Use of Arduino in Primary Education: A Systematic Review
Abstract
:1. Introduction
2. Materials and Methods
2.1. Method
2.2. Research Phases
- Population: Only works in Spanish and English were chosen, and all those written in Korean and Portuguese were eliminated; the time frame was limited to the last seven years (2022–2016, both inclusive) in order to maintain the current nature of the publications, since the works relating to primary education went up to 2018 and those relating to secondary education went up to 2016; and, finally, the type of document was limited to articles or book chapters, excluding conference abstracts and complete books. Furthermore, with regard to this first criterion of the PICOS strategy, it should be noted that no exclusion criteria were considered in relation to the country of publication or subject area.
- Phenomenon of interest: All works whose object of study was the explanation of a training proposal for teachers on use of the Arduino board (and sometimes the analysis of the same) were excluded. Works on specific didactic implementations that research institutions or universities carry out in primary or secondary schools on an experimental basis were also excluded.
- Context: Only experiences developed in a formal educational context were taken into account. Therefore, all those related to a non-formal educational context, such as summer camps, theme weeks and extracurricular activities, were discarded.
- Study design: theoretical work was eliminated.
3. Results
4. Discussion and Conclusions
- Professional training in the use of the Arduino board.
- Arduino as a resource to address diversity.
- Use of Arduino in the non-formal educational context (theme weeks, extracurricular activities, summer camps, etc.).
- Analysis of university collaboration projects with schools which involve the use of Arduino.
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- García, J.M. La expansión del Pensamiento Computacional en Uruguay. Rev. Educ. Distancia 2020, 20, 1–15. [Google Scholar] [CrossRef]
- Vera, M.D.M.S. El pensamiento computacional en contextos educativos: Una aproximación desde la Tecnología Educativa. Res. Educ. Learn. Innov. Arch. 2019, 23, 24–39. [Google Scholar] [CrossRef] [Green Version]
- Malraison, P.J.; Papert, S. Mindstorms: Children, Computers, and Powerful Ideas. Two-Year Coll. Math. J. 1981, 12, 285. [Google Scholar] [CrossRef]
- Ministerio de Educación y Formación Profesional. Programación, Robótica y Pensamiento Computacional en el Aula. Situación en España; INTEF: Madrid, Spain, 2018; Available online: https://bit.ly/2XBOY6B (accessed on 15 December 2022).
- Lodi, M.; Martini, S. Computational Thinking, Between Papert and Wing. Sci. Educ. 2021, 30, 883–908. [Google Scholar] [CrossRef]
- Csizmadia, A.; Standl, B.; Waite, J. Integrating the Constructionist Learning Theory with Computational Thinking Classroom Activities. Inform. Educ. 2019, 18, 41–67. [Google Scholar] [CrossRef]
- Resnick, M. Reviving Papert’s Dream. Educ. Technol. 2012, 52, 42–46. Available online: http://www.jstor.org/stable/44430058 (accessed on 15 December 2022).
