Meaning-Making in Ecology Education: Analysis of Students’ Multimodal Texts
Abstract
:1. Introduction
1.1. Previous Research
1.2. Multimodality in Science Education
1.3. Aims
- What aspects of biological processes are expressed in student texts, and through what resources?
- How do students position themselves, for instance, regarding subject content, through their texts?
1.4. Theoretical Perspective
Social Semiotics and Multimodality
2. Materials and Methods
2.1. Data Collection and Context
2.2. Analytical Procedures
2.2.1. Ideational Metafunction
2.2.2. Textual Metafunction
2.2.3. Big Ideas Identified through Analysis of the Ideational and Textual Metafunctions
2.2.4. Interpersonal Metafunction
3. Results
3.1. Photosynthesis
3.1.1. Ideational Metafunction
3.1.2. Textual Metafunction
3.2. Energy Flow
3.2.1. Ideational Metafunction
3.2.2. Textual Metafunction
3.3. Matter Circulates
3.3.1. Ideational Metafunction
3.3.2. Textual Metafunction
3.4. Role of Humans
Ideational Metafunction
3.5. Relationship between Drawn and Written Elements
3.6. Interpersonal Metafunction
4. Discussion
4.1. Ideational Metafunction
4.2. Textual Metafunction
4.3. Interpersonal Metafunction
4.4. Conclusions and Implications for Education
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
References
- The National Curriculum in England: Key Stages 1 and 2 Framework Document. Available online: https://www.gov.uk/government/publications/national-curriculum-in-england-primary-curriculum (accessed on 15 December 2022).
- The National Curriculum in England: Key Stages 4 Framework Document. Available online: https://www.gov.uk/government/publications/national-curriculum-in-england-science-programmes-of-study (accessed on 15 December 2022).
- Swedish National Agency for Education. Curriculum for the Compulsory School, Preschool Class and School-Age Educare 2011; Revised 2018; Swedish National Agency for Education: Stockholm, Sweden, 2018.
- Swedish National Agency for Education. Ämne: Biologi. Available online: https://www.skolverket.se/download/18.4fc05a3f164131a7418104a/1535372296309/Biology-swedish-school.pdf (accessed on 15 October 2022).
- Wennersten, L.; Wanselin, H.; Wikman, S.; Lindahl, M. Interpreting students’ ideas on the availability of energy and matter in food webs. J. Biol. Educ. 2020, 1–21. [Google Scholar] [CrossRef]
- Cheng, M.; Gilbert, J. Students’ visualization of diagrams representing the human circulatory system: The use of spatial isomorphism and representational conventions. Int. J. Sci. Educ. 2015, 37, 136–161. [Google Scholar] [CrossRef]
- Hmelo-Silver, C.; Marathe, S.; Liu, L. Fish swim, rocks sit, and lungs breathe: Expert-novice understanding of complex systems. J. Learn. Sci. 2007, 16, 307–331. [Google Scholar] [CrossRef]
- Jordan, R.; Brooks, W.; Hmelo-Silver, C.; Eberbach, C.; Sinha, S. Balancing broad ideas with context: An evaluation of student accuracy in describing ecosystem processes after a system-level intervention. J. Biol. Educ. 2014, 48, 57–62. [Google Scholar] [CrossRef]
- Kress, G.; Jewitt, C.; Ogborn, J.; Tsatsarelis, C. Multimodal Teaching and Learning: The Rhetorics of the Science Classroom; Continuum: London, UK, 2001. [Google Scholar]
