Total Factor Productivity Growth of Vietnamese Enterprises by Sector and Region: Evidence from Panel Data Analysis
Abstract
:1. Introduction
2. Literature Review
- (1)
- The non-parametric approach using DEA;
- (2)
- The parameter approach using the production function (Cobb–Douglas production and the transformed production function);
- (3)
- The semi-parametric approach estimating Cobb–Douglas production functional form specified by the methodology of Levinsohn and Petrin (2003).
3. Research Methodology and Data
3.1. Specification Research Model
- Q: Amount of output
- A: TFP
- K: Amount of capital
- L: Labor quantity
- α and β: The coefficients of the contribution of capital and labor, respectively.
- GTFP: TFPG
- GQ: Growth rate of output
- GK: Growth rate of capital
- GL: Growth rate of labor
- q = Q/L: Output per labor
- k = K/L: Capital per labor
- i = 1:
- Enterprise sector (j = so: State-owned enterprise sector; j = ns: Non-state enterprise sector; j = fd: Foreign direct investment sector)
- i = 2:
- Regions (j = rr: Red River Delta; j = nm: Northern Midlands and Mountain areas; j = nc: North Central and Central coastal areas; j = ch: Central Highlands; j = se: Southeast; j = mr: Mekong River Delta)
3.2. Measurement of Input and Output Variables
3.2.1. Output
3.2.2. Input Variable: The Volume of Capital
3.2.3. Input Variable: The Amount of Labor
3.3. Research Data
4. Research Results and Discussion
4.1. Unit Root Test and Cointegration Test
4.2. The Results of the Parameter Estimation
4.3. TFPG Comparison between Enterprises
4.4. Discussion
5. Conclusions and Implications
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Appendix A.1. Unit Root Test
Model | Variable | Intercept | Intercept and Trend | None | |||||
---|---|---|---|---|---|---|---|---|---|
IPS | ADF | PP | IPS | ADF | PP | ADF | PP | ||
Model1,se | Lnk1,se | I(1) ** | I(0) ** | I(1) ** | |||||
Lnq1,se | I(0) ** | I(0) ** | I(1) ** | I(0) ** | |||||
Model1,ns | Lnk1,ns | I(1) ** | I(1) ** | I(0) ** | I(0) ** | I(0) * | I(0) ** | ||
Lnq1,ns | I(1) ** | I(1) ** | I(0) ** | I(0) ** | I(0) * | I(0) ** | |||
Model1,fd | Lnk1,fd | I(0) ** | I(1) ** | I(1) * | I(0) ** | ||||
Lnq1,fd | I(0) * | I(0) * | I(0) ** | I(1) ** | I(1) * | I(0) ** | |||
Model2,rr | Lnk2,rr | I(1) ** | I(1) ** | I(0) ** | I(0) * | I(0) ** | I(0) * | I(0) ** | |
Lnq2,rr | I(0) ** | I(0) ** | I(0) ** | I(0) ** | I(0) ** | I(0) ** | |||
Model2,nm | Lnk2,nm | I(1) * | I(1) * | I(0) ** | I(0) ** | I(0) ** | I(0) ** | ||
Lnq2,nm | I(1) ** | I(1) ** | I(0) ** | I(0) * | I(0) ** | I(0) ** | I(0) ** | ||
Model2,nc | Lnk2,nc | I(0) * | I(0) * | I(0) ** | I(1) * | I(0) ** | I(0) ** | I(0) ** | |
Lnq2,nc | I(1) ** | I(1) ** | I(0) ** | I(1) * | I(0) ** | I(0) ** | I(0) ** | ||
Model2,ch | Lnk2,ch | I(1) ** | I(1) ** | I(0) ** | I(1) * | I(1) ** | I(0) ** | I(0) ** | I(0) ** |
Lnq2,ch | I(0) ** | I(0) ** | I(0) ** | I(0) * | I(0) ** | I(0) * | I(0) ** | ||
Model2,se | Lnk2,se | I(0) ** | I(0) ** | I(1) ** | I(0) ** | ||||
