Use of Technological Resources for the Development of Computational Thinking Following the Steps of Solving Problems in Engineering Students Recently Entering College
Abstract
:1. Introduction
2. Review of Literature
2.1. Computational Thinking in Higher Education
2.2. Problem-Solving
2.3. Computational Thinking and Problem-Solving
3. Materials and Methods
4. Results
4.1. Educational Strategy through the Proposal of Technological Projects
4.2. Evaluation of Computational Thinking and Problem-Solving
4.3. Evaluation of Pearson’s Correlation between Problem-Solving and Computational Thinking
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Trucco, D. Educación Y Desigualdad En América Latina; Naciones Unidas Santiago, Chile, 2016. [En línea]. Available online: https://repositorio.minedu.gob.pe/bitstream/handle/20.500.12799/3053/EducacionydesigualdadenAL.pdf (accessed on 15 May 2020).
- Sunkel y, G.; Trucco, D. TIC Para La Educación En América Latina; Riesgos y Oportunidades: Santiago, Chile, 2010. [Google Scholar]
- Shyamala, C.K.; Velayutham, C.S.; Parameswaran, L. Teaching Computational Thinking to Entry-Level Undergraduate Engineering Students at Amrita University. In Proceedings of the 2017 IEEE Global Engineering Education Conference (EDUCON), Athens, Greece, 25–28 April 2017; pp. 1731–1734. [Google Scholar] [CrossRef]
- Sobreira, P.D.L.; Abijaude, J.W.; Viana, H.D.G.; Santiago, L.M.S.; El Guemhioui, K.; Wahab, O.A.; Greve, F. Usability evaluation of block programming tools in IoT contexts for initial engineering courses. In Proceedings of the 2020 IEEE World Conference on Engineering Education (EDUNINE), Bogota, Colombia, 15–18 March 2020; pp. 1–5. [Google Scholar] [CrossRef]
- Molina, N.; Adamuz, Y.; Bracho, R. La resolución de problemas basada en el método de Polya usando el pensamiento computacional y Scratch con estudiantes de Educación Secundaria, Handb. Handb. Educ. Psychol. 2020, 49, 287–303. [Google Scholar] [CrossRef]
- Paucar-Curasma, R.; Villalba-condori, K.O.; Jara, N.; Quispe, R.; Cabrera, J.; Ponce-Aguilar, Y.M. Computational Thinking and Block-Based Programming for Beginning Engineering Students: Systematic Review of the Literature. In Proceedings of the 2021 XVI Latin American Conference on Learning Technologies (LACLO), Arequipa, Peru, 19–21 October 2021; pp. 530–533. [Google Scholar]
- Grover, S.; Pea, R. Computational Thinking in K-12: A Review of the State of the Field. Educ. Res. 2013, 42, 38–43. [Google Scholar] [CrossRef]
- Aho, A.V. Computation and Computational Thinking. Comput. J. 2012, 55, 832–835. [Google Scholar] [CrossRef] [Green Version]
- Lee, I.; Martin, F.; Apone, K. Integrating computational thinking across the K--8 curriculum. ACM Inroads 2014, 5, 64–71. [Google Scholar] [CrossRef]
- Weintrop, D.; Beheshti, E.; Horn, M.; Orton, K.; Jona, K.; Trouille, L.; Wilensky, U. Defining Computational Thinking for Mathematics and Science Classrooms. J. Sci. Educ. Technol. 2015, 25, 127–147. [Google Scholar] [CrossRef]
- Neo, C.H.; Wong, J.K.; Chai, V.C.; Chua, Y.L.; Hoh, Y.H. Computational Thinking in Solving Engineering Problems-A Conceptual Model Definition of Computational Thinking. Asian J. Assess. Teach. Learn. 2021, 11, 24–31. [Google Scholar] [CrossRef]
- Wing, J.M. Computational Thinking. Commun. ACM 2006, 49, 267–271. [Google Scholar] [CrossRef]