- Wing, J.M. Computational thinking. Commun. ACM 2006, 49, 33–35. [Google Scholar] [CrossRef]
- Caeli, E.N.; Yadav, A. Unplugged Approaches to Computational Thinking: A Historical Perspective. Techtrends 2019, 64, 29–36. [Google Scholar] [CrossRef]
- Wing, J.M. Computational Thinking’s Influence on Research and Education for All. Ital. J. Educ. Technol. 2017, 25, 7–14. [Google Scholar] [CrossRef]
- Nordby, S.K.; Bjerke, A.H.; Mifsud, L. Primary Mathematics Teachers’ Understanding of Computational Thinking. KI-Künstliche Intell. 2022, 36, 35–46. [Google Scholar] [CrossRef]
- Marín-Marín, J.-A.; Moreno-Guerrero, A.-J.; Dúo-Terrón, P.; López-Belmonte, J. STEAM in education: A bibliometric analysis of performance and co-words in Web of Science. Int. J. STEM Educ. 2021, 8, 41. [Google Scholar] [CrossRef] [PubMed]
- Coenraad, M.; Cabrera, L.; Killen, H.; Plane, J.; Ketelhut, D.J. Computational thinking integration in elementary teachers’ science lesson plans. ACM 2022, 11–18. [Google Scholar] [CrossRef]
- Bocconi, S.; Chioccariello, A.; Dettori, G.; Ferrari, A.; Engelhardt, K.; Kampylis, P.; Punie, Y. Developing computational thinking in compulsory education: Implications for policy and practice. In JRC Science for Policy Report; European Commission: Brussels, Belgium, 2016. [Google Scholar]
- Bocconi, S.; Chioccariello, A.; Kampylis, P.; Dagienė, V.; Wastiau, P.; Engelhardt, K.; Earp, J.; Horvath, M.A.; Jasutė, E.; Malagoli, C.; et al. Reviewing Computational Thinking in Compulsory Education; Inamorato Dos Santos, A., Cachia, R., Giannoutsou, N., Punie, Y., Eds.; Publications Office of the European Union: Luxembourg, 2022. [Google Scholar] [CrossRef]
- Lee, I.; Grover, S.; Martin, F.; Pillai, S.; Malyn-Smith, J. Computational Thinking from a Disciplinary Perspective: Integrating Computational Thinking in K-12 Science, Technology, Engineering, and Mathematics Education. J. Sci. Educ. Technol. 2020, 29, 1–8. [Google Scholar] [CrossRef]
- Gamito, R.; Aristizabal, P.; Basasoro, M.; León, I. El desarrollo del pensamiento computacional en educación: Valoración basada en una experiencia con Scratch. Innoeduca. Int. J. Technol. Educ. Innov. 2022, 8, 59–74. [Google Scholar] [CrossRef]
- García-Valcárcel-Muñoz-Repiso, A.; Caballero-González, Y.-A. Robotics to develop computational thinking in early Childhood Education. Comunicar 2019, 27, 63–72. [Google Scholar] [CrossRef] [Green Version]
- Gerosa, A.; Koleszar, V.; Tejera, G.; Gómez-Sena, L.; Carboni, A. Educational Robotics Intervention to Foster Computational Thinking in Preschoolers: Effects of Children’s Task Engagement. Front. Psychol. 2022, 13, 904761. [Google Scholar] [CrossRef]
- Kastner-Hauler, O.; Tengler, K.; Sabitzer, B.; Lavicza, Z. Combined Effects of Block-Based Programming and Physical Computing on Primary Students’ Computational Thinking Skills. Front. Psychol. 2022, 13, 875382. [Google Scholar] [CrossRef]
- Ministerio de Educación y Formación Profesional. Real Decreto 95/2022, de 1 de Febrero, Por el Que Se Establece la Ordenación y Las Enseñanzas Mínimas de la Educación Infantil. Gobierno de España. 2022a. Available online: https://www.boe.es/eli/es/rd/2022/02/01/95 (accessed on 10 December 2022).
- Ministerio de Educación y Formación Profesional. Real Decreto 157/2022, de 1 de Marzo, Por el Que Se Establecen la Ordenación y Las Enseñanzas Mínimas de la Educación Primaria. Gobierno de España. 2022b. Available online: https://www.boe.es/eli/es/rd/2022/03/01/157/con (accessed on 10 December 2022).
- Paucar-Curasma, R.; Villalba-Condori, K.; Arias-Chavez, D.; Le, N.-T.; Garcia-Tejada, G.; Frango-Silveira, I. Evaluation of Computational Thinking using four educational robots with primary school students in Peru. Educ. Knowl. Soc. 2022, 23, 1–10. [Google Scholar] [CrossRef]
- Bell, J.; Bell, T. Integrating Computational Thinking with a Music Education Context. Inform. Educ. 2018, 17, 151–166. [Google Scholar] [CrossRef]
- Fields, D.; Lui, D.; Kafai, Y.; Jayathirtha, G.; Walker, J.; Shaw, M. Communicating about computational thinking: Understanding affordances of portfolios for assessing high school students’ computational thinking and participation practices. Comput. Sci. Educ. 2021, 31, 224–258. [Google Scholar] [CrossRef]
- Lee, I.; Malyn-Smith, J. Computational Thinking Integration Patterns Along the Framework Defining Computational Thinking from a Disciplinary Perspective. J. Sci. Educ. Technol. 2020, 29, 9–18. [Google Scholar] [CrossRef]
- Ministerio de Educación y Formación Profesional. Real Decreto 217/2022, de 29 de Marzo, Por el Que Se Establece la Ordenación y Las Enseñanzas Mínimas de la Educación Secundaria Obligatoria. Gobierno de España. 2022c. Available online: https://www.boe.es/eli/es/rd/2022/03/29/217/con (accessed on 10 December 2022).