Lnq2,se | I(0) ** | I(0) ** | I(0) ** | I(0) ** | I(0) ** | I(0) ** | I(0) ** | I(0) ** | |
Model2,mr | Lnk2,mr | I(0) * | I(0) * | I(0) ** | I(0) ** | I(0) ** | I(0) ** | ||
Lnq2,mr | I(1) ** | I(1) ** | I(0) ** | I(1) * | I(1) ** | I(0) ** | I(0) ** | I(0) ** |
Appendix A.2. Panel Cointegration Analysis
Method | Statistic | Model1,so | Model1,ns | Model1,fd | |||
Intercept | Intercept and Trend | Intercept | Intercept and Trend | Intercept | Intercept and Trend | ||
Pedroni | Panel v-Statistic | −0.0455 | −1.6070 | −0.4622 | −2.3110 | 1.4164 * | −0.9897 |
Panel rho-Statistic | −0.2552 | 1.3435 | −4.3196 *** | −2.3311 *** | −1.1022 | 0.6289 | |
Panel PP-Statistic | −2.5230 *** | −3.1500 *** | −8.1478 *** | −8.4721 *** | −1.6727 ** | −1.3183 * | |
Panel ADF-Statistic | −4.9161 *** | −9.0783 *** | −2.2795 ** | −1.7380 ** | −1.9117 ** | −4.2644 *** | |
Group rho-Statistic | 0.6993 | 2.1171 | −0.9465 | 0.9110 | 0.1715 | 1.0395 | |
Group PP-Statistic | −2.4435 *** | −2.8963 *** | −4.5103 *** | −2.5874 *** | −1.9581 ** | −1.2123 | |
Group ADF-Statistic | −6.0571 *** | −7.1538 *** | −1.2953 * | −0.8409 | −3.9348 *** | −3.5794 *** | |
Kao | t-Statistic | −2.8673 *** | −3.8813 *** | −2.5375 *** | |||
Method | Statistic | Model2,rr | Model2,nm | Model2,nc | |||
Intercept | Intercept and Trend | Intercept | Intercept and Trend | Intercept | Intercept | ||
Pedroni | Panel v-Statistic | −0.4622 | −2.3110 | −2.1192 | −2.1073 | 0.2031 | −1.9078 |
Panel rho-Statistic | −4.3196 *** | −2.3311 *** | 1.0091 | 0.9985 | −1.232 | 0.8919 | |
Panel PP-Statistic | −8.1478 *** | −8.4721 *** | −3.1830 *** | −3.2656 *** | −3.0504 *** | −2.8992 *** | |
Panel ADF-Statistic | −2.2795 ** | −1.7380 ** | −1.8907 ** | −1.9782 ** | −2.6199 *** | −2.8952 *** | |
Group rho-Statistic | −0.9465 | 0.9110 | 2.1039 | 2.0900 | −0.4770 | 1.7097 | |
Group PP-Statistic | −4.5103 *** | −2.5874 *** | −5.2581 *** | −6.0345 *** | −5.2654 *** | −5.4597 *** | |
Group ADF-Statistic | −1.2953 * | −0.8409 | −3.1778 *** | −3.5341 *** | −2.7551 *** | −3.3649 *** | |
Kao | t-Statistic | −3.1907 *** | −2.1387 ** | −1.875 ** | |||
Method | Statistic | Model2,ch | Model2,se | Model2,mr | |||
Intercept | Intercept and Trend | Intercept | Intercept and Trend | Intercept | Intercept and Trend | ||
Pedroni | Panel v-Statistic | 1.4956 * | −0.6836 | 0.3038 | 2.2866 ** | 3.2626 *** | 1.9791 ** |
Panel rho-Statistic | −2.0196 ** | −0.2082 | −0.6547 | 1.1971 | −2.9179 *** | −0.9262 | |
Panel PP-Statistic | −3.5270 *** | −3.4684 *** | −1.8858 ** | −2.0502 ** | −4.6645 *** | −5.7623 *** | |
Panel ADF-Statistic | −3.7776 *** | −4.0809 *** | −1.5604 * | −4.0503 *** | −4.8606 *** | −6.4263 *** | |
Group rho-Statistic | −1.0403 | 0.6765 | 0.3378 | 1.8987 | −0.8830 | 0.8593 | |
Group PP-Statistic | −3.7789 *** | −3.5445 *** | −2.4016 *** | −3.5458 *** | −3.8367 *** | −7.3680 *** | |
Group ADF-Statistic | −4.1037 *** | −4.1548 *** | −1.3130 * | −4.1671 *** | −4.0760 *** | −5.8579 *** | |
Kao | t-Statistic | −3.2950 *** | −2.1346 ** | −4.6312 *** |
