Applications of Network Science to Education Research: Quantifying Knowledge and the Development of Expertise through Network Analysis
Abstract
:1. Introduction
2. Representing Knowledge Structures as Networks
2.1. Measuring Knowledge Structures
2.2. Measuring the Network at Multiple Scales
2.2.1. Micro-Scale of the Network
2.2.2. Macro-Scale of the Network
2.2.3. Meso-Scale of the Network
2.3. Summary
3. Quantifying the Development of Expertise through Network Analysis
3.1. Using Generative Network Growth Models to Track Conceptual Development
3.2. Network Science in Educational Design
3.2.1. Backward Design and Network Growth Optimization
3.2.2. Enduring Understandings and Gap Filling in Networks
3.3. Summary
4. Conclusions
Funding
Acknowledgments
Conflicts of Interest
References
- Castro, N.; Siew, C.S.Q. Contributions of Modern Network Science to the Cognitive Sciences: Revisiting research spirals of representation and process. PsyArXiv 2019. [Google Scholar] [CrossRef]
- Siew, C.S.Q.; Wulff, D.U.; Beckage, N.M.; Kenett, Y.N. Cognitive Network Science: A Review of Research on Cognition through the Lens of Network Representations, Processes, and Dynamics. Complexity 2019, 2019, 1–24. [Google Scholar] [CrossRef]
- Chi, M.T.H.; Feltovich, P.J.; Glaser, R. Categorization and Representation of Physics Problems by Experts and Novices. Cogn. Sci. 1981, 5, 121–152. [Google Scholar] [CrossRef] [Green Version]
- Chi, M.T. Knowledge structures and memory development. Child. Think. What Dev. 1978, 1, 75–96. [Google Scholar]
- Gobbo, C.; Chi, M. How knowledge is structured and used by expert and novice children. Cogn. Dev. 1986, 1, 221–237. [Google Scholar] [CrossRef]
- Chan, K.Y.; Vitevitch, M. The influence of the phonological neighborhood clustering coefficient on spoken word recognition. J. Exp. Psychol. Hum. Percept. Perform. 2009, 35, 1934–1949. [Google Scholar] [CrossRef] [Green Version]
- Siew, C.S.Q.; Vitevitch, M.S. The phonographic language network: Using network science to investigate the phonological and orthographic similarity structure of language. J. Exp. Psychol. Gen. 2019, 148, 475–500. [Google Scholar] [CrossRef]
- Castro, N.; Stella, M.; Siew, C.S.Q. Quantifying the interplay of semantics and phonology during failures of word retrieval by people with aphasia using a multiplex lexical network. PsyArXiv 2019. [Google Scholar] [CrossRef]
- Castro, N.; Stella, M. The multiplex structure of the mental lexicon influences picture naming in people with aphasia. J. Complex Netw. 2019, 7, 913–931. [Google Scholar] [CrossRef]
- Hills, T.T.; Jones, M.N.; Todd, P.M. Optimal foraging in semantic memory. Psychol. Rev. 2012, 119, 431–440. [Google Scholar] [CrossRef] [Green Version]
- Goldstein, R.; Vitevitch, M. The influence of clustering coefficient on word-learning: How groups of similar sounding words facilitate acquisition. Front. Psychol. 2014, 5, 5. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Beckage, N.; Smith, L.; Hills, T. Small Worlds and Semantic Network Growth in Typical and Late Talkers. PLoS ONE 2011, 6, 19348. [Google Scholar] [CrossRef] [PubMed]
- Stella, M.; Beckage, N.M.; Brede, M. Multiplex lexical networks reveal patterns in early word acquisition in children. Sci. Rep. 2017, 7, 46730. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Strogatz, S.H. Exploring complex networks. Nature 2001, 410, 268–276. [Google Scholar] [CrossRef] [Green Version]
- Weinstein, Y.; Madan, C.R.; Sumeracki, M.A. Teaching the science of learning. Cogn. Res. Princ. Implic. 2018, 3, 2. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Roediger, H.L., III; Karpicke, J.D. Test-enhanced learning: Taking memory tests improves long-term retention. Psychol. Sci. 2006, 17, 249–255. [Google Scholar] [CrossRef]