- Pou, A.V.; Canaleta, X.; Fonseca, D. Computational Thinking and Educational Robotics Integrated into Project-Based Learning. Sensors 2022, 22, 3746. [Google Scholar] [CrossRef]
- Soler-Costa, R.; Moreno-Guerrero, A.-J.; López-Belmonte, J.; Marín-Marín, J.-A. Co-Word Analysis and Academic Performance of the Term TPACK in Web of Science. Sustainability 2021, 13, 1481. [Google Scholar] [CrossRef]
- Bell, S. Project-Based Learning for the 21st Century: Skills for the Future. Clear. House J. Educ. Strat. Issues Ideas 2010, 83, 39–43. [Google Scholar] [CrossRef]
- Hsieh, M.-C.; Pan, H.-C.; Hsieh, S.-W.; Hsu, M.-J.; Chou, S.-W. Teaching the Concept of Computational Thinking: A STEM-Based Program with Tangible Robots on Project-Based Learning Courses. Front. Psychol. 2022, 12, 828568. [Google Scholar] [CrossRef] [PubMed]
- Muliyati, D.; Tanmalaka, A.S.; Ambarwulan, D.; Kirana, D.; Permana, H. Train the computational thinking skill using problem-based learning worksheet for undergraduate physics student in computational physics courses. J. Phys. Conf. Ser. 2020, 1521, 022024. [Google Scholar] [CrossRef]
- Bertacchini, F.; Scuro, C.; Pantano, P.; Bilotta, E. A Project Based Learning Approach for Improving Students’ Computational Thinking Skills. Front. Robot. AI 2022, 9, 3389. [Google Scholar] [CrossRef]
- Chiang, F.-K.; Zhang, Y.; Zhu, D.; Shang, X.; Jiang, Z. The Influence of Online STEM Education Camps on Students’ Self-Efficacy, Computational Thinking, and Task Value. J. Sci. Educ. Technol. 2022, 31, 461–472. [Google Scholar] [CrossRef]
- Kert, S.B.; Erkoç, M.F.; Yeni, S. The effect of robotics on six graders’ academic achievement, computational thinking skills and conceptual knowledge levels. Think. Ski. Creativity 2020, 38, 100714. [Google Scholar] [CrossRef]
- Pan, Z.; Cheok, A.D.; Müller, W.; Chang, M. (Eds.) Transactions on Edutainment III. Lecture Notes in Computer Science; Springer: Berlin/Heidelberg, Germany, 2009. [Google Scholar] [CrossRef]
- Scaradozzi, D.; Sorbi, L.; Pedale, A.; Valzano, M.; Vergine, C. Teaching Robotics at the Primary School: An Innovative Approach. Procedia—Soc. Behav. Sci. 2015, 174, 3838–3846. [Google Scholar] [CrossRef] [Green Version]
- Kang, S.-J.; Yeo, H.-W.; Yoon, J. Applying Chemistry Knowledge to Code, Construct, and Demonstrate an Arduino–Carbon Dioxide Fountain. J. Chem. Educ. 2019, 96, 313–316. [Google Scholar] [CrossRef] [Green Version]
- Lopez-Belmonte, J.; Marin-Marin, J.-A.; Soler-Costa, R.; Moreno-Guerrero, A.-J. Arduino Advances in Web of Science. A Scientific Mapping of Literary Production. IEEE Access 2020, 8, 128674–128682. [Google Scholar] [CrossRef]
- Alò, D.; Castillo, A.; Vial, P.M.; Samaniego, H. Low-cost emerging technologies as a tool to support informal environmental education in children from vulnerable public schools of southern Chile. Int. J. Sci. Educ. 2020, 42, 635–655. [Google Scholar] [CrossRef]
- Chang, C.-C.; Chen, Y. Using mastery learning theory to develop task-centered hands-on STEM learning of Arduino-based educational robotics: Psychomotor performance and perception by a convergent parallel mixed method. Interact. Learn. Environ. 2020, 30, 1677–1692. [Google Scholar] [CrossRef]