Appendix A.3. Estimation by OLS Method
Variables | Model1,se | Model1,ns | Model1,fd | ||||
FEM | REM | FEM | REM | FEM | REM | ||
lnq | Coefficient | 0.7756 | 0.6589 | 0.8845 | 0.8689 | 0.9191 | |
t-Statistic | 10.92 *** | 12.88 *** | 14.14 *** | 14.09 *** | 5.67 *** | ||
Std. Error | 0.0710 | 0.0512 | 0.0626 | 0.0617 | 0.1620 | ||
Constant | Coefficient | −2.5504 | −2.4267 | −2.4418 | −2.4438 | −1.9244 | |
t-Statistic | −30.65 *** | −31.71 *** | −73.84 *** | −11.12 *** | −25.42 *** | ||
Std. Error | 0.0832 | 0.0765 | 0.0331 | 0.2197 | 0.0757 | ||
R-squared | 0.8878 | 0.8112 | 0.8746 | 0.7702 | 0.8896 | ||
Adj R-squared | 0.8733 | 0.8056 | 0.8630 | 0.7662 | 0.8790 | ||
F-statistic | 61.33 *** | 146.04 *** | 75.34 *** | 194.37 *** | 84.58 *** | ||
Hausman test | 5.61 ** | 2.23 | |||||
Observations | 36 | 60 | 24 | ||||
N (object) | 4 | 5 | 2 | ||||
Variables | Model2,rr | Model2,nm | Model2,nc | ||||
FEM | REM | FEM | REM | FEM | REM | ||
lnq | Coefficient | 0.9999 | 0.9949 | 0.6955 | 0.6910 | 0.5905 | 0.5724 |
t-Statistic | 12.80 *** | 13.07 *** | 17.02 *** | 17.02 *** | 13.75 ** | 13.56 *** | |
Std. Error | 0.0781 | 0.0761 | 0.0409 | 0.0406 | 0.0429 | 0.0422 | |
Constant | Coefficient | −2.3880 | −2.3896 | −2.6176 | −2.6221 | −2.6994 | −2.7068 |
t-Statistic | −51.23 *** | −18.11 *** | −73.00 *** | −35.46 *** | −79.96 *** | −35.91 | |
Std. Error | 0.0466 | 0.1319 | 0.0359 | 0.0739 | 0.0338 | 0.0754 | |
R-squared | 0.7376 | 0.5694 | 0.7137 | 0.6385 | 0.6474 | 0.5230 | |
Adj R-squared | 0.7135 | 0.5661 | 0.6871 | 0.6363 | 0.6145 | 0.5200 | |
F-statistic | 30.66 *** | 171.93 *** | 26.89 *** | 289.66 *** | 19.68 *** | 178.70 *** | |
Hausman test | 0.08 | 1.00 | 5.31 ** | ||||
Observations | 132 | 166 | 165 | ||||
N (object) | 11 | 14 | 14 | ||||
Variables | Model2,ch | Model2,se | Model2,mr | ||||
FEM | REM | FEM | REM | FEM | REM | ||
lnq | Coefficient | 0.7098 | 0.6492 | 0.7992 | 0.7824 | 0.6794 | 0.6413 |
t-Statistic | 11.14 *** | 11.22 *** | 8.74 *** | 9.70 *** | 17.93*** | 17.68 *** | |
Std. Error | 0.0637 | 0.0578 | 0.0914 | 0.0807 | 0.0379 | 0.0363 | |
Constant | Coefficient | −2.6026 | −2.6240 | −2.0636 | −2.0661 | −2.3417 | −2.3579 |
t-Statistic | −62.05 *** | −64.21 *** | −50.66 *** | −17.44 *** | −89.13 *** | −42.34 *** | |
Std. Error | 0.0419 | 0.0409 | 0.0407 | 0.1185 | 0.0263 | 0.0557 | |
R-squared | 0.7165 | 0.6739 | 0.8126 | 0.5762 | 0.7458 | 0.6559 | |
Adj R-squared | 0.6898 | 0.6682 | 0.7953 | 0.5701 | 0.7224 | 0.6536 | |
F-statistic | 26.79 *** | 117.79 *** | 46.96 *** | 95.16 *** | 31.82 *** | 291.62 *** | |
Hausman test | 5.15 ** | 0.15 | 12.05 *** | ||||
Observations | 59 | 72 | 155 | ||||
N (object) | 5 | 6 | 13 |
References
- Ackerberg, Daniel, Kevin Caves, and Garth Frazer. 2006. Structural Identification of Production Functions. MPRA Paper 38349. Munich, Germany: University Library of Munich, Available online: https://mpra.ub.uni-muenchen.de/38349/1/MPRA_paper_38349.pdf (accessed on 8 July 2021).
