Relationship between Beliefs of Teachers about and Their Use of Explicit Instruction When Fostering Students’ Scientific Inquiry Competencies
Abstract
:1. Introduction
1.1. Scientific Inquiry and Related Competencies
1.2. The Role of Explicit Instruction in Fostering Scientific Inquiry Competencies
1.3. Beliefs as an Element of Teachers’ Professional Competence
1.4. The (Potential) Relationship between Teachers’ Beliefs and Performance
2. Materials and Methods
2.1. Setting and Sample
2.2. Instruments
2.2.1. Questionnaire
2.2.2. Planning Task and Interview
2.3. Data Analysis
2.3.1. Analysis of Teachers’ Beliefs
2.3.2. Analysis of Teacher Performance
2.3.3. Analysis of the Relationship between Teachers’ Beliefs and Performance
3. Results
3.1. Teachers’ Goal-Specific Beliefs
3.2. Implementation of Explicit Instruction in the Planned Lessons
3.3. Relationship between Teachers’ Beliefs and Implementation of Explicit Instruction
4. Discussion
4.1. Teachers’ Beliefs Related to Explicit Instruction for Fostering Scientific Inquiry Competencies
4.2. Teachers’ Implementation of Explicit Instruction in Lesson Plans
4.3. The Relationship between Beliefs and Performance
4.3.1. The Relationship between Object-Related Beliefs and Performance
4.3.2. The Relationship between Self-Related Beliefs and Performance
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Australian Curriculum, Assessment and Reporting Authority. The Australian Curriculum: Science. Available online: https://www.australiancurriculum.edu.au/download/ (accessed on 15 August 2022).
- Department for Education. National Curriculum in England—Science Programmes of Study: Key Stage 3. Available online: https://www.gov.uk/government/uploads/system/uploads/attachment_data/file/335174/SECONDARY_national_curriculum_-_Science_220714.pdf (accessed on 15 August 2022).
- Standing Conference of the Ministers of Education and Cultural Affairs in Germany. Bildungsstandards im Fach Physik Für den Mittleren Schulabschluss (Jahrgangsstufe 10); [Standards for physics education grade 5 to 10]; Luchterhand: Munich, Germany, 2005. [Google Scholar]
- NGSS Lead States. Next Generation Science Standards: For States, by States; National Academies Press: Washington, DC, USA, 2013. [Google Scholar]
- Matlen, B.J.; Klahr, D. Sequential effects of high and low instructional guidance on children’s acquisition of experimentation skills: Is it all in the timing? Instr. Sci. 2013, 41, 621–634. [Google Scholar] [CrossRef]
- Vorholzer, A.; von Aufschnaiter, C.; Boone, W.J. Fostering upper secondary students’ ability to engage in practices of scientific investigation: A comparative analysis of an explicit and an implicit instructional approach. Res. Sci. Educ. 2020, 50, 333–359. [Google Scholar] [CrossRef]
- Wagensveld, B.; Segers, E.; Kleemans, T.; Verhoeven, L. Child predictors of learning to control variables via instruction or self-discovery. Instr. Sci. 2015, 43, 365–379. [Google Scholar] [CrossRef]
- Abrahams, I.; Millar, R. Does practical work really work? A study of the effectiveness of practical work as a teaching and learning method in school science. Int. J. Sci. Educ. 2008, 30, 1945–1969. [Google Scholar] [CrossRef]
- Duit, R. Wie Physikunterricht in der Praxis aussieht: Ergebnisse einer Videostudie [Physics teaching in practice: Findings of a video study]. Plus Lucius 2005, 1–2, 9–13. [Google Scholar]
