-based approach. International Review of Financial Analysis 70: 101496. [Google Scholar] [CrossRef]
- Sun, Bianxia, and Yang Gao. 2020. Market liquidity and macro announcement around intraday jumps: Evidence from Chinese stock index futures markets. Physica A: Statistical Mechanics and Its Applications 541: 123308. [Google Scholar] [CrossRef]
- Uddin, Moshfique, Anup Chowdhury, Keith Anderson, and Kausik Chaudhuri. 2021. The effect of COVID–19 pandemic on global stock market volatility: Can economic strength help to manage the uncertainty? Journal of Business Research 128: 31–44. [Google Scholar] [CrossRef]
- Wright, Jonathan H., and Hao Zhou. 2009. Bond risk premia and realized jump risk. Journal of Banking and Finance 33: 2333–45. [Google Scholar] [CrossRef]
- Zhang, Chuanhai, Zhi Liu, and Qiang Liu. 2020. Jumps at ultra-high frequency: Evidence from the Chinese stock market. Pacific Basin Finance Journal, 101420. [Google Scholar] [CrossRef]
Markets | Overall Jumps | Positive Jumps | Negative Jumps | |||
---|---|---|---|---|---|---|
Number of Jumps | Percentage of Jumps | Number of Jumps | Percentage of Jumps | Number of Jumps | Percentage of Jumps | |
S&P ASX 200 | 62 | 27.0742% | 33 | 14.4105% | 29 | 12.6638% |
Hang Seng | 71 | 31.0044% | 43 | 18.7773% | 28 | 12.2271% |
Nikkei225 | 56 | 24.4542% | 33 | 14.4105% | 23 | 10.0437% |
NZX 50 | 58 | 25.3275% | 32 | 13.9738% | 26 | 11.3537% |
Shanghai Compo | 93 | 40.6114% | 41 | 17.9039% | 52 | 22.7074% |
Nifty50 | 63 | 27.5109% | 40 | 17.4673% | 23 | 10.0437% |
JKSE | 67 | 29.2576% | 41 | 17.9039% | 26 | 11.3537% |
KSE-100 | 73 | 31.8777% | 56 | 24.4542% | 17 | 7.4236% |
SET Index | 77 | 33.6245% | 49 | 21.3974% | 28 | 12.2271% |
CSE All | 100 | 43.6681% | 63 | 27.5109% | 37 | 16.1572% |
Stock Markets | Jumps | Returns | Mean | Standard Deviation | Minimum | Maximum | Kurtosis | Skewness |
---|---|---|---|---|---|---|---|---|
S&P ASX 200 | 229 | r | 0.2519% | 3.7637% | −18.0921% | 9.7966% | 2.2341 | −0.9340 |
62 | Jr | 0.5962% | 4.2143% | −8.2234% | 9.7263% | −0.7757 | −0.3974 | |
33 | Pjr | 3.9866% | 1.5751% | 1.3901% | 9.7263% | 4.2457 | 1.4491 | |
25 | Njr | −3.8613% | 2.3048% | −8.2234% | −0.6418% | −1.0920 | −0.3721 | |
Hang Seng | 229 | r | 0.1648% | 5.8401% | −25.4455% | 16.6256% | 1.5706 | −0.5375 |
71 | Jr | 1.0020% | 6.8924% | −14.8779% | 15.7634% | −0.5823 | −0.3384 | |
41 | Pjr | 5.9185% | 3.2722% | 1.5408% | 15.7634% | 1.2686 | 1.1281 | |
24 | Njr | −6.7389% | 3.0099% | −12.0998% | −2.2885% | −0.8648 | −0.4476 | |
Nikkei225 | 229 | r | 0.1477% | 5.4474% | −28.1743% | 13.2974% | 2.4333 | −0.8873 |
56 | Jr | 0.8550% | 6.0037% | −12.3916% | 9.8655% | −0.6433 | −0.5415 | |
32 | Pjr | 5.0995% | 2.6530% | 0.5388% | 9.8655% | −0.8728 | 0.2364 | |