- Avila, Antonio Flavio Dias, and Robert E. Evenson. 2010. Chapter 72 Total Factor Productivity Growth in Agriculture: The Role of Technological Capital. Handbook of Agricultural Economics 4: 3769–822. [Google Scholar] [CrossRef]
- Bao, Ho Dinh. 2014. Provincial Total Factor Productivity in Vietnamese Agriculture and Its Determinant. Journal of Economics and Development 6: 5–20. [Google Scholar] [CrossRef]
- Botrić, Valerija, Ljiljana Božić, and Tanja Broz. 2017. Explaining firm-level total factor productivity in post-transition: Manufacturing vs. services sector. Journal of International Studies 10: 77–90. [Google Scholar] [CrossRef] [Green Version]
- Coelli, Tim J., and D. S. Prasada Rao. 2005. Total Factor Productivity Growth in Agriculture: A Malmquist Index Analysis of 93 Countries, 1980–2000. Agricultural Economics 32: 115–34. [Google Scholar] [CrossRef] [Green Version]
- Dat, Tran Tho, To Trung Thanh, Vu Sy Cuong, Nguyen Anh Duong Duong, Nguyen Hoang Ha, Nnguyen Thi Thanh Huyen, Dinh Tuan Minh, Pham Xuan Nam, Tran Anh Ngoc, Luu Thi Phuong, and et al. 2020. Annual Vietnam Economic Review 2019-Improving Labor Productivity in the Digital Economy Context. Hanoi: National Economics University. [Google Scholar]
- Farrell, Mary Jane. 1957. The Measurement of Productive Efficiency. Journal of the Royal Statistical Society. Series A 120: 253–290. [Google Scholar] [CrossRef]
- Felipe, Jesus. 1999. Total factor productivity growth in East Asia: A critical survey. The Journal of Development Studies 35: 1–41. [Google Scholar] [CrossRef]
- Felipe, Jesus, and J. S. L. McCombie. 2004. To measure or not to measure TFP growth? A reply to Mahadevan. Oxford Development Studies 32: 321–27. [Google Scholar] [CrossRef]
- General Statistics Office of Vietnam. 2020. Statistical Yearbook of Vietnam 2019. Available online: http://thongke.gov.vn/default.aspx?tabid=512&idmid=5&ItemID=19689 (accessed on 9 October 2020).
- Giang, Mai Huong, Tran Dang Xuan, Bui Huy Trung, and Mai Thanh Que. 2019. Total Factor Productivity of Agricultural Firms in Vietnam and Its Relevant Determinants. Economies 7: 4. [Google Scholar] [CrossRef] [Green Version]
- Giang, Mai Huong, Tran Dang Xuan, Bui Huy Trung, Mai Thanh Que, and Yuichro Yoshida. 2018. Impact of Investment Climate on Total Factor Productivity of Manufacturing Firms in Vietnam. Sustainability 10: 4815. [Google Scholar] [CrossRef] [Green Version]
- Granger, Clive W. J., and Paul Newbold. 1974. Spurious regressions in econometrics. Journal of Econometrics 2: 111–20. [Google Scholar] [CrossRef] [Green Version]
- Hien, Vu Thi, Ke Chung Peng, Ha Quang Trung, and Nguyen Thi Giang. 2019. Evaluation of Total Factor Productivity of foreign direct investment enterprises in Vietnam: An application of malmquist productivity index. International Journal of Economics, Business and Management Research 3: 59–66. Available online: http://www.ijebmr.com/uploads/pdf/archivepdf/2020/IJEBMR_426.pdf (accessed on 8 July 2021).