- Enzingmüller, C. Fachsprache im Biologieunterricht—Untersuchung der Überzeugungen von Biologielehrkräften [Language in Biology Lessons—Investigation of Biology Teachers’ Beliefs]. Ph.D. Dissertation, Christian-Albrechts-University Kiel, Kiel, Germany, 21 December 2017. [Google Scholar]
- Petermann, V.; Vorholzer, A. Teachers’ use of explicit instruction when planning lessons to foster students’ scientific inquiry competencies. In Fostering Scientific Citizenship in an Uncertain World—Selected Papers from the ESERA 2021 Conference; Carvalho, G., Anastácio, Z., Afonso, S., Eds.; University of Minho: Braga, Portugal, 2022. [Google Scholar]
- Vorholzer, A.; Petermann, V. Features of explicit instruction in inquiry-based teaching—A video-based analysis of classroom practice. In Proceedings of the Annual Meeting of the National Association of Research in Science Teaching (NARST), Baltimore, MD, USA, 31 March–3 April 2019. [Google Scholar]
- Walpulski, M.; Schulz, A. Erkenntnisgewinnung durch Experimente [learning through experiments]. Chim. Ceterae Artes Rerum Nat. Didact. 2011, 37, 6–27. [Google Scholar]
- Baumert, J.; Kunter, M. The COACTIV model of teachers’ professional competence. In Cognitive Activation in the Mathematics Classroom and Professional Competence of Teachers; Kunter, M., Baumert, J., Blum, W., Klusmann, U., Krauss, S., Neubrand, M., Eds.; Springer: Boston, MA, USA, 2013; pp. 25–48. [Google Scholar] [CrossRef]
- Blömeke, S.; Kaiser, G. Understanding the development of teachers’ professional competencies as personally, situationally and socially determined. In The SAGE Handbook of Research on Teacher Education; Clandinin, D., Husu, J., Eds.; SAGE Publishers: London, UK, 2017; pp. 783–802. [Google Scholar] [CrossRef]
- Blömeke, S.; Jentsch, A.; Ross, N.; Kaiser, G.; König, J. Opening up the black box: Teacher competence, instructional quality, and students’ learning progress. Learn. Instr. 2022, 79, 101600:1–101600:11. [Google Scholar] [CrossRef]
- Crawford, B.A. From inquiry to scientific practices in the science classroom. In Handbook of Research on Science Education; Lederman, N.G., Abell, S.K., Eds.; Routledge: New York, NY, USA, 2014; pp. 515–541. [Google Scholar]
- Furtak, E.M.; Seidel, T.; Iverson, H.; Briggs, D.C. Experimental and quasi-experimental studies of inquiry-based science teaching: A meta-analysis. Rev. Educ. Res. 2012, 82, 300–329. [Google Scholar] [CrossRef]
- Pedaste, M.; Mäeots, M.; Siiman, L.A.; de Jong, T.; van Riesen, S.A.; Kamp, E.T.; Manoli, S.; Zacharia, Z.C.; Tsourlidaki, E. Phases of inquiry-based learning: Definitions and the inquiry cycle. Educ. Res. Rev. 2015, 14, 47–61. [Google Scholar] [CrossRef]
- Björkman, J.; Tiemann, R. Teaching patterns of scientific inquiry: A video study of chemistry lessons in Germany and Sweden. Sci. Educ. Rev. Lett. 2013, 1–7. [Google Scholar] [CrossRef]
- Vorholzer, A.; von Aufschnaiter, C. Guidance in inquiry-based instruction—An attempt to disentangle a manifold construct. Int. J. Sci. Educ. 2019, 41, 1562–1577. [Google Scholar] [CrossRef]
- Osborne, J. Teaching scientific practices: Meeting the challenge of change. J. Sci. Teach. Educ. 2014, 25, 177–196. [Google Scholar] [CrossRef]
- Kind, P.E.; Osborne, J. Styles of scientific reasoning: A cultural rationale for science education? Sci. Educ. 2017, 101, 8–31. [Google Scholar] [CrossRef]
- Gott, R.; Duggan, S.; Roberts, R.; Hussain, A. Research into Understanding Scientific Evidence. Available online: https://community.dur.ac.uk/rosalyn.roberts/Evidence/CofEv_Gott%20et%20al.pdf (accessed on 15 August 2022).