- Allen, Y.D.E.; Duch, B.J.; Groh, S.E. The power of problem-based learning in teaching introductory science courses. New Dir. Teach. Learn. 1996, 1996, 43–52. [Google Scholar] [CrossRef]
- Ubaidullah, N.H.; Mohamed, Z.; Hamid, J.; Sulaiman, S.; Yussof, R.L. Improving Novice Students’ Computational Thinking Skills by Problem-Solving and Metacognitive Techniques. Int. J. Learn. Teach. Educ. Res. 2021, 20, 88–108. [Google Scholar] [CrossRef]
- Weese, J.; Feldhausen, R. STEM Outreach: Assessing Computational Thinking and Problem Solving. In Proceedings of the 2017 ASEE Annual Conference & Exposition, Columbus, Ohio, 24–28 June 2017. [Google Scholar] [CrossRef]
- Polya, G. How to Solve It, 2nd ed.; Princeton University Press, Doubleday Anchor Books: New York, NY, USA, 1945. [Google Scholar]
- Diaz, L.M.; Hernandez, C.M.; Ortiz, A.V.; Gaytan-Lugo, L.S. Tinkercad and Codeblocks in a Summer Course: An Attempt to Explain Observed Engagement and Enthusiasm. In Proceedings of the 2019 IEEE Blocks and Beyond Workshop, Memphis, TN, USA, 18 October 2019; pp. 43–47. [Google Scholar] [CrossRef]
- Gao, M.; Johnson, J.; Reed, D.; Sheller, C.; Turbak, F. Using app inventor in introductory CS courses. In Proceedings of the 46th ACM Technical Symposium on Computer Science Education, Kansas City, MO, USA, 4–7 March 2015; pp. 346–347. [Google Scholar] [CrossRef]
- Trilles, S.; Monfort-Muriach, A.; Cueto-Rubio, E.; Granell, C.; Juan, P. Sucre4Stem: Internet of things in classrooms», en 15th International Conference of Technology, Learning and Teaching of Electronics. In Proceedings of the XV Congreso Tecnología Aprendizaje y Enseñanza de la Electrónica, Teruel, España, 29 June–1 July 2022; pp. 6–9. [Google Scholar] [CrossRef]
- Trilles, S.; Monfort-Muriach, A.; Gomez-Cambronero, A.; Granell, C. Sucre4Stem: Collaborative Projects Based on IoT Devices for Students in Secondary and Pre-University Education. Rev. Iberoam. Tecnol. Prendiz. 2022, 17, 150–159. [Google Scholar] [CrossRef]
- Alegre, F.; Moreno, J.; Dawson, T.; Tanjong, E.E.; Kirshner, D.H. Computational Thinking for STEM Teacher Leadership Training at Louisiana State University. In Proceedings of the 2020 Research on Equity and Sustained Participation in Engineering, Computing, and Technology, Portland, OR, USA, 10–11 March 2020; Volume 1, pp. 1–2. [Google Scholar] [CrossRef]
- Harangus, K.; Kátai, Z. Computational Thinking in Secondary and Higher Education. Procedia Manuf. 2020, 46, 615–622. [Google Scholar] [CrossRef]
- Da Silva, T.J.C.; De Melo, B.; Tedesco, Y.P. The creative process in the development of computational thinking in higher education. CSEDU 2020, 1, 215–226. [Google Scholar]
- Wu, J.; Wang, Y.; Kong, H.; Zhu, L. How to Cultivate Computational Thinking-Enabled Engineers: A Case Study on the Robotics Class of Zhejiang University. In Proceedings of the 2019 ASEE Annual Conference & Exposition, Tampa, FL, USA, 15 June–19 October 2019. [Google Scholar] [CrossRef]
- Delgado, R.; Yacchirema, S.; Coral, F.; Celi, J. Platform for university teaching applying Computational Thinking at the Armed Forces University ESPE. In Proceedings of the 2019 14th Iberian Conference on Information Systems and Technologies (CISTI), Coimbra, Portugal, 19–22 June 2019. [Google Scholar] [CrossRef]
- Wilson, J.W.; Fernandez, M.L.; Hadaway, Y.N. Mathematical Problem Solving; The University of Georgia: Athens, GA, USA, 1993; Available online: http://jwilson.coe.uga.edu/emt725/PSsyn/Pssyn.html (accessed on 19 January 2023).