20 | Njr | −5.7888% | 3.7833% | −12.3916% | −0.1800% | −1.1042 | −0.1636 | |
NZX 50 | 229 | r | 0.6997% | 3.3810% | −14.3129% | 8.3074% | 3.0201 | −1.1127 |
58 | Jr | 0.3917% | 4.6059% | −12.6177% | 8.3074% | 0.4805 | −0.7939 | |
31 | Pjr | 3.6863% | 1.9506% | 0.8938% | 8.3074% | −0.2181 | 0.7173 | |
23 | Njr | −4.0523% | 3.5320% | −12.6177% | −0.1199% | 0.6248 | −1.1078 | |
Shanghai Composite | 229 | r | 0.0815% | 7.6954% | −28.2779% | 24.1212% | 1.8611 | −0.5456 |
93 | Jr | −0.6212% | 8.6095% | −25.6813% | 24.1212% | 1.2331 | −0.2843 | |
38 | Pjr | 6.8995% | 5.1041% | 0.6321% | 24.1212% | 2.4278 | 1.4328 | |
47 | Njr | −7.0862% | 5.9507% | −25.6813% | −0.0324% | 3.5054 | −1.8611 | |
Nifty 50 | 229 | r | 0.6610% | 6.5050% | −31.4173% | 24.7376% | 3.2013 | −0.6929 |
63 | Jr | 2.7033% | 7.1416% | −10.8108% | 24.7376% | 0.1439 | 0.1544 | |
39 | Pjr | 7.1890% | 4.5174% | 1.4348% | 24.7376% | 4.7044 | 1.5993 | |
21 | Njr | −5.5176% | 2.8865% | −10.8108% | −0.7725% | −0.2593 | −0.2174 | |
JKSE | 229 | r | 0.9897% | 5.8087% | −37.7197% | 16.4299% | 8.2715 | −1.2736 |
67 | Jr | 1.6460% | 8.0112% | −37.7197% | 16.4299% | 7.5832 | −1.7574 | |
39 | Pjr | 6.4671% | 3.9302% | 0.9253% | 16.4299% | −0.5821 | 0.6120 | |
23 | Njr | −6.2394% | 7.6569% | −37.7197% | −0.2483% | 13.7363 | −3.3510 | |
KSE−100 | 229 | r | 1.3069% | 7.0634% | −44.8796% | 26.8315% | 8.3751 | −1.1923 |
73 | Jr | 3.9030% | 7.0027% | −13.7559% | 26.8315% | 1.4439 | 0.1171 | |
54 | Pjr | 6.8973% | 4.9518% | 0.0459% | 26.8315% | 4.6486 | 1.8307 | |
15 | Njr | −5.9510% | 3.9652% | −13.7559% | −0.3821% | −0.5902 | −0.5639 | |
SET Index | 229 | r | 0.4797% | 5.9841% | −35.5678% | 18.5915% | 5.9222 | −1.1025 |
77 | Jr | 1.4052% | 7.4367% | −35.5678% | 18.5915% | 7.0311 | −1.5479 | |
47 | Pjr | 5.7665% | 3.6945% | 0.6036% | 18.5915% | 2.4544 | 1.5202 | |
26 | Njr | −6.2224% | 6.7966% | −35.5678% | −0.1218% | 14.4451 | −3.3977 | |
CSE All | 229 | r | 1.0549% | 6.3166% | −16.6467% | 22.6313% | 1.4662 | 0.5101 |
100 | Jr | 2.5260% | 6.4478% | −16.6467% | 20.6752% | 0.5568 | 0.1856 | |
61 | Pjr | 6.3874% | 4.6555% | 0.3663% | 20.6752% | 0.8148 | 1.0713 | |
34 | Njr | −4.1298% | 3.3944% | −16.6467% | −0.5441% | 4.6596 | −1.9423 |
Stock Markets | Volatility Measures | Mean | Standard Deviation | Minimum | Maximum | Kurtosis | Skewness |
---|---|---|---|---|---|---|---|
S&P ASX 200 | RV | 1.4529 | 1.0798 | 0.3504 | 5.8022 | 2.6574 | 1.6117 |
BPV | 1.3487 | 1.0277 | 0.2972 | 6.0158 | 3.8336 | 1.7818 | |
TPV | 1.1553 | 0.8899 | 0.2314 | 5.3050 | 3.6988 | 1.7786 | |
Hang Seng | RV | 2.9317 | 2.1556 | 0.7857 | 11.0237 | 3.3522 | 1.8495 |
BPV | 2.5073 | 1.9507 | 0.5426 | 9.1724 | 2.1121 | 1.6347 | |
TPV | 2.1091 | 1.6157 | 0.4468 | 8.1189 | 1.6944 | 1.5100 | |