- Schwichow, M.; Croker, S.; Zimmerman, C.; Höffler, T.; Härtig, H. Teaching the control-of-variables strategy: A meta-analysis. Dev. Rev. 2016, 39, 37–63. [Google Scholar] [CrossRef]
- Krell, M.; Vorholzer, A.; Nehring, A. Scientific reasoning in science education: From global measures to fine-grained descriptions of students’ competencies. Educ. Sci. 2022, 12, 97. [Google Scholar] [CrossRef]
- Kulgemeyer, C. Research on educational standards in German science education—Towards a model of student competences. Eurasia J. Math. Sci. Technol. Educ. 2014, 10, 257–269. [Google Scholar] [CrossRef]
- Ropohl, M.; Nielsen, J.A.; Olley, C.; Rönnebeck, S.; Stables, K. The concept of competence and its relevance for science, technology and mathematics education. In Transforming Assessment: Through an Interplay between Practice, Research and Policy; Dolin, J., Evans, R., Eds.; Springer International Publishing: Cham, Switzerland, 2018; Volume 4, pp. 3–25. [Google Scholar]
- Berland, L.K.; Schwarz, C.V.; Krist, C.; Kenyon, L.; Lo, A.S.; Reiser, B.J. Epistemologies in practice: Making scientific practices meaningful for students. J. Res. Sci. Teach. 2016, 53, 1082–1112. [Google Scholar] [CrossRef]
- Lederman, N.G. Nature of science: Past, present, and future. In Handbook of Research on Science Education; Abell, S.K., Lederman, N.G., Eds.; Routledge: New York, NY, USA, 2007; pp. 831–879. [Google Scholar]
- National Research Council. A Framework for K-12 Science Education: Practices, Crosscutting Concepts, and Core Ideas; National Academies Press: Washington, DC, USA, 2012. [Google Scholar]
- Kalthoff, B.; Theyssen, H.; Schreiber, N. Explicit promotion of experimental skills. And what about the content-related skills? Int. J. Sci. Educ. 2018, 40, 1305–1326. [Google Scholar] [CrossRef]
- Dean, D.; Kuhn, D. Direct instruction vs. discovery: The long view. Sci. Educ. 2007, 91, 384–397. [Google Scholar] [CrossRef]
- Börlin, J.; Labudde, P. Practical work in physics instruction: An opportunity to learn? In Quality of Instruction in Physics: Comparing Finland, Germany and Switzerland; Fischer, H.E., Labudde, P., Neumann, K., Viiri, L., Eds.; Waxmann: Münster, Germany, 2014; pp. 111–127. [Google Scholar]
- Nehring, A.; Stiller, J.; Nowak, K.H.; Upmeier zu Belzen, A.; Tiemann, R. Naturwissenschaftliche Denk- und Arbeitsweisen im Chemieunterricht—Eine modellbasierte Videostudie zu Lerngelegenheiten für den Kompetenzbereich der Erkenntnisgewinnung [Scientific inquiry in chemistry lessons—A video study]. Z. Für Didakt. Der Nat. 2016, 22, 77–96. [Google Scholar] [CrossRef]
- Roth, K.J.; Druker, S.L.; Garnier, H.E.; Lemmens, M.; Chen, C.; Kawanaka, T.; Rasmussen, D.; Trubacova, S.; Warvi, D. Teaching Science in Five Countries: Results from the TIMSS 1999 Video Study. Statistical Analysis Report. April 2006. Available online: https://static1.squarespace.com/static/59df81ea18b27ddf3bb4abb5/t/59fb7a9b8165f5a973affc82/1509653153375/TIMSS+1999+Science+Report.pdf (accessed on 15 August 2022).