- Fang, A.-D.; Chen, G.-L.; Cai, Z.-R.; Cui, L.; Harn, L. Research on Blending Learning Flipped Class Model in Colleges and Universities Based on Computational Thinking—“Database Principles” for Example. Eurasia J. Math. Sci. Technol. Educ. 2017, 13, 5747–5755. [Google Scholar] [CrossRef]
- Weese, J.L. Mixed Methods for the Assessment and Incorporation of Computational Thinking in K-12 and Higher Education. In Proceedings of the 2016 ACM Conference on International Computing Education Research, Melbourne, VIC, Australia, 8–19 September 2016; pp. 279–280. [Google Scholar] [CrossRef]
- Villalba-Condori, K.O.; Cuba-Sayco, S.E.C.; Chávez, E.P.G.; Deco, C.; Bender, C. Approaches of Learning and Computational Thinking in Students that get into the Computer Sciences Career. In Proceedings of the Sixth International Conference on Technological Ecosystems for Enhancing Multiculturality, Salamanca, Spain, 24 October 2018; pp. 36–40. [Google Scholar] [CrossRef] [Green Version]
- Kules, B. Computational thinking is critical thinking: Connecting to university discourse, goals, and learning outcomes. Proc. Assoc. Inf. Sci. Technol. 2016, 53, 1–6. [Google Scholar] [CrossRef] [Green Version]
- Selby, C.C. Relationships: Computational thinking, Pedagogy of programming, And bloom’s taxonomy. ACM Int. Conf. Proceeding Ser. 2015, 64, 80–87. [Google Scholar] [CrossRef] [Green Version]
- Bordignon, F.; Iglesias, Y.A. Introducción Al Pensamiento Computacional; EDUCAR S.E: Buenos Aires, Argentina, 2018. [Google Scholar]
- Mayer, R.E.; Wittrock, Y.M.C. Problem solving. In Handbook of Educational Psychology; Alexander, P.A., Winne, P.H., Eds.; Macmillian: New York, NY, USA, 2006. [Google Scholar]
- Mayoral, S.; Roca, M.; Timoneda, C.; Serra, Y.M. Mejora de la capacidad de planificación cognitiva del alumnado de primer curso de Educación Secundaria Obligatoria. Aula Abiert 2015, 43, 9–17. [Google Scholar] [CrossRef] [Green Version]
- Kwon, K.; Ottenbreit-Leftwich, A.T.; Brush, T.A.; Jeon, M.; Yan, G. Integration of problem-based learning in elementary computer science education: Effects on computational thinking and attitudes. Educ. Technol. Res. Dev. 2021, 69, 2761–2787. [Google Scholar] [CrossRef]
- Gouws, L.; Bradshaw, K.; Wentworth, P. First year student performance in a test for computational thinking. In Proceedings of the South African Institute for Computer Scientists and Information Technologists Conference, New York, NY, USA, 7–9 October 2013; pp. 271–277. [Google Scholar] [CrossRef]
- Iwata, M.; Laru, J.; Mäkitalo, Y.K. Designing problem-based learning to develop computational thinking in the context of K-12 maker education. CEUR Workshop Proc. 2020, 2755, 103–106. [Google Scholar]
- Svarre, T.; Burri, Y.S. Problem based learning: A facilitator of computational thinking. Proc. Eur. Conf. E Learn. ECEL 2019, 2019, 260–267. [Google Scholar] [CrossRef]
- Smith, O.S.; Dindler, R.C. From Computational Thinking to Computational Empowerment: A 21 st Century PD Agenda. In Proceedings of the 15th Participatory Design Conference, New York, NY, USA, 20–24 August 2018. [Google Scholar] [CrossRef] [Green Version]
- Ziman, D. Solución de problemas en la investigación tecnológica. J. Creat. Behav. 1974, 2, 93–102. [Google Scholar]
- Mcpherson, J.H. The People, The Problems and The Problem Solving Methods*. J. Creative Behav. 1968, 2, 103–110. [Google Scholar] [CrossRef]
- Duderstadt, J.; Knoll, G.; Springer, Y.G. Principles of Engineering; Ilustrada: New York, NY, USA, 1982. [Google Scholar]
- Marais, C.; Bradshaw, Y.K. Problem-solving ability of first year CS students: A case study and intervention. In Proceedings of the 44th Conference of the Southern African Computers Lecturers’ Association, Johannesburg, South Africa, 1–3 July 2015; pp. 54–160. [Google Scholar]
- Sáez, J.M.; Buceta, R.; De Lara, S. Introducing robotics and block programming in elementary education. RIED Rev. Iberoam. Educ. A Distancia 2021, 24, 95–113. [Google Scholar] [CrossRef]
- Román-González, M. Pensamiento Computacional: Un Constructo Que Llega a La Madurez, Aula Magna 2.0, Revistas Científicas de Educación en Red, 2022. Available online: https://cuedespyd.hypotheses.org/11109 (accessed on 19 January 2023).