- Butler, J.; Mooney Simmie, G.; O’Grady, A. An investigation into the prevalence of ecological misconceptions in upper secondary students and implications for pre-service teacher education. Eur. J. Teach. Educ. 2015, 38, 300–319. [Google Scholar] [CrossRef]
- Leach, J.; Driver, R.; Scott, P.; Wood-Robinson, C. Children’s ideas about ecology 2: Ideas found in children aged 5–16 about the cycling of matter. Int. J. Sci. Educ. 1996, 18, 19–34. [Google Scholar] [CrossRef]
- Preston, C. Food webs: Implications for instruction. Am. Biol. Teach. 2018, 80, 331–338. [Google Scholar] [CrossRef]
- Tytler, R.; Haslam, F.; White, P.; Peterson, S. Living things and environments. In Teaching Primary Science Constructively, 5th ed.; Skamp, K., Preston, C., Eds.; Cengage Learning Australia: Melbourne, Australia, 2015; pp. 268–317. [Google Scholar]
- Schizas, D.; Katrana, E.; Stamou, G. Introducing network analysis into science education: Methodological research examining secondary school students’ understanding of “decomposition”. Int. J. Environ. Sci. Educ. 2013, 8, 175–198. [Google Scholar]
- Tversky, B.; Heiser, J.; Mackenzie, R.; Lozano, S.; Morrison, J. Enriching animations. In Learning with Animation: Research Implications for Design; Lowe, R., Schnotz, W., Eds.; University Press: Cambridge, UK, 2008; pp. 263–285. [Google Scholar]
- Heiser, J.; Tversky, B. Arrows in comprehending and producing mechanical diagrams. Cogn. Sci. 2006, 30, 581–592. [Google Scholar] [CrossRef]
- Kress, G.; van Leeuwen, T. Reading Images: The Grammar of Visual Design, 2nd ed.; Routlege: London, UK, 2006. [Google Scholar]
- Campbell, N.; Urry, L.; Cain, M.; Wasserman, S.; Minorsky, P.; Reece, J. Biology: A Global Approach, 11th ed.; Pearson Education: Harlow, UK, 2018. [Google Scholar]
- Lin, C.; Hu, R. Students’ understanding of energy flow and matter cycling in the context of the food chain, photosynthesis, and respiration. Int. J. Sci. Educ. 2003, 25, 1529–1544. [Google Scholar] [CrossRef]
- Eisen, Y.; Stavy, R. Students’ understanding of photosynthesis. Am. Biol. Teach. 1988, 50, 208–212. [Google Scholar] [CrossRef]
- Métioui, A.; Matoussi, F.; Trudel, L. The teaching of photosynthesis in secondary school: A history of the science approach. J. Biol. Educ. 2016, 50, 275–289. [Google Scholar] [CrossRef]
- Ekici, F.; Ekici, E.; Aydin, F. Utility of concept cartoons in diagnosing and overcoming misconceptions related to photosynthesis. Int. J. Environ. Sci. Educ. 2007, 2, 111–124. [Google Scholar]
- Demetriou, D.; Korfiatis, K.; Constantinou, C. A ‘bottom-up’ approach to food web construction. J. Biol. Educ. 2009, 43, 181–187. [Google Scholar] [CrossRef]
- Gotwals, A.; Songer, N. Reasoning up and down a food chain: Using an assessment framework to investigate students’middle knowledge. Sci. Educ. 2010, 94, 259–281. [Google Scholar] [CrossRef]
- Hmelo-Silver, C.; Pfeffer, M. Comparing expert and novice understanding of a complex system from the perspective of structures, behaviors, and functions. Cogn. Sci. 2004, 28, 127–138. [Google Scholar] [CrossRef]
- Hvenegaard, G.T. Visitors’ perceived impacts of interpretation on knowledge, attitudes, and behavioral intentions at Miquelon Lake Provincial Park, Alberta, Canada. Tour. Hosp. Res. 2017, 17, 79–90. [Google Scholar] [CrossRef]