- Richardson, V. The role of attitudes and beliefs in learning to teach. In Handbook of Research on Teacher Education, 2nd ed.; Sikula, J., Buttery, T.J., Guyton, E., Eds.; Macmillan: New York, NY, USA, 1996; pp. 102–119. [Google Scholar]
- Fives, H.; Buehl, M.M. Spring cleaning for the “messy” construct of teachers’ beliefs: What are they? Which have been examined? What can they tell us? In APA Educational Psychology Handbook, Vol. 2: Individual Differences and Cultural and Contextual Factors; Harris, K.R., Graham, S., Urdan, T., Graham, S., Royer, J.M., Zeidner, M., Eds.; American Psychological Association: Washington, DC, USA, 2012; pp. 471–499. [Google Scholar] [CrossRef]
- Pajares, M.F. Teachers’ beliefs and educational research: Cleaning up a messy construct. Rev. Educ. Res. 1992, 62, 307–332. [Google Scholar] [CrossRef]
- Skott, J. The promises, problems, and prospects of research on teachers’ beliefs. In International Handbook of Research on Teachers’ Beliefs; Educational Psychology Handbook Series; Fives, H., Gill, M.G., Eds.; Routledge: New York, NY, USA, 2015; pp. 13–30. [Google Scholar]
- Murphy, P.K.; Marson, L. Changing knowledge and beliefs. In Handbook of Educational Psychology, 2nd ed.; Alexander, P.A., Winne, P.H., Eds.; Lawrence Erlbaum Associates: Mahwah, NJ, USA, 2006; pp. 305–324. [Google Scholar]
- Woolfolk Hoy, A.; Davis, H.; Pape, S.J. Teacher knowledge and beliefs. In Handbook of Educational Psychology, 2nd ed.; Alexander, P.A., Winne, P.H., Eds.; Lawrence Erlbaum Associates: Mahwah, NJ, USA, 2006; pp. 715–737. [Google Scholar]
- Kagan, D.M. Implication of research on teacher belief. Educ. Psychol. 1992, 27, 65–90. [Google Scholar] [CrossRef]
- Bandura, A. Self-Efficacy: The Exercise of Control; Freeman: New York, NY, USA, 1997. [Google Scholar]
- Buehl, M.M.; Beck, J.S. The relationship between teachers’ beliefs and teachers’ practices. In International Handbook of Research on Teachers’ Beliefs; Educational Psychology Handbook Series; Fives, H., Gill, M.G., Eds.; Routledge: New York, NY, USA, 2015; pp. 66–84. [Google Scholar]
- Ziepprecht, K.; Gimbel, K.; Motyka, M.; Mayer, J. Fachunabhängige, fachspezifische und inhaltsspezifische professionelle Überzeugungen von Lehramtsstudierenden [general, subject-specific, and goal-specific beliefs of pre-service teachers]. In Fachdidaktische Forschung zur Lehrerbildung; Christophel, E., Hemmer, M., Korneck, F., Leuders, T., Labudde, P., Eds.; Waxmann: Münster, Germany, 2019; pp. 263–273. [Google Scholar]
- Gimbel, K.; Ziepprecht, K.; Mayer, J. Überzeugungen angehender Lehrkräfte fachspezifisch und inhaltsspezifisch operationalisieren und erfassen [Operationalization and investigation of subject-specific and goal-specific beliefs of pre-service teachers]. In Kohärenz in der Universitären Lehrerbildung. Vernetzung von Fachwissenschaft, Fachdidaktik und Bildungswissenschaften; Glowinski, I., Gillen, J., Borowski, A., Schanze, S., von Meien, J., Eds.; Universitätsverlag Potsdam: Potsdam, Germany, 2018; pp. 179–198. [Google Scholar]
- Handtke, K.; Bögeholz, S. Self-efficacy beliefs of interdisciplinary science teaching (SElf-ST) instrument: Drafting a theory-based measurement. Educ. Sci. 2019, 9, 247. [Google Scholar] [CrossRef]
- Petermann, V. Überzeugungen von Lehrkräften zum Lehren und Lernen von Fachinhalten und Fachmethoden und Deren Beziehung zu Unterrichtsnahem Handeln [Teachers‘ Beliefs about Teaching and Learning of Science Content and Scientific Inquiry and Its Relationship to Teacher Performance]. Ph.D. Dissertation, Justus Liebig University Giessen, Giessen, Germany, 30 March 2022. [Google Scholar]
- Séré, M.-G.; Leach, J.; Niedderer, H.; Psillos, D.; Tiberghien, A.; Vicentini, M. Improving Science Education: Issues and Research on Innovative Empirical and Computer-Based Approaches to Labwork in Europe. February 1996–April 1998. Final Report. Available online: https://cordis.europa.eu/docs/projects/files/SOE/SOE2952001/70777171-6_en.pdf (accessed on 15 August 2022).