- Rabiee, M.; Tjoa, Y.M. From Abstraction to Implementation: Can Computational Thinking Improve Complex Real-World Problem Solving? A Computational Thinking-Based Approach to the SDGs Maryam. In Proceedings of the Information and Communication Technologies for Development: 14th IFIP WG 9.4 International Conference on Social Implications of Computers in Developing Countries, ICT4D 2017, Yogyakarta, Indonesia, 22–24 May 2017; pp. 104–116. [Google Scholar]
- Wing, J.M. Computational thinking and thinking about computing. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 2008, 366, 3717–3725. [Google Scholar] [CrossRef]
- Barr, V.; Stephenson, C. Bringing computational thinking to K-12. ACM Inroads 2011, 2, 48–54. [Google Scholar] [CrossRef]
- Grover, S. Robotics and engineering for middle and high school students to develop computational thinking. In Proceedings of the Annual Meeting of the American Educational Research Association, New Orleans, LA, USA, 7–11 April 2011; Volume 650, pp. 1–15, [En línea]. [Google Scholar]
- Del Rey, Y.A.R.; Cambinda, I.N.C.; Deco, C.; Bender, C.; Avello-Martínez, R.; Villalba-Condori, K.O. Developing computational thinking with a module of solved problems. Comput. Appl. Eng. Educ. 2020, 29, 506–516. [Google Scholar] [CrossRef]
- Voogt, J.; Fisser, P.; Good, J.; Mishra, P.; Yadav, A. Computational thinking in compulsory education: Towards an agenda for research and practice. Educ. Inf. Technol. 2015, 20, 715–728. [Google Scholar] [CrossRef] [Green Version]
- Kale, U.; Yuan, J. Still a New Kid on the Block? Computational Thinking as Problem Solving in Code.org. J. Educ. Comput. Res. 2020, 59, 620–644. [Google Scholar] [CrossRef]
- Jeng, H.-L.; Liu, L.-W.; Chen, C.-N. Developing a Procedural Problem-solving-based Framework of Computational Thinking Components. In Proceedings of the 2019 8th International Congress on Advanced Applied Informatics (IIAI-AAI), Toyama, Japan, 7–11 July 2019; pp. 272–277. [Google Scholar] [CrossRef]
- Maharani, S.; Kholid, M.N.; NicoPradana, L.; Nusantara, Y.T. Problem Solving in the Context of. Infinty J. Math. Educ. 2019, 8, 109–116. [Google Scholar]
- Pedaste, M.; Palts, T.; Kori, K.; Sormus, M.; Leijen, A. Complex Problem Solving as a Construct of Inquiry, Computational Thinking and Mathematical Problem Solving. In Proceedings of the 2019 IEEE 19th International Conference on Advanced Learning Technologies (ICALT), Maceio, Brazil, 15–18 July 2019; Volume 2161–2377X, pp. 227–231. [Google Scholar] [CrossRef]
- Rojas-López, A.; García-Peñalvo, F.J. Increase of confidence for the solution of problems in preuniversity students through Computational Thinking. In Proceedings of the Sixth International Conference on Technological Ecosystems for Enhancing Multiculturality, Salamanca, Spain, 24–26 October 2018. [Google Scholar] [CrossRef]
- Talent Search, Computer Olympiad—Computer Olympiad South Africa, 2015. Available online: http://olympiad.org.za/ (accessed on 5 September 2020).
- UK Bebras Computational Thinking Challenge, What Is Bebras. 2015. Available online: https://www.bebras.org/ (accessed on 5 September 2020).