- Jawaid, I.; Javed, M.Y.; Jaffery, M.H.; Akram, A.; Safder, U.; Hassan, S. Robotic system education for young children by collaborative-project-based learning. Comput. Appl. Eng. Educ. 2019, 28, 178–192. [Google Scholar] [CrossRef]
- Lu, C.-C.; Ma, S.-Y. Design STEAM Course to Train STEAM Literacy of Primary Students: Taking “Animal Mimicry Beast” as an Example. J. Res. Educ. Sci. 2019, 64, 85–118. [Google Scholar] [CrossRef]
- Morón, C.; Yedra, E.; Ferrández, D.; Saiz, P. Application of Arduino for the Teaching of Mathematics in Primary Education. In Proceedings of the 12th International Conference of Education, Research and Innovation (ICERI2019), Seville, Spain, 11–13 November 2019; ICERI Proceedings; Yedra, E., Ed.; IATED: Valencia, Spain, 2019; pp. 6316–6321. [Google Scholar]
- Moya, A.A. Studying Avogadro’s Law with Arduino. Phys. Teach. 2019, 57, 621–623. [Google Scholar] [CrossRef]
- Němec, R.; Voborník, P. Using Robotic Kits and 3D printers at Primary (Lower Secondary) Schools in the Czech Republic. Int. J. Educ. Inf. Technol. 2017, 11, 68–73. [Google Scholar]
- Prima, E.C.; Oktaviani, T.D.; Sholihin, H. STEM learning on electricity using arduino-phet based experiment to improve 8th grade students’ STEM literacy. J. Phys. Conf. Ser. 2018, 1013, 012030. [Google Scholar] [CrossRef]
- Shipepe, A.; Uwu-Khaeb, L.; De Villiers, C.; Jormanainen, I.; Sutinen, E. Co-Learning Computational and Design Thinking Using Educational Robotics: A Case of Primary School Learners in Namibia. Sensors 2022, 22, 8169. [Google Scholar] [CrossRef]
- Tsai, F.-H.; Hsiao, H.-S.; Yu, K.-C.; Lin, K.-Y. Development and effectiveness evaluation of a STEM-based game-design project for preservice primary teacher education. Int. J. Technol. Des. Educ. 2021, 32, 2403–2424. [Google Scholar] [CrossRef]
- Omar, H.M. Enhancing automatic control learning through Arduino-based projects. Eur. J. Eng. Educ. 2018, 43, 652–663. [Google Scholar] [CrossRef]
- Martín-Ramos, P.; Lopes, M.J.; da Silva, M.M.L.; Gomes, P.E.; da Silva, P.S.P.; Domingues, J.P.; Ramos Silva, M. Reprint of ‘First exposure to Arduino through peer-coaching: Impact on students’ attitudes towards programming’. Comput. Hum. Behav. 2018, 80, 420–427. [Google Scholar] [CrossRef]
- González, I.F.; Urrútia, G.; Alonso-Coello, P. Revisiones sistemáticas y metaanálisis: Bases conceptuales e interpretación. Rev. Española Cardiol. 2011, 64, 688–696. [Google Scholar] [CrossRef]
- Vidal, M.; Oramas, J.; Borroto, R. Revisiones sistemáticas. Educ. Médica Super. 2015, 29, 198–207. Available online: https://bit.ly/3ANxutZ (accessed on 10 December 2022).
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. Rev. Esp. Cardiol. 2021, 74, 790–799. [Google Scholar] [CrossRef]
- Codina, L. No Lo Llame Análisis Bibliográfico, Llámelo Revisión Sistematizada, Y Cómo Llevarla a Cabo Con Garantías: Systematized Reviews + SALSA Framework. 2015. Available online: http://bit.ly/2AQirjw (accessed on 10 December 2022).