- Mansour, N. Science teachers’ beliefs and practices: Issues, implications and research agenda. Int. J. Environ. Sci. Educ. 2009, 4, 25–48. [Google Scholar]
- Carlson, J.; Daehler, K.R. The refined consensus model of pedagogical content knowledge in science education. In Repositioning Pedagogical Content Knowledge in Teachers’ Knowledge for Teaching Science; Hume, A., Cooper, R., Borowski, A., Eds.; Springer: Singapore, 2019; pp. 77–92. [Google Scholar] [CrossRef]
- Gess-Newsome, J. A model of teacher professional knowledge and skill including PCK: Results of the thinking from the PCK summit. In Re-Examining Pedagogical Content Knowledge in Science Education; Berry, A., Friedrichsen, P., Loughran, J., Eds.; Routledge Press: New York, NY, USA, 2015; pp. 28–42. [Google Scholar]
- Koberstein-Schwarz, M.; Meisert, A. Pedagogical content knowledge in material-based lesson planning of preservice biology teachers. Teach. Teach. Educ. 2022, 116, 103745:1–103745:14. [Google Scholar] [CrossRef]
- Blömeke, S.; Gustafsson, J.-E.; Shavelson, R.J. Beyond dichotomies: Competence viewed as a continuum. Z. Für Psychol. 2015, 223, 3–13. [Google Scholar] [CrossRef]
- Vorholzer, A.; von Aufschnaiter, C. Dimensionen und Ausprägungen fachinhaltlicher Kompetenz in den Naturwissenschaften—ein Systematisierungsversuch [dimensions and characteristics of science content competence—A systematization]. Z. Für Didakt. Der Nat. 2020, 26, 1–18. [Google Scholar] [CrossRef]
- Savasci, F.; Berlin, D.F. Science teacher beliefs and classroom practice related to constructivism in different school settings. J. Sci. Teach. Educ. 2012, 23, 65–86. [Google Scholar] [CrossRef]
- Bryan, L.A. Nestedness of beliefs: Examining a prospective elementary teacher’s belief system about science teaching and learning. J. Res. Sci. Teach. 2003, 40, 835–868. [Google Scholar] [CrossRef]
- Crawford, B.A. Learning to teach science as inquiry in the rough and tumble of practice. J. Res. Sci. Teach. 2007, 44, 613–642. [Google Scholar] [CrossRef]
- Mansour, N. Consistencies and inconsistencies between science teachers’ beliefs and practices. Int. J. Sci. Educ. 2013, 35, 1230–1275. [Google Scholar] [CrossRef]
- Tsai, C.-C. Teachers’ scientific epistemological views: The coherence with instruction and students’ views. Sci. Educ. 2007, 91, 222–243. [Google Scholar] [CrossRef]
- Enzingmüller, C.; Prechtl, H. Constructing graphs in biology class: Secondary biology teachers’ beliefs, motivation, and self-reported practices. Int. J. Sci. Math. Educ. 2021, 19, 1–19. [Google Scholar] [CrossRef]
- Abd-El-Khalick, F.; Bell, R.L.; Lederman, N.G. The nature of science and instructional practice: Making the unnatural natural. Sci. Educ. 1998, 82, 417–436. [Google Scholar] [CrossRef]
- Bartos, S.A.; Lederman, N.G. Teachers’ knowledge structures for nature of science and scientific inquiry: Conceptions and classroom practice. J. Res. Sci. Teach. 2014, 51, 1150–1184. [Google Scholar] [CrossRef]
- Bell, R.L.; Lederman, N.G.; Abd-El-Khalick, F. Developing and acting upon one’s conception of the nature of science: A follow-up study. J. Res. Sci. Teach. 2000, 37, 563–581. [Google Scholar] [CrossRef]
- Lederman, N.G.; Schwartz, R.S.; Abd-El-Khalick, F.; Bell, R.L. Pre-service teachers’ understanding and teaching of nature of science: An intervention study. Can. J. Sci. Math. Technol. Educ. 2001, 1, 135–160. [Google Scholar] [CrossRef]
- Schwartz, R.S.; Lederman, N.G. It’s the nature of the beast? The influence of knowledge and intentions on learning and teaching nature of science. J. Res. Sci. Teach. 2002, 39, 205–236. [Google Scholar] [CrossRef]