Nikkei225 | RV | 3.4247 | 2.2574 | 0.7966 | 11.9135 | 1.7765 | 1.3347 |
BPV | 2.9765 | 1.9456 | 0.6879 | 10.3380 | 1.2428 | 1.2221 | |
TPV | 2.4844 | 1.6604 | 0.5497 | 7.7575 | 0.7183 | 1.1457 | |
NZX 50 | RV | 0.7701 | 0.4649 | 0.2971 | 2.2417 | 1.3827 | 1.4432 |
BPV | 0.7297 | 0.4296 | 0.2327 | 2.1032 | 1.3560 | 1.3851 | |
TPV | 0.6335 | 0.3801 | 0.1796 | 1.9327 | 2.3059 | 1.5606 | |
Shanghai Composite | RV | 3.9949 | 3.5074 | 0.7680 | 17.2122 | 3.3589 | 1.8907 |
BPV | 3.3525 | 3.1388 | 0.6017 | 14.9277 | 3.2916 | 1.9231 | |
TPV | 2.8382 | 2.6639 | 0.5087 | 12.3048 | 2.7118 | 1.8095 | |
Nifty50 | RV | 2.8283 | 2.3282 | 0.6211 | 13.4125 | 4.5987 | 2.0518 |
BPV | 2.5720 | 2.2265 | 0.5642 | 11.7466 | 3.7416 | 1.9675 | |
TPV | 2.1730 | 1.9485 | 0.4271 | 10.0456 | 4.5098 | 2.0855 | |
JKSE | RV | 2.5999 | 1.9488 | 0.5215 | 9.0865 | 1.8538 | 1.5339 |
BPV | 2.3813 | 1.8998 | 0.4648 | 9.5842 | 2.7272 | 1.7110 | |
TPV | 1.9888 | 1.5631 | 0.3861 | 7.9878 | 2.2781 | 1.5908 | |
KSE-100 | RV | 2.5977 | 2.0689 | 0.4544 | 10.7500 | 3.3322 | 1.7166 |
BPV | 2.4521 | 2.2364 | 0.4140 | 12.3546 | 5.5840 | 2.2072 | |
TPV | 2.0947 | 2.0537 | 0.3541 | 11.6393 | 6.9485 | 2.4353 | |
SET Index | RV | 2.3601 | 1.7509 | 0.4492 | 7.7646 | 0.9081 | 1.2198 |
BPV | 2.0880 | 1.6596 | 0.3018 | 8.2530 | 1.8726 | 1.4467 | |
TPV | 1.7931 | 1.5607 | 0.2368 | 7.8282 | 2.6481 | 1.6559 | |
CSE All | RV | 1.4006 | 1.5549 | 0.1686 | 8.2032 | 5.8931 | 2.3293 |
BPV | 1.2959 | 1.4847 | 0.1510 | 8.1328 | 6.8381 | 2.3862 | |
TPV | 1.0759 | 1.2836 | 0.1110 | 6.9735 | 6.9342 | 2.4332 |
Stock Markets | Jumping Volatility | Jumps (n) | Mean | Standard Deviation | Minimum | Maximum | Kurtosis | Skewness |
---|---|---|---|---|---|---|---|---|
S&P ASX 200 | JV | 62 | 0.5221 | 0.5005 | 0.0032 | 2.1914 | 2.7766 | 1.7027 |
PJV | 32 | 0.3765 | 0.3574 | 0.0032 | 1.5698 | 3.0047 | 1.6782 | |
NJV | 27 | 0.6947 | 0.5911 | 0.0311 | 2.1914 | 1.1230 | 1.3516 | |
Hang Seng | JV | 71 | 1.3341 | 1.8391 | 0.1259 | 11.9661 | 18.5439 | 4.0233 |
PJV | 43 | 1.3845 | 2.1349 | 0.1259 | 11.9661 | 16.1284 | 3.8601 | |
NJV | 28 | 1.2566 | 1.2917 | 0.1286 | 6.9190 | 13.9425 | 3.3268 | |
Nikkei225 | JV | 56 | 1.5360 | 1.8130 | 0.0012 | 8.3438 | 4.3579 | 2.1030 |
PJV | 33 | 1.3843 | 1.6807 | 0.1586 | 7.2191 | 4.1437 | 2.0988 | |
NJV | 23 | 1.7537 | 2.0062 | 0.0012 | 8.3438 | 4.9369 | 2.1477 | |
NZX 50 | JV | 58 | 0.3423 | 0.4204 | 0.0106 | 2.4044 | 9.8693 | 2.8173 |
PJV | 32 | 0.2248 | 0.2674 | 0.0106 | 1.2783 | 8.6934 | 2.8753 | |
NJV | 26 | 0.4870 | 0.5244 | 0.0243 | 2.4044 | 6.4010 | 2.3138 | |
Shanghai Composite | JV | 93 | 1.9444 | 2.1683 | 0.1199 | 10.9971 | 6.2757 | 2.3618 |
PJV | 41 | 1.8759 | 2.1943 | 0.1199 | 10.9740 | 7.5715 | 2.5677 | |