- Roediger, H.L., III; Putnam, A.L.; Smith, M.A. Ten benefits of testing and their applications to educational practice. In Psychology of Learning and Motivation; Elsevier: Amsterdam, The Netherlands, 2011; Volume 55, pp. 1–36. [Google Scholar]
- Disessa, A.A.; Sherin, B. What changes in conceptual change? Int. J. Sci. Educ. 1998, 20, 1155–1191. [Google Scholar] [CrossRef]
- Linn, M.C. The Knowledge Integration Perspective on Learning and Instruction; Cambridge University Press: Cambridge, UK, 2006. [Google Scholar]
- Collins, A.M.; Loftus, E.F. A spreading-activation theory of semantic processing. Psychol. Rev. 1975, 82, 407–428. [Google Scholar] [CrossRef]
- Smith, E.E.; Shoben, E.J.; Rips, L.J. Structure and process in semantic memory: A featural model for semantic decisions. Psychol. Rev. 1974, 81, 214–241. [Google Scholar] [CrossRef]
- Aviv, R.; Erlich, Z.; Ravid, G.; Geva, A. Network analysis of knowledge construction in asynchronous learning networks. J. Asynchronous Learn. Netw. 2003, 7, 1–23. [Google Scholar] [CrossRef] [Green Version]
- Shaffer, D.W.; Hatfield, D.; Svarovsky, G.N.; Nash, P.; Nulty, A.; Bagley, E.; Frank, K.; Rupp, A.A.; Mislevy, R. Epistemic Network Analysis: A Prototype for 21st-Century Assessment of Learning. Int. J. Learn. Media 2009, 1, 33–53. [Google Scholar] [CrossRef] [Green Version]
- Wise, A.F.; Cui, Y. Top concept networks of professional education reflections. In Proceedings of the 9th International Conference on Learning Analytics & Knowledge, Tempe, AZ, USA, 4–8 March 2019; pp. 260–264. [Google Scholar]
- Hoffman, R.R. Scientific Methodology and Expertise Studies: Massaging the Scar Tissue. In The Science of Expertise; Routledge: Abingdon, UK, 2017; pp. 444–452. [Google Scholar]
- Novak, J.D. Learning, Creating, and Using Knowledge: Concept Maps as Facilitative Tools in Schools and Corporations; Routledge: Abingdon, UK, 2010. [Google Scholar]
- Kinchin, I.M.; Hay, D.B.; Adams, A. How a qualitative approach to concept map analysis can be used to aid learning by illustrating patterns of conceptual development. Educ. Res. 2000, 42, 43–57. [Google Scholar] [CrossRef]
- Lavigne, N.C. Mutually informative measures of knowledge: Concept maps plus problem sorts in statistics. Educ. Assess. 2005, 10, 39–71. [Google Scholar] [CrossRef]
- Koponen, I.T.; Nousiainen, M. Pre-service teachers’ knowledge of relational structure of physics concepts: Finding key concepts of electricity and magnetism. Educ. Sci. 2019, 9, 18. [Google Scholar] [CrossRef] [Green Version]
- Siew, C.S. Using network science to analyze concept maps of psychology undergraduates. Appl. Cogn. Psychol. 2018, 33, 662–668. [Google Scholar] [CrossRef]
- Steyvers, M.; Tenenbaum, J.B. The large-scale structure of semantic networks: Statistical analyses and a model of semantic growth. Cogn. Sci. 2005, 29, 41–78. [Google Scholar] [CrossRef]
- De Deyne, S.; Navarro, D.J.; Perfors, A.; Brysbaert, M.; Storms, G. The “Small World of Words” English word association norms for over 12,000 cue words. Behav. Res. Methods 2018, 51, 987–1006. [Google Scholar] [CrossRef] [Green Version]
- Kiss, G.R.; Armstrong, C.; Milroy, R.; Piper, J. An associative thesaurus of English and its computer analysis. Comput. Lit. Stud. 1973, 153–165. [Google Scholar]