- Lemke, J. Multiplying meaning: Visual and verbal semiotics in scientific text. In Reading Science: Critical and Functional Perspectives on Discourses of Science; Martin, J., Veel, R., Eds.; Routledge: London, UK, 1998; pp. 87–113. [Google Scholar]
- Tang, K.S.; Delgado, C.; Moje, E. An integrative framework for the analysis of multiple and multimodal representations for meaning-making in science education. Sci. Educ. 2014, 98, 305–326. [Google Scholar] [CrossRef]
- Dimopoulos, K.; Koulaidis, V.; Sklaveniti, S. Towards an analysis of visual images in school science textbooks and press articles about science and technology. Res. Sci. Educ. 2003, 33, 189–216. [Google Scholar] [CrossRef]
- Patron, E.; Wikman, S.; Edfors, I.; Johansson-Cederblad, B.; Linder, C. Teachers’ reasoning: Classroom visual representational practices in the context of introductory chemical bonding. Sci. Educ. 2017, 101, 887–906. [Google Scholar] [CrossRef]
- Unsworth, L. Image/text Relations and Intersemiosis: Towards Multimodal Text Description for Multiliteracies Education. In Proceedings of the 33rd International Systemic Functional Congress, Sao Paulo, Brazil, 10–15 July 2006; Pontificia Universidade Catolica de Sao Paulo: Sao Paulo, Brazil, 2007; pp. 1165–1205. [Google Scholar]
- Ainsworth, S.; Prain, V.; Tytler, R. Drawing to learn in science. Science 2011, 333, 1096–1097. [Google Scholar] [CrossRef] [PubMed]
- Christidou, V.; Hatzinikita, V.; Dimitriou, A. Children’s drawings about environmental phenomena: The use of visual codes. Int. J. Sci. Technol. Soc. 2009, 1, 107–117. [Google Scholar] [CrossRef]
- Jordan, R.; Gray, S.; Demeter, M.; Lui, L.; Hmelo-Silver, C. An assessment of students’ understanding of ecosystem concepts: Conflating ecological systems and cycles. Appl. Environ. Educ. 2009, 8, 40–48. [Google Scholar] [CrossRef]
- Köse, S. Diagnosing student misconceptions: Using drawings as a research method. World Appl. Sci. J. 2008, 3, 283–293. [Google Scholar]
- Bortoluzzi, M. Multimodal awareness in ecology discourse for children education. Le Simplegadi 2017, 15, 126–139. [Google Scholar] [CrossRef]
- Márquez, C.; Izquierdo, M.; Espinet, M. Multimodal science teachers’ discourse in modeling the water cycle. Sci. Educ. 2006, 90, 202–226. [Google Scholar] [CrossRef]
- Tang, K.S.; Danielsson, K. The expanding development of literacy research in science education around the world. In Global Developments in Literacy Research for Science Education; Tang, K.S., Danielsson, K., Eds.; Springer International Publishing: Cham, Switzerland, 2018; pp. 1–11. [Google Scholar] [CrossRef]
- Jeppsson, F.; Danielsson, K.; Bergh Nestlog, E.; Tang, K.S. Primary pupils’ multimodal representations in worksheets: Text work in science education. Educ. Sci. 2022, 12, 221. [Google Scholar] [CrossRef]
- Nielsen, W.; Yeo, J. Introduction to the special issue: Multimodal meaning-making in science. Res. Sci. Educ. 2022, 52, 751–754. [Google Scholar] [CrossRef]
- Halliday, M.A.K. Halliday’s Introduction to Functional Grammar, 4th ed.; revised by C.M.I.M. Matthiessen; Routledge: London, UK, 2014. [Google Scholar] [CrossRef]