- Hue, Hoang Thi, Tran Huy Phuong, Vu Hoang Ngan, and Nguyen Thi Hai Hanh. 2019. The impact of innovation on total factor productivity of small and medium enterprises in Vietnam. International Journal of Education Humanities and Social Science 2: 107–14. Available online: https://ijehss.com/uploads2019/EHS_2_54.pdf (accessed on 8 July 2021).
- Huong, Nguyen Quynh. 2017. Business reforms and total factor productivity in Vietnamese manufacturing. Journal of Asian Economic 51: 33–42. [Google Scholar] [CrossRef]
- Kao, Chihwa. 1999. Spurious regression and residual-based tests for cointegration in panel data. Journal of Econometrics 90: 1–44. [Google Scholar] [CrossRef]
- Kinda, Tidiane, Patrick Plane, and Marie-Ange Véganzonès-Varoudakis. 2011. Firm productivity and investment climate in developing country: How does Middle East and North Africa manufacturing form? The Developing Economies 49: 429–62. [Google Scholar] [CrossRef] [Green Version]
- Kong, Nancy Y. C., and Jose Tongzon. 2006. Estimating total factor productivity growth in Singapore at sectoral level using data envelopment analysis. Applied Economics 38: 2299–314. [Google Scholar] [CrossRef]
- Kong, Xiang, Robert. E. Marks, and Guang Hua Wan. 1999. Technical Efficiency, Technological Change and Total Factor Productivity Growth in Chinese State-Owned Enterprises in the Early 1990s. Asian Economic Journal 13: 267–82. [Google Scholar] [CrossRef]
- Le, Quang Canh, Thi Phuong Thu Nguyen, and Tuyet Nhung Do. 2021. State ownership, quality of sub-national governance, and total factor productivity of firms in Vietnam. Post-Communist Economies 33: 133–46. [Google Scholar] [CrossRef]
- Levinsohn, James, and Amil Petrin. 2003. Estimating production functions using inputs to control for unobservables. The Review of Economic Studies 70: 317–41. [Google Scholar] [CrossRef]
- Long, Cao Hoang. 2020. Application of the dynamic array data model of total factor productivity to analyze the contribution of TFO to labor productivity growth in food industry in Vietnam. Journal Science and Technology Policies and Management 9: 21–38. Available online: https://vietnamstijournal.net/index.php/JSTPM/article/view/344 (accessed on 8 July 2021).
- Mahadevan, Renuka. 2002. A frontier approach to measuring total factor productivity growth in Singapore’s services sector. Journal of Economic Study 29: 48–58. [Google Scholar] [CrossRef]
- Mahadevan, Renuka. 2003. To Measure or Not To Measure Total Factor Productivity Growth? Oxford Development Studies 31: 365–78. [Google Scholar] [CrossRef]
- Oanh, Nguyen Thi Hoang. 2019. Determinants of firms’ total factor productivity in manufacturing industry in Vietnam. Journal of Asian Business and Economic Studies 26: 4–28. [Google Scholar] [CrossRef] [Green Version]
- Olley, G. Steven, and Ariel Pakes. 1996. The Dynamics of Productivity in the Telecommunications Equipment Industry. Econometrica 64: 1263–98. [Google Scholar] [CrossRef]
- Ozyurt, Selin. 2009. Total Factor Productivity Growth in Chinese Industry: 1952–2005. Oxford Development Studies 37: 1–17. [Google Scholar] [CrossRef] [Green Version]
- Pedroni, Peter. 1999. Critical Values for Cointegration Tests in Heterogeneous Panels with Multiple Regressors. Oxford Bulletin of Economics and Statistics 61: 653–70. [Google Scholar] [CrossRef]
- Phuong, Vu Hung. 2018. Total Factor Productivity Growth, Technical Progress & Efficiency Change in Vietnam Coal Industry—Nonparametric Approach. E3S Web of Conferences 35: 01009. [Google Scholar] [CrossRef] [Green Version]
- Quang, Nguyen Hai. 2017. The Contribution of Total Factor Productivity in the Air Transport of Vietnam. International Journal of Mechanical Engineering and Applications 5: 20–25. [Google Scholar] [CrossRef]
- Quang, Nguyen Hai. 2019. Comparing Total factor productivity growth rate among modes of transport in Vietnam-Measured by Cobb–Douglas production function. Asian Economic and Business Research Journal 30: 5–19. Available online: http://www.jabes.ueh.edu.vn/Content/ArticleFiles/7ffe014d-4de3-458c-b2d4-178a42152ec8/JABES-2020-1-V4.pdf (accessed on 8 July 2021).