- Nelson, D.L.; McEvoy, C.L.; Schreiber, T.A. The University of South Florida free association, rhyme, and word fragment norms. Behav. Res. Methods Instrum. Comput. 2004, 36, 402–407. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De Deyne, S.; Navarro, D.J.; Storms, G. Better explanations of lexical and semantic cognition using networks derived from continued rather than single-word associations. Behav. Res. Methods 2013, 45, 480–498. [Google Scholar] [CrossRef] [Green Version]
- Stella, M.; De Nigris, S.; Aloric, A.; Siew, C.S. Forma mentis networks quantify crucial differences in STEM perception between students and experts. PLoS ONE 2019, 14, e0222870. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McRae, K.; Cree, G.S.; Seidenberg, M.S.; McNorgan, C. Semantic feature production norms for a large set of living and nonliving things. Behav. Res. Methods 2005, 37, 547–559. [Google Scholar] [CrossRef] [PubMed]
- Buchanan, E.M.; Valentine, K.D.; Maxwell, N.P. English semantic feature production norms: An extended database of 4436 concepts. Behav. Res. Methods 2019, 51, 1849–1863. [Google Scholar] [CrossRef] [PubMed]
- Hills, T.T.; Maouene, M.; Maouene, J.; Sheya, A.; Smith, L. Longitudinal analysis of early semantic networks. Psychol. Sci. 2009, 20, 729–739. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hills, T.T.; Maouene, M.; Maouene, J.; Sheya, A.; Smith, L. Categorical structure among shared features in networks of early-learned nouns. Cognition 2009, 112, 381–396. [Google Scholar] [CrossRef] [Green Version]
- Siew, C.S.Q. Feature distinctiveness effects in language acquisition and lexical processing: Insights from megastudies. Cogn. Process 2020. [Google Scholar] [CrossRef] [Green Version]
- Troyer, A.K.; Moscovitch, M.; Winocur, G.; Alexander, M.P.; Stuss, D.O.N. Clustering and switching on verbal fluency: The effects of focal frontal-and temporal-lobe lesions. Neuropsychologia 1998, 36, 499–504. [Google Scholar] [CrossRef]
- Zemla, J.C.; Austerweil, J.L. Estimating semantic networks of groups and individuals from fluency data. Comput. Brain Behav. 2018, 1, 36–58. [Google Scholar] [CrossRef]
- Zemla, J.C.; Austerweil, J.L. Analyzing knowledge retrieval impairments associated with Alzheimer’s disease using network analyses. Complexity 2019, 2019, 1–12. [Google Scholar] [CrossRef]
- Jones, M.N.; Mewhort, D.J. Representing word meaning and order information in a composite holographic lexicon. Psychol. Rev. 2007, 114, 1. [Google Scholar] [CrossRef] [Green Version]
- Lund, K.; Burgess, C. Producing high-dimensional semantic spaces from lexical co-occurrence. Behav. Res. Methods Instrum. Comput. 1996, 28, 203–208. [Google Scholar] [CrossRef]
- Li, Y.; Engelthaler, T.; Siew, C.S.; Hills, T.T. The Macroscope: A tool for examining the historical structure of language. Behav. Res. Methods 2019, 51, 1864–1877. [Google Scholar] [CrossRef] [PubMed]
- Bullinaria, J.A.; Levy, J.P. Extracting semantic representations from word co-occurrence statistics: A computational study. Behav. Res. Methods 2007, 39, 510–526. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Turney, P.D.; Pantel, P. From frequency to meaning: Vector space models of semantics. J. Artif. Intell. Res. 2010, 37, 141–188. [Google Scholar] [CrossRef]
- Firth, J.R. A synopsis of linguistic theory, 1930–1955. In Studies in Linguistic Analysis; Philological Society: Oxford, UK, 1957. [Google Scholar]
- Cancho, R.F.I.; Solé, R.V. The small world of human language. Proc. R. Soc. Lond. Ser. B Biol. Sci. 2001, 268, 2261–2265. [Google Scholar] [CrossRef] [Green Version]
- Ke, J.; Yao, Y.A.O. Analysing language development from a network approach. J. Quant. Linguist. 2008, 15, 70–99. [Google Scholar] [CrossRef]
- Hart, B.; Risley, T.R. Meaningful Differences in the Everyday Experience of Young American Children; Paul H Brookes Publishing: Baltimore, MD, USA, 1995. [Google Scholar]