- Halliday, M.A.K. Language as Social Semiotic: The Social Interpretation of Language and Meaning; Edward Arnold: London, UK, 1978. [Google Scholar]
- Lemke, J. Talking Science: Language, Learning, and Values; Ablex: Norwood, NJ, USA, 1990. [Google Scholar]
- Jewitt, C.; Bezemer, J.J.; O’Halloran, K.L. Introducing Multimodality; Routledge: London, UK, 2016. [Google Scholar] [CrossRef]
- Jewitt, C. Multimodality and literacy in school classrooms. Rev. Res. Educ. 2008, 32, 241–267. [Google Scholar] [CrossRef]
- Kress, G. Multimodality: A Social Semiotic Approach to Contemporary Communication; Routledge: London, UK, 2010. [Google Scholar]
- Kress, G.; Selander, S. Multimodal design, learning and cultures of recognition. Internet High. Educ. 2012, 15, 265–268. [Google Scholar] [CrossRef]
- Swedish Research Council. Good Research Practice; Swedish Research Council: Stockholm, Sweden, 2017. [Google Scholar]
- Wanselin, H.; Danielsson, K.; Wikman, S. Analysing multimodal texts in science: A social semiotic perspective. Res. Sci. Educ. 2022, 52, 891–907. [Google Scholar] [CrossRef]
- Tang, K.S.; Won, M.; Treagust, D. Analytical framework for student-generated drawings. Int. J. Sci. Educ. 2019, 41, 2296–2322. [Google Scholar] [CrossRef]
- Martinec, R.; Salway, A. A system for image-text relations in new (and old) media. Vis. Commun. 2005, 4, 337–371. [Google Scholar] [CrossRef]
- Knain, E. Scientific Literacy for Participation: A Systemic Functional Approach to Analysis of School Science Discourses; Sense: Rotterdam, The Netherlands, 2015. [Google Scholar]
- Jahic Pettersson, A.; Danielsson, K.; Rundgren, C.J. ‘Traveling nutrients’: How students use metaphorical language to describe digestion and nutritional uptake. Int. J. Sci. Educ. 2020, 42, 1281–1301. [Google Scholar] [CrossRef]
- Danielsson, K. Modes and meaning in the classroom: The role of different semiotic resources to convey meaning in science classrooms. Linguist. Educ. 2016, 35, 88–99. [Google Scholar] [CrossRef]
- Andersen, T.H.; Smedegaard, F.; Petersen, U.H. Metafunctional Profile: Danish. In Proceedings of the 14th Euro-International Systemic Functional Linguistics Workshop, Lisbon, Portugal, 24–27 July 2002. [Google Scholar]
- Danielsson, K.; Selander, S. Multimodal Texts in Disciplinary Education: A Comprehensive Framework; Springer International Publishing: Cham, Switzerland, 2021. [Google Scholar] [CrossRef]
- Gregory, K.; Lewin, J. Big ideas in the geography curriculum: Nature, awareness and need. J. Geogr. High. Educ. 2021, 47, 1–20. [Google Scholar] [CrossRef]
- Harlen, W. Principles and Big Ideas of Science Education; Association for Science Education: Hatfield, UK, 2010. [Google Scholar]
- Wiggins, G.; McTighe, J. Understanding by Design, 2nd ed.; Association for Supervision and Curriculum Development: Alexandria, VA, USA, 2005. [Google Scholar]
- Carlsson, B. Ecological Understanding: A Space of Variation. Ph.D. Thesis, University of Technology, Luleå, Sweden, 21 December 1999. [Google Scholar]
- The College Board. AP Biology Curriculum Framework 2012–2013. Available online: https://secure-media.collegeboard.org/digitalServices/pdf/ap/10b_2727_AP_Biology_CF_WEB_110128.pdf (accessed on 12 September 2022).