- See, Kok Fong, and Azan Abdul Rashid. 2016. Total factor productivity analysis of Malaysia Airlines: Lessons from the past and directions for the future. Research in Transportation Economics 56: 42–49. [Google Scholar] [CrossRef]
- See, Kok Fong, and Fei Li. 2015. Total factor productivity analysis of the UK airport industry: A Hicks Moorsteen index method. Journal of Air Transport Management 43: 1–10. [Google Scholar] [CrossRef]
- Tan, Lin-Yeok, and Suchin Virabhak. 1998. Total factor productivity growth in Singapore’s service industries. Journal of Economic Studies 25: 392–409. [Google Scholar] [CrossRef]
- Thanh, Nguyen Quang, and Tran Quan Van. 2020. Firm heterogeneity and total factor productivity: New panel-data evidence from Vietnamese manufacturing firms. Management Science Letters 10: 1505–12. [Google Scholar] [CrossRef]
- Thanh, Nguyen Quang, Tran Quang Van, Nuyen Tien Dung, and Nguyen Trung Thanh. 2020. How Heterogeneous Are the Determinants of Total Factor Productivity in Manufacturing Sectors? Panel-Data Evidence from Vietnam. Economies 8: 57. [Google Scholar] [CrossRef]
- Trung, Tran Quang, and Tran Huu Cuong. 2010. The impact of the investment climate on total factor productivity (TFP) in the agricultural sector: The case of Hanoi, Vietnam. Journal of the International Society for Southeast Asian Agricultural Sciences 16: 87–97. [Google Scholar]
- Van Biesebroeck, Johannes. 2007. Robustness of Productivity Estimate. The Journal of Industrial Economics 55: 529–69. [Google Scholar] [CrossRef] [Green Version]
- Vasigh, Bijan, and Kenneth Fleming. 2005. A total factor productivity-based structure for tactical cluster assessment: Empirical investigation in the airline industry. Journal of Air Transportation 10: 3–19. [Google Scholar]
- Wooldridge, Jeffrey M. 2009. On estimating firm-level production functions using proxy variables to control for unobservables. Economics Letters 104: 112–14. [Google Scholar] [CrossRef]
- Wu, Yannui. 2011. Total factor productivity growth in China: A review. Journal of Chinese Economic and Business Studies 9: 111–26. [Google Scholar] [CrossRef]
Frontier Approach: Assumes Technical Inefficiency | Non-Frontier Approach: Assumes Technical Efficiency | ||
---|---|---|---|
Parametric estimation | Non-parametric estimation | Parametric estimation | Non-parametric estimation |
Stochastic frontier Neutral shifting Non-neutral shifting Bayesian approach | Deterministic Data Envelopment Analysis (DEA) Stochastic DEA | Average response function Cobb–Douglas production Cobb–Douglas translog | Translog divisia index |
Sector/Regions | Case Study | Object | Enterprise-Year | Note |
---|---|---|---|---|
Enterprise sectors | State-owned enterprise sector | Central enterprises; local enterprises | 37,053 (0.84%) | |
Enterprises wholly financed by state capital; enterprises where the state holds more than 50% of the charter capital | ||||