- Fernández-Batanero, J.M.; Montenegro-Rueda, M.; Fernández-Cerero, J.; Tadeu, P. Formación del Profesorado y TIC para el Alumnado Com Discapacidad: Una Revisión Sistemática. Rev. Bras. Educ. Espec. 2020, 26, 711–732. [Google Scholar] [CrossRef]
- Pertegal-Vega, M.Á.; Oliva-Delgado, A.; Rodríguez-Meirinhos, A. Revisión sistemática del panorama de la investigación sobre redes sociales: Taxonomía sobre experiencias de uso. Comunicar. Media Educ. Res. J. 2019, 27, 81–91. [Google Scholar] [CrossRef] [Green Version]
- Comisión Europea/EACEA/Eurydice. Estructuras de los Sistemas Educativos Europeos 2020/21: Diagramas. Eurydice Datos y Cifras; Publications Office of the European Union: Luxembourg, 2020; Available online: https://bit.ly/3Cmvxpi (accessed on 10 December 2022).
- Juškevičienė, A.; Stupurienė, G.; Jevsikova, T. Computational thinking development through physical computing activities in STEAM education. Comput. Appl. Eng. Educ. 2021, 29, 175–190. [Google Scholar] [CrossRef]
- Gough, P.; Bown, O.; Campbell, C.R.; Poronnik, P.; Ross, P.M. Student responses to creative coding in biomedical science education. Biochem. Mol. Biol. Educ. 2022, 1–13. [Google Scholar] [CrossRef]
- Pesthy, S.G.; Hömöstrei, M. Physics—IT based international student exchange program. J. Phys. Conf. Ser. 2015, 1223, 012005. [Google Scholar] [CrossRef]
- Singh, K.; Naicker, N.; Rajkoomar, M. Selection of Learning Apps to Promote Critical Thinking in Programming Students using Fuzzy TOPSIS. Int. J. Adv. Comput. Sci. Appl. 2021, 12, 383–392. [Google Scholar] [CrossRef]
- Marzoli, I.; Rizza, N.; Saltarelli, A.; Sampaolesi, E. Arduino: From Physics to Robotics. In Makers at School, Educational Robotics and Innovative Learning Environments. Lecture Notes in Networks and Systems; Scaradozzi, D., Guasti, L., Di Stasio, M., Miotti, B., Monteriù, A., Blikstein, P., Eds.; Springer: Berlin/Heidelberg, Germany, 2021; pp. 309–314. [Google Scholar] [CrossRef]
- Yin, Y.; Khaleghi, S.; Hadad, R.; Zhai, X. Developing effective and accessible activities to improve and assess computational thinking and engineering learning. Educ. Technol. Res. Dev. 2022, 70, 951–988. [Google Scholar] [CrossRef]
- Jurado, E.; Fonseca, D.; Coderch, J.; Canaleta, X. Social STEAM Learning at an Early Age with Robotic Platforms: A Case Study in Four Schools in Spain. Sensors 2020, 20, 3698. [Google Scholar] [CrossRef]
- Ortiz, L.C.C.; Jiménez, M.M.V.; Puerta, J.J.M.; Posada, J.A.T.J. Educational robotics tool base don lego mindstorms and VEX robotics using 3D software and mechatronic design. RISTI–Rev. Ibérica Sist. Tecnol. Inf. 2019, 34, 1–19. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
García-Tudela, P.A.; Marín-Marín, J.-A. Use of Arduino in Primary Education: A Systematic Review. Educ. Sci. 2023, 13, 134. https://doi.org/10.3390/educsci13020134
García-Tudela PA, Marín-Marín J-A. Use of Arduino in Primary Education: A Systematic Review. Education Sciences. 2023; 13(2):134. https://doi.org/10.3390/educsci13020134
Chicago/Turabian StyleGarcía-Tudela, Pedro Antonio, and José-Antonio Marín-Marín. 2023. "Use of Arduino in Primary Education: A Systematic Review" Education Sciences 13, no. 2: 134. https://doi.org/10.3390/educsci13020134
APA StyleGarcía-Tudela, P. A., & Marín-Marín, J. -A. (2023). Use of Arduino in Primary Education: A Systematic Review. Education Sciences, 13(2), 134. https://doi.org/10.3390/educsci13020134