- Schleppegrell, M. The Language of Schooling: A Functional Linguistics Perspective; Lawrence Erlbaum: Mahwah, NJ, USA, 2004. [Google Scholar]
- Lyng, S.T. Is there more to “antischoolishness” than masculinity? On multiple student styles, gender, and educational self-exclusion in secondary school. Men Masc. 2009, 11, 462–487. [Google Scholar] [CrossRef]
- Løvland, A. Samansette Elevtekstar: Klasserommet som Arena for Multimodal Tekstskaping. Ph.D. Dissertation, Høgskolen i Agder, Kristiansand, Denmark, 2006. [Google Scholar]
- Leicht, A.; Heiss, J.; Byun, W.J. Issues and Trends in Education for Sustainable Development; UNESCO Publishing: Paris, France, 2018. [Google Scholar]
- Osborne, J.; Simon, S.; Collins, S. Attitudes towards science: A review of the literature and its implications. Int. J. Sci. Educ. 2003, 25, 1049–1079. [Google Scholar] [CrossRef]
- Wyner, Y.; Blatt, E. Connecting ecology to daily life: How students and teachers relate food webs to the food they eat. J. Biol. Educ. 2019, 53, 128–149. [Google Scholar] [CrossRef]
- Snow, C. Academic language and the challenge of reading for learning. Science 2010, 328, 450–452. [Google Scholar] [CrossRef]
- Tytler, R.; Prain, V.; Hubber, P. Representation construction as a core science disciplinary literacy. In Global Developments in Literacy Research for Science Education; Tang, K.S., Danielsson, K., Eds.; Springer International Publishing: Cham, Switzerland, 2018; pp. 301–317. [Google Scholar]
- Danielsson, K. Learning chemistry: Text use and talk in a Finland-Swedish chemistry classroom. IARTEM E-J. 2010, 3, 1–28. [Google Scholar]
- af Geijerstam, Å. Att Skriva i Naturorienterande Ämnen i Skolan. Ph.D. Thesis, Uppsala University, Uppsala, Sweden, 15 December 2006. [Google Scholar]
- Moje, E. Developing socially just subject-matter instruction: A review of the literature on disciplinary literacy teaching. Rev. Res. Educ. 2007, 31, 1–44. [Google Scholar] [CrossRef]
- Black, P.; Wiliam, D. Developing the theory of formative assessment. Educ. Assess. 2009, 21, 5–31. [Google Scholar] [CrossRef]
- Herrmann, P.; Waxman, S.; Medin, D. Anthropocentrism is not the first step in children’s reasoning about the natural world. Proc. Natl. Acad. Sci. USA 2010, 107, 9979–9984. [Google Scholar] [CrossRef] [PubMed]
- Treagust, D.F.; Tsui, C. Multiple Representations in Biological Education; Springer: Dordrecht, The Netherlands, 2013. [Google Scholar]
- Carvalho, G.; Tracana, R.; Skujiene, G.; Turcinaviciene, J. Trends in environmental education images of textbooks from Western and Eastern European countries and non-European countries. Int. J. Sci. Educ. 2011, 33, 2587–2610. [Google Scholar] [CrossRef]
- Henriksson, A. TitaNO Biologi; Gleerups Utbildning: Malmö, Sweden, 2015. [Google Scholar]
Ideational Metafunction | Textual Metafunction | Interpersonal Metafunction |
---|---|---|
transitivity analysis | organisation of text | lexical choices and drawn |
-written/drawn elements | choices of specific resources | elements in relation to |
(processes, participants, | (drawn/written elements, | science discourse |
and circumstances) | subject-specific symbols) | |
-narrative/conceptual | explicit/implicit values | |
function of drawn elements | relative size and scale | |
relationship written/drawn | ||
elements (redundant, complementing, elaborating, contrasting) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wanselin, H.; Danielsson, K.; Wikman, S. Meaning-Making in Ecology Education: Analysis of Students’ Multimodal Texts. Educ. Sci. 2023, 13, 443. https://doi.org/10.3390/educsci13050443
Wanselin H, Danielsson K, Wikman S. Meaning-Making in Ecology Education: Analysis of Students’ Multimodal Texts. Education Sciences. 2023; 13(5):443. https://doi.org/10.3390/educsci13050443
Chicago/Turabian StyleWanselin, Hanna, Kristina Danielsson, and Susanne Wikman. 2023. "Meaning-Making in Ecology Education: Analysis of Students’ Multimodal Texts" Education Sciences 13, no. 5: 443. https://doi.org/10.3390/educsci13050443
APA StyleWanselin, H., Danielsson, K., & Wikman, S. (2023). Meaning-Making in Ecology Education: Analysis of Students’ Multimodal Texts. Education Sciences, 13(5), 443. https://doi.org/10.3390/educsci13050443