NJV | 52 | 1.9984 | 2.1676 | 0.1579 | 10.9971 | 6.0724 | 2.2749 | |
Nifty50 | JV | 63 | 1.4304 | 3.3792 | 0.0511 | 25.9597 | 48.0811 | 6.6383 |
PJV | 38 | 1.5502 | 4.2256 | 0.0511 | 25.9597 | 32.1919 | 5.5233 | |
NJV | 23 | 1.2325 | 1.0230 | 0.1213 | 4.0245 | 1.9210 | 1.5553 | |
JKSE | JV | 67 | 1.5593 | 2.8102 | 0.0761 | 19.5782 | 26.2145 | 4.6318 |
PJV | 41 | 1.0867 | 1.4862 | 0.0761 | 8.2438 | 13.2699 | 3.2588 | |
NJV | 26 | 2.3046 | 4.0461 | 0.2385 | 19.5782 | 13.8387 | 3.5188 | |
KSE-100 | JV | 73 | 0.9959 | 1.0711 | 0.0001 | 5.6903 | 5.2415 | 2.1014 |
PJV | 51 | 0.7395 | 0.7675 | 0.0001 | 3.3940 | 4.3766 | 2.0441 | |
NJV | 17 | 1.7651 | 1.4578 | 0.2410 | 5.6903 | 1.9721 | 1.3910 | |
SET Index | JV | 77 | 1.0861 | 2.3810 | 0.0454 | 20.3652 | 59.0289 | 7.3028 |
PJV | 49 | 0.7889 | 0.7984 | 0.0579 | 4.1480 | 5.9939 | 2.1599 | |
NJV | 27 | 1.6255 | 3.8352 | 0.0454 | 20.3652 | 24.2577 | 4.8260 | |
CSE All | JV | 100 | 0.8958 | 2.9551 | −0.3937 | 27.0898 | 64.1616 | 7.5430 |
PJV | 59 | 1.0205 | 3.6129 | 0.0275 | 27.0898 | 48.8064 | 6.7857 | |
NJV | 36 | 0.8407 | 1.6953 | 0.0160 | 9.6081 | 21.3262 | 4.3165 |
The Average Ratio of Jumps Variations to Total Variations | The Average Ratio of Positive Jumps Variations to Total Variations | The Ratio of Negative Jumps Variations to Total Variations | |
---|---|---|---|
S&P ASX 200 | 32.56% | 33.17% | 36.04% |
Hang Seng | 41.34% | 44.12% | 37.08% |
Nikkei225 | 39.86% | 42.47% | 36.13% |
NZX 50 | 33.94% | 34.12% | 33.72% |
Shanghai Composite | 41.82% | 43.20% | 40.73% |
Nifty50 | 39.55% | 38.23% | 45.53% |
JKSE | 36.60% | 33.85% | 40.94% |
KSE-100 | 37.03% | 38.93% | 44.11% |
SET Index | 39.34% | 41.81% | 36.71% |
CSE All | 38.99% | 39.97% | 44.11% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zada, H.; Hassan, A.; Wong, W.-K. Do Jumps Matter in Both Equity Market Returns and Integrated Volatility: A Comparison of Asian Developed and Emerging Markets. Economies 2021, 9, 92. https://doi.org/10.3390/economies9020092
Zada H, Hassan A, Wong W-K. Do Jumps Matter in Both Equity Market Returns and Integrated Volatility: A Comparison of Asian Developed and Emerging Markets. Economies. 2021; 9(2):92. https://doi.org/10.3390/economies9020092
Chicago/Turabian StyleZada, Hassan, Arshad Hassan, and Wing-Keung Wong. 2021. "Do Jumps Matter in Both Equity Market Returns and Integrated Volatility: A Comparison of Asian Developed and Emerging Markets" Economies 9, no. 2: 92. https://doi.org/10.3390/economies9020092
APA StyleZada, H., Hassan, A., & Wong, W. -K. (2021). Do Jumps Matter in Both Equity Market Returns and Integrated Volatility: A Comparison of Asian Developed and Emerging Markets. Economies, 9(2), 92. https://doi.org/10.3390/economies9020092