- Hoffman, B.H.; Seidel, K. Measuring teachers’ beliefs: For what purpose? In International Handbook of Research on Teachers’ Beliefs; Educational Psychology Handbook Series; Fives, H., Gill, M.G., Eds.; Routledge: New York, NY, USA, 2015; pp. 106–127. [Google Scholar]
- Schraw, G.; Olafson, L. Assessing teachers’ beliefs: Challenges and solutions. In International Handbook of Research on Teachers’ Beliefs; Educational Psychology Handbook Series; Fives, H., Gill, M.G., Eds.; Routledge: New York, NY, USA, 2015; pp. 87–105. [Google Scholar]
- Barros, M.A.; Laburú, C.E.; da Silva, F.R. An instrument for measuring self-efficacy beliefs of secondary school physics teachers. Procedia-Soc. Behav. Sci. 2010, 2, 3129–3133. [Google Scholar] [CrossRef]
- Beretz, A.-K. Diagnostische Prozesse von Studierenden des Lehramts—Eine Videostudie in den Fächern Physik und Mathematik [Diagnostic Processes of Pre-Service Teachers—A Video Study in Physics and Mathematics]; Logos: Berlin, Germany, 2021. [Google Scholar]
- Kost, D. Reflexionsprozesse von Studierenden des Physiklehramtes [Reflection Processes of Pre-Service Physics Teachers]. Ph.D. Dissertation, Justus Liebig University Giessen, Giessen, Germany, 17 April 2019. [Google Scholar]
- Meinhardt, C. Entwicklung und Validierung Eines Testinstruments zu Selbstwirksamkeitserwartungen von (Angehenden) Physiklehrkräften in Physikdidaktischen Handlungsfeldern [Development and Validation of a Test Instrument on Self-Efficacy Beliefs of Physics Teachers]; Logos: Berlin, Germany, 2018. [Google Scholar]
- Riese, J. Professionelles Wissen und Professionelle Handlungskompetenz von (Angehenden) Physiklehrkräften [Physics Teachers’ Professional Knowledge and Competence]; Logos: Berlin, Germany, 2009. [Google Scholar]
- Emden, M.; Sumfleth, E. Assessing students’ experimentation processes in guided inquiry. Int. J. Sci. Math. Educ. 2016, 14, 29–54. [Google Scholar] [CrossRef]
- Linacre, J.M. A User’s Guide to WINSTEPS® MINISTEP Rasch-Model Computer Programs: Program Manual 5.2.3. Available online: https://www.winsteps.com/winman/ (accessed on 15 August 2022).
- Field, A. Discovering Statistics Using IBM SPSS Statistics, 4th ed.; Sage: Los Angeles, CA, USA, 2013. [Google Scholar]
- Mayring, P. Qualitative Content Analysis: Theoretical Foundation, Basic Procedures and Software Solution. Available online: https://nbn-resolving.org/urn:nbn:de:0168-ssoar-395173 (accessed on 15 August 2022).
- Brennan, R.L.; Prediger, D.J. Coefficient kappa: Some uses, misuses, and alternatives. Educ. Psychol. Meas. 1981, 41, 687–699. [Google Scholar] [CrossRef]
- Bortz, J.; Lienert, G.A.; Boehnke, K. Verteilungsfreie Methoden in der Biostatistik [Non-Parametric Methods in Biostatistics], 3rd ed.; Springer Medizin Verlag: Heidelberg, Germany, 2008. [Google Scholar]
- Wasserstein, R.L.; Schirm, A.L.; Lazar, N.A. Moving to a world beyond “p < 0.05”. Am. Stat. 2019, 73, 1–19. [Google Scholar] [CrossRef]
- Kim, B.S.; Ko, E.K.; Lederman, N.G.; Lederman, J.S. A developmental continuum of pedagogical content knowledge for nature of science instruction. In Proceedings of the Annual Meeting of the National Association for Research in Science Teaching (NARST), Dallas, TX, USA, 4–7 April 2005. [Google Scholar]
- Allchin, D.; Andersen, H.M.; Nielsen, K. Complementary approaches to teaching nature of science: Integrating student inquiry, historical cases, and contemporary cases in classroom practice. Sci. Educ. 2014, 98, 461–486. [Google Scholar] [CrossRef]
- Anderson, D. The nature and influence of teacher beliefs and knowledge on the science teaching practice of three generalist New Zealand primary teachers. Res. Sci. Educ. 2015, 45, 395–423. [Google Scholar] [CrossRef]