- Huttenlocher, J.; Haight, W.; Bryk, A.; Seltzer, M.; Lyons, T. Early vocabulary growth: Relation to language input and gender. Dev. Psychol. 1991, 27, 236. [Google Scholar] [CrossRef]
- Sizemore, A.E.; Karuza, E.A.; Giusti, C.; Bassett, D.S. Knowledge gaps in the early growth of semantic feature networks. Nat. Hum. Behav. 2018, 2, 682–692. [Google Scholar] [CrossRef]
- Borgatti, S.P. Centrality and network flow. Soc. Netw. 2005, 27, 55–71. [Google Scholar] [CrossRef]
- Luce, P.A.; Pisoni, D.B. Recognizing spoken words: The Neighborhood Activation Model. Ear Hear 1998, 19, 1–36. [Google Scholar] [CrossRef] [Green Version]
- Storkel, H.L. Learning new words. J. Speech Lang. Hear. Res. 2001, 44, 1321–1337. [Google Scholar] [CrossRef] [Green Version]
- Goldstein, R.; Vitevitch, M.S. The influence of closeness centrality on lexical processing. Front. Psychol. 2017, 8, 1683. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Siew, C.S. The orthographic similarity structure of English words: Insights from network science. Appl. Netw. Sci. 2018, 3, 13. [Google Scholar] [CrossRef] [Green Version]
- Watts, D.J.; Strogatz, S.H. Collective dynamics of ‘small-world’networks. Nature 1998, 393, 440–442. [Google Scholar] [CrossRef] [PubMed]
- Bullmore, E.; Sporns, O. Complex brain networks: Graph theoretical analysis of structural and functional systems. Nat. Rev. Neurosci. 2009, 10, 186–198. [Google Scholar] [CrossRef] [PubMed]
- Kleinberg, J.M. Navigation in a small world. Nature 2000, 406, 845. [Google Scholar] [CrossRef]
- Humphries, M.D.; Gurney, K. Network ‘small-world-ness’: A quantitative method for determining canonical network equivalence. PLoS ONE 2008, 3, e0002051. [Google Scholar] [CrossRef]
- Newman, M.E. Modularity and community structure in networks. Proc. Natl. Acad. Sci. USA 2006, 103, 8577–8582. [Google Scholar] [CrossRef] [Green Version]
- Fortunato, S. Community detection in graphs. Phys. Rep. 2010, 486, 75–174. [Google Scholar] [CrossRef] [Green Version]
- Lommi, H.; Koponen, I.T. Network cartography of university students’ knowledge landscapes about the history of science: Landmarks and thematic communities. Appl. Netw. Sci. 2019, 4, 6. [Google Scholar] [CrossRef]
- Beckage, N.M.; Colunga, E. Network Growth Modeling to Capture Individual Lexical Learning. Complexity 2019, 2019, 1–17. [Google Scholar] [CrossRef]
- Peters, R.; Borovsky, A. Modeling early lexico-semantic network development: Perceptual features matter most. J. Exp. Psychol. Gen. 2019, 148, 763. [Google Scholar] [CrossRef] [PubMed]
- Barabási, A.-L.; Albert, R. Emergence of scaling in random networks. Science 1999, 286, 509–512. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fidel, R.; Davies, R.K.; Douglass, M.H.; Holder, J.K.; Hopkins, C.J.; Kushner, E.J.; Miyagishima, B.K.; Toney, C.D. A visit to the information mall: Web searching behavior of high school students. J. Am. Soc. Inf. Sci. 1999, 50, 24–37. [Google Scholar] [CrossRef]
- Kalyuga, S.; Chandler, P.; Sweller, J. When redundant on-screen text in multimedia technical instruction can interfere with learning. Hum. Factors 2004, 46, 567–581. [Google Scholar] [CrossRef]
- Nievelstein, F.; Van Gog, T.; Boshuizen, H.P.; Prins, F.J. Expertise-related differences in conceptual and ontological knowledge in the legal domain. Eur. J. Cogn. Psychol. 2008, 20, 1043–1064. [Google Scholar] [CrossRef]
- Wiggins, G.; Wiggins, G.P.; McTighe, J. Understanding by Design. Available online: https://www.ascd.org/ASCD/pdf/siteASCD/publications/UbD_WhitePaper0312.pdf (accessed on 8 April 2020).