- Román-Gonzalez, M.; Pérez-González, J.C.; Jiménez-Fernández, C. Test de Pensamiento Computacional: Diseño y psicometría general [Computational Thinking Test: Design & general psychometry]. In Proceedings of the III Congreso Internacional sobre Aprendizaje, Innovación y Competitividad (CINAIC 2015), 14 October 2015; Available online: https://innovacioneducativa.wordpress.com/2015/01/27/iii-congreso-internacional-sobre-aprendizaje-innovacion-y-competitividad-cinaic-2015/ (accessed on 19 January 2023). [CrossRef]
- Román-González, M.; Pérez-González, J.-C.; Jiménez-Fernández, C. Which cognitive abilities underlie computational thinking? Criterion validity of the Computational Thinking Test. Comput. Hum. Behav. 2016, 72, 678–691. [Google Scholar] [CrossRef]
- Román-González, M.; Pérez-González, J.-C.; Moreno-León, J.; Robles, G. Can computational talent be detected? Predictive validity of the Computational Thinking Test. Int. J. Child Comput. Interact. 2018, 18, 47–58. [Google Scholar] [CrossRef]
- Ruipérez, B.O.; Brouard, M.A. Evaluar el Pensamiento Computacional mediante Resolución de Problemas: Validación de un Instrumento de Evaluación. Rev. Iberoam. Evaluación Educ. 2021, 14, 153–171. [Google Scholar] [CrossRef]
- Viale, P.; Deco, Y.C. Introduciendo conocimientos sobre el Pensamiento Computacional en los primeros años de las carreras de ciencia, tecnología, ingeniería y matemáticas. Energeia 2019, 16, 73–78. [Google Scholar]
- Puhlmann, C. Desenvolvimento do Pensamento Computacional Através De Atividades Desplugadas Na Educação Básica. Doctoral Thesis, Universidade Federal do Rio Grande do Sul, Farroupilha, Brazil, 2017. [Google Scholar]
- Liu, J.; Wang, L. Computational Thinking in Discrete Mathematics. In Proceedings of the 2010 Second International Workshop on Education Technology and Computer Science, Wuhan, China, 6–7 March 2010; Volume 1, pp. 413–416. [Google Scholar] [CrossRef]
Phases of Resolution of Problems | Computational Thinking Skills | ||||
---|---|---|---|---|---|
By Ubaidullah [14] | ABS | DES | GEN | ALG | EVA |
Understanding/definition | X | ||||
Planning | X | X | |||
Design | X | ||||
Codification | X | X | X | ||
Evaluation | X | X | |||
By Jeng [53] | ABS | DES | GEN | ALG | EVA |
Recognition of the problem. | X | ||||
Solution strategy development | X | X | |||
Organization of knowledge about the problem | X | ||||
Solution evaluation | X | ||||
Por Joshua [15] | ABS | DES | GEN | ALG | EVA |
Simplifying the problem | X | ||||
Dividing the problem into smaller parts | X | ||||
List of steps to resolve | X | ||||
By Maharani [54] | ABS | DES | GEN | ALG | EVA |
Decision on the subject matter | X | ||||
Solution formulation | X | ||||
Division of complex problems | X | ||||
Step-by-step design to solve the problem | X | ||||
Identification to correct errors | X | ||||
By Kale [52] | ABS | DES | GEN | ALG | EVA |
Understanding the problem | X | ||||
Plan and monitoring | X | X | X | ||
Execution | X | ||||
Check/reflect | X | ||||
By Rabiee [46] | ABS | DES | GEN | ALG | EVA |
Identification/understanding of the problem | X | ||||
Breakdown of the main problem | X | ||||
Solution development | X | X | |||
Implementation | X | X | |||
Validation | X | ||||
By Pedaste [55] | ABS | DES | GEN | ALG | EVA |
Problem identification | X | X | |||
Selection of strategies | X | ||||
Strategy execution | X | ||||
Review of results | X | X |
Problem-Solving Phases | Computational Thinking Skills | ||||
---|---|---|---|---|---|
ABS | DES | GEN | ALG | EVA | |
Understanding the problem | X | ||||
Preparation of the plan | X | X | |||
Implementation of the plan | X | ||||
Solution Review | X |
Initial Test Results | ID | Technological Projects 2021-II |
---|---|---|
Correct answers | P1–2021 | Monitoring of vegetable production in greenhouses in the city of Pampas, Tayacaja, Huancavelica region. |
P2–2021 | Implementation of a water level monitoring prototype in the Viñas reservoir of the city of Pampas, Tayacaja. | |
1 incorrect answer | P3–2021 | Implementation of a control and security system in a food market. |
2 incorrect answers | P4–2021 | Prototype of automatic switching off and on of public lighting for the city of Pampas, Tayacaja, Huancavelica. |