- Fitzgerald, A.; Dawson, V.; Hackling, M. Examining the beliefs and practices of four effective Australian primary science teachers. Res. Sci. Educ. 2013, 43, 981–1003. [Google Scholar] [CrossRef]
- Lederman, N.G. Teachers’ understanding of the nature of science and classroom practice: Factors that facilitate or impede the relationship. J. Res. Sci. Teach. 1999, 36, 916–929. [Google Scholar] [CrossRef]
- Mellado, V.; Bermejo, M.L.; Blanco, L.J.; Ruiz, C. The classroom practice of a prospective secondary biology teacher and his conceptions of the nature of science and of teaching and learning science. Int. J. Sci. Math. Educ. 2007, 6, 37–62. [Google Scholar] [CrossRef]
- Bryan, L.A. Research on science teacher beliefs. In Springer International Handbooks of Education: Vol. 24. Second International Handbook of Science Education; Fraser, B.J., Tobin, K., McRobbie, C.J., Eds.; Springer Science + Business Media B.V: Dordrecht, The Netherlands, 2012; pp. 477–495. [Google Scholar] [CrossRef]
- Jones, M.G.; Leagon, M. Science teacher attitudes and beliefs: Reforming practice. In Handbook of Research on Science Education; Lederman, N.G., Abell, S.K., Eds.; Routledge: New York, NY, USA, 2014; pp. 830–847. [Google Scholar]
Sex | Science Subject(s) | Teaching Experience |
---|---|---|
Female: 5 | Physics: 12 | ≤10 years: 6 |
Male: 11 | Physics and Chemistry: 2 | 11 to 20 years: 5 |
Biology: 2 | 21 to 30 years: 2 | |
>30 years: 3 |
Scale | Description | Item Example |
---|---|---|
Explicit Instruction | Beliefs about the extent to which it is useful that the students are provided SI concepts. | For good teaching of inquiry, it is (1) not useful/(2) rather not useful/…/(5) very useful/(6) essential that SI concepts are verbalized. |
Teaching Abilities | Beliefs about one’s own abilities to successfully perform specific teaching tasks to SI. | I am able to explain inquiry at an appropriate level for students. |
Scientific Abilities | Beliefs about one’s own abilities to successfully perform specific scientific tasks to SI. | I am able to explain inquiry correctly. |
Scale | Item Outfit MNSQ | Item Reliability | Person Reliability |
---|---|---|---|
Explicit Instruction | 0.82–1.11 | 0.92 | 0.67 |
Teaching Abilities | 0.57–1.61 | 0.95 | 0.91 |
Scientific Abilities | 0.80–1.08 | 0.93 | 0.85 |
Category and Corresponding Codes | Examples for X = Planning Investigations |
---|---|
Explications: Concepts regarding competency X are stated, explained, or written down.
|
|
Tasks: Students are provided tasks to state, explain, elaborate, or reflect on concepts regarding competency X.
|
|
Inquiry Competency | Description Students Are Able to … |
---|---|
Developing Questions | … formulate scientific questions. |
Developing Hypotheses | … formulate predictions about the scientific relationships to be investigated. |
Planning Investigations (Primary Goal) | … develop a design for a scientific investigation that matches the research questions/hypotheses and to determine the equipment and materials necessary to conduct the investigation. |
Conducting Investigations | … perform scientific investigations and collect data. |
Analyzing Data | … process and visualize the collected data as well as to formulate interpretations based on the collected data. |
Other | Other scientific inquiry competencies that are clearly related to SI but could not be assigned to the other five distinguished competencies (e.g., documenting scientific investigations) |
Category and Corresponding Codes | Examples |
---|---|
Overall explicit emphasis on SI concepts
|
|
Overall explicit emphasis on SI concepts compared to SC concepts
|
|
Scale/Item | Rest of the Main Sample | Sub-Sample | U | z | p | r | ||