Non-state enterprise sector | Private enterprises; partnership companies; private limited liability companies; companies with 50% or less of their charter capital shared by the state; joint-stock companies without state capital | 4,254,065 (96.41%) | ||
Foreign investment enterprise sector | 100% foreign invested enterprises; enterprises joint ventures with foreign parties. | 121,367 (2.75%) | ||
Regions | Red River Delta | Hanoi; Vinh Phuc; Bac Ninh; Quang Ninh; Hai Duong; Hai Phong; Hung Yen; Thai Binh; Ha Nam; Nam Dinh; Ninh Binh | 1,385,785 (31.42%) | |
Northern Midlands and Mountain areas | Ha Giang; Cao Bang; Bac Can; Tuyen Quang; Lao Cai; Yen Bai; Thai Nguyen; Lang Son; Bac Giang; Phu-Tho; Dien Bien; Lai Chau; Son La; Hoa Binh. | 186,098 (4.22%) | The data year 2010 for Hoa Binh was not used. | |
North Central and Central coastal areas | Thanh Hoa; Nghe An; Ha Tinh; Quang Binh; Quang Tri; Hue; Danang; Quang Nam; Quang Ngai; Bình Dinh; Phu Yen; Khanh Hoa; Ninh Thuan; Binh Thuan | 581,360 (13.18%) | The data years 2011 and 2012 for Quang Ngai, and 2018 for Thanh Hoa were not used | |
Central Highlands | Kon Tum; Gia Lai; Dak Lak; Dak Nong; Lam Dong | 116,164 (2.63%) | The data year 2018 for Gia Lai was not used. | |
Southeast | Binh Phuoc; Tay Ninh; Binh Duong; Dong Nai; Ba Ria-Vung Tau; Ho Chi Minh City. | 1,787,089 (40.52%) | ||
Mekong River Delta | Long An; Tien Giang; Ben Tre; Tra Vinh; Vinh Long; Dong Thap; An Giang; Kien Giang; Can Tho; Hau Giang; Soc Trang; Bac Lieu; Ca Mau | 354,319 (8.03%) | The data year 2008 for Dong Thap was not used. |
Variable | Mean | Maximum | Minimum | Std. Dev. | CV | Number of Observations | |
---|---|---|---|---|---|---|---|
Model1,so | k1,se | 3.9409 | 10.1469 | 0.2752 | 2.7138 | 0.6886 | 32 |
q1,so | 0.2025 | 0.3373 | 0.0258 | 0.0854 | 0.4219 | ||
Model1,ns | k1,ns | 1.1726 | 3.7193 | 0.1070 | 0.9021 | 0.7693 | 60 |
q1,ns | 0.0950 | 0.2803 | 0.0146 | 0.0604 | 0.6362 | ||
Model1,fd | k1,fd | 1.6328 | 3.3818 | 0.3240 | 0.9765 | 0.5981 | 24 |
q1,fd | 0.2492 | 0.4804 | 0.0270 | 0.1554 | 0.6237 | ||
Model2,rr | k2,rr | 0.8862 | 3.4817 | 0.1274 | 0.5946 | 0.6709 | 132 |
q2,rr | 0.0909 | 0.4109 | 0.0010 | 0.0748 | 0.8233 | ||
Model2,nm | k2,nm | 0.6926 | 1.9820 | 0.1097 | 0.4349 | 0.6279 | 166 |
q2,nm | 0.0606 | 0.4257 | 0.0090 | 0.0568 | 0.9377 | ||
Model2,nc | k2,nc | 0.8259 | 5.3941 | 0.1202 | 0.7908 | 0.9575 | 165 |
q2,nc | 0.0594 | 0.2395 | 0.0103 | 0.0347 | 0.5841 | ||
Model2,ch | k2,ch | 0.8351 | 2.6364 | 0.1659 | 0.4836 | 0.5791 | 59 |
q2,ch | 0.0636 | 0.1218 | 0.0158 | 0.0249 | 0.3921 | ||
Model2,se | k2,se | 1.2012 | 4.6877 | 0.1393 | 1.0611 | 0.8834 | 72 |
q2,se | 0.1520 | 0.9725 | 0.0274 | 0.1569 | 1.0325 | ||
Model2,mr | k2mr | 0.8403 | 3.2942 | 0.1416 | 0.6184 | 0.7360 | 155 |
q2,mr | 0.0808 | 0.1658 | 0.0110 | 0.0345 | 0.4275 |
Enterprise Sectors | Enterprises by Region | ||||||||
---|---|---|---|---|---|---|---|---|---|
Model1,se | Model1,ns | Model1,fd | Model2,rr | Model2,nm | Model2,nc | Model2,ch | Model2,se | Model2,mr | |
Coefficient | 0.6649 | 0.8817 | 0.9386 | 0.9749 | 0.6200 | 0.4738 | 0.6076 | 0.7946 | 0.6130 |