3 incorrect answers | P5–2021 | Smartboard for learning in single-teacher classrooms in the city of Pampas, Tayacaja, Huancavelica. |
4 incorrect answers | P6–2021 | Monitoring of solid waste in the city of Pampas, Tayacaja, Huancavelica. |
Initial test results | ID | Technology projects 2022-I |
Correct answers | P1–2022 | LED games in the teaching of basic mathematical operations for primary school students of the city of Pampas, Tayacaja, Huancavelica. |
P2–2022 | Prototype of automatic distance detection alarm for vehicles in the Huancavelica region. | |
1 incorrect answer | P3–2022 | Smart cane with sensors for visually impaired people in the city of Pampas, Tayacaja, Huancavelica. |
2 incorrect answers | P4–2022 | Monitoring of temperature and humidity with an automated irrigation system in vegetable production in the city of Pampas, Tayacaja, Huancavelica. |
P5–2022 | The animal safety system in the Huancavelica region. | |
3 incorrect answers | P6–2022 | Monitoring and control of humidity and temperature in the greenhouse in the Huancavelica region. |
P7–2022 | Home automation for the security and tranquility of homes in the city of Pampas, Tayacaja, Huancavelica. | |
4 incorrect answers | P8–2022 | Implementation of a biosafety prototype against COVID-19 in the professional school of systems engineering. |
P9–2022 | Monitoring of solid waste in homes in the city of Pampas, Tayacaja, Huancavelica. |
Computational Thinking | ||
Semester | Alfa de Cronbach | N of elements |
2021-II | 0.793 | 28 |
2022-I | 0.799 | 28 |
Problem-Solving | ||
Semester | Alfa de Cronbach | N of elements |
2021-II | 0.965 | 24 |
2022-I | 0.924 | 24 |
2021-II | 2022-I | |||||
---|---|---|---|---|---|---|
N | Mean | Deviation Standard | N | Mean | Deviation Standard | |
PRO | 37 | 3.5981 | 0.73152 | 49 | 3.6765 | 0.68602 |
ELA | 37 | 3.3838 | 0.87987 | 49 | 3.2531 | 0.74024 |
EJE | 37 | 3.5243 | 0.91936 | 49 | 3.7510 | 0.69586 |
REV | 37 | 3.5246 | 0.91321 | 49 | 3.5133 | 0.68461 |
2021-II | 2022-I | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
ABS | DESC | GEN | ALG | EVA | ABS | DESC | GEN | ALG | EVA | ||
PRO | Pearson correlation | 0.352 * | 0.366 ** | ||||||||
Sig. (bilateral) | 0.033 | 0.010 | |||||||||
N | 37 | 49 | |||||||||
ELA | Pearson correlation | 0.292 | 0.287 | 0.340 * | 0.339 * | ||||||
Sig. (bilateral) | 0.079 | 0.085 | 0.017 | 0.017 | |||||||
N | 37 | 37 | 49 | 49 | |||||||
EJE | Pearson correlation | 0.491 ** | 0.492 ** | ||||||||
Sig. (bilateral) | 0.002 | 0.000 | |||||||||
N | 37 | 49 | |||||||||
REV | Pearson correlation | 0.381 * | 0.415 ** | ||||||||
Sig. (bilateral) | 0.020 | 0.003 | |||||||||
N | 37 | 49 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Paucar-Curasma, R.; Villalba-Condori, K.O.; Mamani-Calcina, J.; Rondon, D.; Berrios-Espezúa, M.G.; Acra-Despradel, C. Use of Technological Resources for the Development of Computational Thinking Following the Steps of Solving Problems in Engineering Students Recently Entering College. Educ. Sci. 2023, 13, 279. https://doi.org/10.3390/educsci13030279
Paucar-Curasma R, Villalba-Condori KO, Mamani-Calcina J, Rondon D, Berrios-Espezúa MG, Acra-Despradel C. Use of Technological Resources for the Development of Computational Thinking Following the Steps of Solving Problems in Engineering Students Recently Entering College. Education Sciences. 2023; 13(3):279. https://doi.org/10.3390/educsci13030279
Chicago/Turabian StylePaucar-Curasma, Ronald, Klinge Orlando Villalba-Condori, Jorge Mamani-Calcina, David Rondon, Mario Gustavo Berrios-Espezúa, and Claudia Acra-Despradel. 2023. "Use of Technological Resources for the Development of Computational Thinking Following the Steps of Solving Problems in Engineering Students Recently Entering College" Education Sciences 13, no. 3: 279. https://doi.org/10.3390/educsci13030279
APA StylePaucar-Curasma, R., Villalba-Condori, K. O., Mamani-Calcina, J., Rondon, D., Berrios-Espezúa, M. G., & Acra-Despradel, C. (2023). Use of Technological Resources for the Development of Computational Thinking Following the Steps of Solving Problems in Engineering Students Recently Entering College. Education Sciences, 13(3), 279. https://doi.org/10.3390/educsci13030279