---|---|---|---|---|---|---|---|---|
Mdn | R | Mdn | R | |||||
Explicit instruction | 4.35 | 2.80 | 4.30 | 2.65 | 1274.0 | 0.225 | 0.822 | 0.02 |
Verbalizing SI concepts | 5 | 3 | 5 | 3 | 1174.5 | 0.650 | 0.516 | 0.05 |
Explaining SI concepts | 5 | 3 | 5 | 4 | 1058.0 | 0.095 | 0.924 | 0.01 |
Developing and summarizing phases to SI | 5 | 4 | 5 | 4 | 870.0 | −1.626 | 0.104 | −0.13 |
Teaching abilities | 4.13 | 3.06 | 4.18 | 2.41 | 1302.5 | 0.468 | 0.640 | 0.04 |
Developing tasks for fostering SI competencies | 5 | 4 | 5 | 2 | 1126.5 | −0.036 | 0.971 | 0.00 |
Explaining SI on an appropriate level for students | 5 | 3 | 5 | 2 | 562.0 | −0.582 | 0.561 | −0.06 |
Scientific abilities | 5.12 | 3.72 | 5.42 | 1.53 | 1432.0 | 1.171 | 0.242 | 0.09 |
Explaining SI correctly | 5 | 4 | 5 | 2 | 1033.5 | −0.639 | 0.523 | −0.05 |
Beliefs about the … | Existence of Explications | Existence of Tasks | Emphasis on SI Concepts | Emphasis on SI Compared to SC | |||
---|---|---|---|---|---|---|---|
Planning | SI | Planning | SI | ||||
usefulness of explicit instruction on SI | τ | 0.18 † | 0.13 † | 0.05 † | 0.23 † | 0.18 | 0.30 |
p | 0.423 | 0.560 | 0.827 | 0.310 | 0.400 | 0.161 | |
ability to teach SI | τ | −0.02 † | 0.06 † | −0.23 † | −0.09 † | 0.00 | 0.09 |
p | 0.937 | 0.792 | 0.302 | 0.671 | >0.999 | 0.655 | |
ability to perform SI | τ | −0.02 † | 0.14 † | −0.06 † | 0.11 † | 0.15 | 0.07 |
p | 0.936 | 0.523 | 0.784 | 0.630 | 0.487 | 0.763 |
Beliefs about the … | Existence of Explications | Existence of Tasks | Emphasis on SI Concepts | Emphasis on SI Compared to SC | |||
---|---|---|---|---|---|---|---|
Planning | SI | Planning | SI | ||||
usefulness of verbalizing SI concepts | τ | 0.29 † | 0.32 † | 0.13 † | 0.34 † | 0.36 | 0.38 |
p | 0.263 | 0.212 | 0.621 | 0.188 | 0.138 | 0.120 | |
usefulness of explaining SI concepts | τ | 0.26 † | 0.38 † | 0.27 † | 0.43 † | 0.44 | 0.55 |
p | 0.287 | 0.116 | 0.268 | 0.080 | 0.056 | 0.018 | |
necessity of developing and summarizing phases to SI | τ | 0.31 † | 0.27 † | 0.64 † | 0.56 † | 0.45 | 0.46 |
p | 0.189 | 0.254 | 0.007 | 0.019 | 0.048 | 0.040 | |
ability to develop tasks for fostering SI competencies | τ | −0.13 † | 0.06 † | −0.27 † | −0.20 † | −0.08 | 0.07 |
p | 0.600 | 0.817 | 0.282 | 0.414 | 0.745 | 0.784 | |
ability to explain SI on an appropriate level for students | τ | −0.02 † | 0.08 † | −0.23 † | −0.07 † | 0.01 | 0.15 |
p | 0.932 | 0.736 | 0.352 | 0.777 | 0.958 | 0.524 | |
ability to explain SI correctly | τ | 0.00 † | 0.00 † | −0.21 † | 0.00 † | 0.00 | 0.00 |
p | >0.999 | >0.999 | 0.421 | >0.999 | >0.999 | >0.999 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Petermann, V.; Vorholzer, A. Relationship between Beliefs of Teachers about and Their Use of Explicit Instruction When Fostering Students’ Scientific Inquiry Competencies. Educ. Sci. 2022, 12, 593. https://doi.org/10.3390/educsci12090593
Petermann V, Vorholzer A. Relationship between Beliefs of Teachers about and Their Use of Explicit Instruction When Fostering Students’ Scientific Inquiry Competencies. Education Sciences. 2022; 12(9):593. https://doi.org/10.3390/educsci12090593
Chicago/Turabian StylePetermann, Verena, and Andreas Vorholzer. 2022. "Relationship between Beliefs of Teachers about and Their Use of Explicit Instruction When Fostering Students’ Scientific Inquiry Competencies" Education Sciences 12, no. 9: 593. https://doi.org/10.3390/educsci12090593
APA StylePetermann, V., & Vorholzer, A. (2022). Relationship between Beliefs of Teachers about and Their Use of Explicit Instruction When Fostering Students’ Scientific Inquiry Competencies. Education Sciences, 12(9), 593. https://doi.org/10.3390/educsci12090593