- Iyengar, S.R.S.; Madhavan, C.E.V.; Zweig, K.A.; Natarajan, A. Understanding human navigation using network analysis. Top. Cogn. Sci. 2012, 4, 121–134. [Google Scholar] [CrossRef]
- Vitevitch, M.S. What can graph theory tell us about word learning and lexical retrieval? J. Speech Lang. Hear. Res. 2008, 51, 408–422. [Google Scholar] [CrossRef]
- Arbesman, S.; Strogatz, S.H.; Vitevitch, M.S. The structure of phonological networks across multiple languages. Int. J. Bifurc. Chaos 2010, 20, 679–685. [Google Scholar] [CrossRef] [Green Version]
- Koponen, I.T.; Nousiainen, M. Concept networks in learning: Finding key concepts in learners’ representations of the interlinked structure of scientific knowledge. J. Complex Netw. 2014, 2, 187–202. [Google Scholar] [CrossRef]
- Koponen, I.T.; Pehkonen, M. Coherent knowledge structures of physics represented as concept networks in teacher education. Sci. Educ. 2010, 19, 259–282. [Google Scholar] [CrossRef]
- DiFrancesca, D.; Nietfeld, J.L.; Cao, L. A comparison of high and low achieving students on self-regulated learning variables. Learn. Individ. Differ. 2016, 45, 228–236. [Google Scholar] [CrossRef]
- Hartwig, M.K.; Dunlosky, J. Category learning judgments in the classroom: Can students judge how well they know course topics? Contemp. Educ. Psychol. 2017, 49, 80–90. [Google Scholar] [CrossRef]
- Hills, T.T.; Siew, C.S. Filling gaps in early word learning. Nat. Hum. Behav. 2018, 2, 622. [Google Scholar] [CrossRef] [PubMed]
- Hills, T.T.; Maouene, J.; Riordan, B.; Smith, L.B. The associative structure of language: Contextual diversity in early word learning. J. Mem. Lang. 2010, 63, 259–273. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lydon-Staley, D.M.; Zhou, D.; Blevins, A.S.; Zurn, P.; Bassett, D.S. Hunters, busybodies, and the knowledge network building associated with curiosity. PsyArXiv 2019. [Google Scholar]
Network Measure | Level of Analysis | Potential Educational Application |
---|---|---|
Degree Local clustering coefficient Closeness centrality Betweenness centrality | Micro-level |
|
Community structure (modularity) | Meso-level |
|
Average degree Global clustering coefficient Average shortest path length Small world index Network diameter | Macro-level |
|
© 2020 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Siew, C.S.Q. Applications of Network Science to Education Research: Quantifying Knowledge and the Development of Expertise through Network Analysis. Educ. Sci. 2020, 10, 101. https://doi.org/10.3390/educsci10040101
Siew CSQ. Applications of Network Science to Education Research: Quantifying Knowledge and the Development of Expertise through Network Analysis. Education Sciences. 2020; 10(4):101. https://doi.org/10.3390/educsci10040101
Chicago/Turabian StyleSiew, Cynthia S. Q. 2020. "Applications of Network Science to Education Research: Quantifying Knowledge and the Development of Expertise through Network Analysis" Education Sciences 10, no. 4: 101. https://doi.org/10.3390/educsci10040101
APA StyleSiew, C. S. Q. (2020). Applications of Network Science to Education Research: Quantifying Knowledge and the Development of Expertise through Network Analysis. Education Sciences, 10(4), 101. https://doi.org/10.3390/educsci10040101