Std. Error | 0.0816 | 0.0811 | 0.2575 | 0.1129 | 0.0670 | 0.0743 | 0.1010 | 0.1718 | 0.0574 |
t-Statistic | 8.15 *** | 10.87 *** | 3.64 *** | 8.64 *** | 9.26 *** | 6.38 *** | 6.02 *** | 4.63 *** | 10.67 *** |
R-squared | 0.9060 | 0.8395 | 0.8892 | 0.6826 | 0.6380 | 0.5798 | 0.5480 | 0.7888 | 0.6903 |
Adj R-squared | 0.8921 | 0.8231 | 0.8775 | 0.6505 | 0.6010 | 0.5365 | 0.5009 | 0.7673 | 0.6591 |
Enterprise Sectors | Enterprise by Region | ||||||||
---|---|---|---|---|---|---|---|---|---|
Model1,se | Model1,ns | Model1,fd | Model2,rr | Model2,nm | Model2,nc | Model2,ch | Model2,se | Model2,mr | |
FMOLS | 0.6649 | 0.8817 | 0.9386 | 0.9749 | 0.6200 | 0.4738 | 0.6076 | 0.7946 | 0.6130 |
OLS | 0.7756 (FEM) | 0.8689 (REM) | 0.9191 (FEM) | 0.9949 (REM) | 0.6910 (REM) | 0.5905 (FEM) | 0.7098 (FEM) | 0.7824 (REM) | 0.6794 (FEM) |
Difference | −0.1107 | 0.0128 | 0.0195 | −0.0200 | −0.0710 | −0.1167 | −0.1022 | 0.0122 | −0.0664 |
% | −16.65 | 1.45 | 2.08 | −2.05 | −11.45 | −24.63 | −16.82 | 1.54 | −10.83 |
2009–2013 | 2014–2018 | 2009–2018 | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Output Growth | Input Growth | TFPG | Output Growth | Input Growth | TFPG | Output Growth | Input Growth | TFPG | ||||
Capital | Labor | Capital | Labor | Capital | Labor | |||||||
SO | 17.19 | 11.93 | −0.18 | 5.44 | −0.46 | 6.86 | −2.39 | −4.93 | 8.00 | 9.35 | −1.30 | −0.04 |
NS | 24.29 | 26.14 | 1.26 | −3.11 | 20.10 | 16.83 | 0.65 | 2.62 | 22.18 | 21.39 | 0.95 | −0.16 |
FD | 21.43 | 25.77 | 0.64 | −4.98 | 15.70 | 13.61 | 0.60 | 1.49 | 18.53 | 19.53 | 0.62 | −1.61 |
RR | 29.23 | 27.66 | 0.26 | 1.30 | 13.14 | 14.45 | 0.15 | −1.46 | 20.92 | 20.87 | 0.21 | −0.16 |
NM | 23.67 | 19.45 | 3.58 | 0.64 | 31.41 | 15.34 | 2.77 | 13.30 | 27.48 | 17.37 | 3.17 | 6.94 |
NC | 22.42 | 14.50 | 4.36 | 3.56 | 12.50 | 10.02 | 2.69 | −0.22 | 17.36 | 12.22 | 3.52 | 1.62 |
CH | 18.86 | 14.75 | 1.81 | 2.30 | −1.46 | 8.76 | −0.17 | −10.04 | 8.22 | 11.69 | 0.80 | −4.27 |
SE | 16.13 | 18.90 | 1.46 | −4.23 | 12.59 | 8.40 | 1.01 | 3.18 | 14.35 | 13.50 | 1.24 | −0.39 |
MR | 21.71 | 19.55 | 3.36 | −1.20 | 18.07 | 8.72 | 2.72 | 6.64 | 19.88 | 13.94 | 3.04 | 2.90 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nguyen, H.Q. Total Factor Productivity Growth of Vietnamese Enterprises by Sector and Region: Evidence from Panel Data Analysis. Economies 2021, 9, 109. https://doi.org/10.3390/economies9030109
Nguyen HQ. Total Factor Productivity Growth of Vietnamese Enterprises by Sector and Region: Evidence from Panel Data Analysis. Economies. 2021; 9(3):109. https://doi.org/10.3390/economies9030109
Chicago/Turabian StyleNguyen, Hai Quang. 2021. "Total Factor Productivity Growth of Vietnamese Enterprises by Sector and Region: Evidence from Panel Data Analysis" Economies 9, no. 3: 109. https://doi.org/10.3390/economies9030109
APA StyleNguyen, H. Q. (2021). Total Factor Productivity Growth of Vietnamese Enterprises by Sector and Region: Evidence from Panel Data Analysis. Economies, 9(3), 109. https://doi.org/10.3390/economies9030109